Debugging with Stack Overflow: Web Search Behavior in
Novice and Expert Programmers

Annie Li
annieli@umich.edu
University of Michigan, CSE
Ann Arbor, Michigan, USA

ABSTRACT

Debugging can be challenging for novice and expert programmers
alike. Programmers routinely turn to online resources such as Stack
Overflow for help, but understanding of debugging search practices,
as well as tool support to find debugging resources, remains lim-
ited. Existing tools that mine online help forums are generally not
aimed at novices, and programmers face varying levels of success
when looking for online resources. Furthermore, training online
code search skills is pedagogically challenging, as we have little
understanding of how expertise impacts programmers’ web search
behavior while debugging code.

We help fill these knowledge gaps with the results of a study
of 40 programmers investigating differences in Stack Overflow
search behavior at three levels of expertise: novices, experienced
programmers who are novices in Python (the language we use
in our study), and experienced Python programmers. We observe
significant differences between all three levels in their ability to
find posts helpful for debugging a given error, with both general
and language-specific expertise facilitating Stack Overflow search
efficacy and debugging success. We also conduct an exploratory
investigation of factors that correlate with this difference, such
as the display rank of the selected link and the number of links
checked per search query. We conclude with an analysis of how
online search behavior and results vary by Python error type. Our
findings can inform online code search pedagogy, as well as inform
the development of future automated tools.

CCS CONCEPTS

« Software and its engineering — Software development tech-
niques; Software testing and debugging; + Social and profes-
sional topics — Software engineering education; « Comput-
ing methodologies — Online learning settings.

KEYWORDS

Stack Overflow, Controlled Human Study, Online Search Behavior,
Debugging, Programming Experience

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Madeline Endres
endremad@umich.edu
University of Michigan, CSE
Ann Arbor, Michigan, USA

Westley Weimer
weimerw@umich.edu
University of Michigan, CSE
Ann Arbor, Michigan, USA

ACM Reference Format:

Annie Li, Madeline Endres, and Westley Weimer. 2022. Debugging with
Stack Overflow: Web Search Behavior in Novice and Expert Programmers.
In This is a preprint of a paper that will appear at the 44nd International
Conference on Software Engineering: Software Engineering Education and
Training (ICSE-SEET °22), May 21-29, 2022, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Debugging often is a difficult and time-consuming task [22]. One
common debugging strategy involves turning to online forums such
as Stack Overflow! for help [10, 20, 23, 25, 26]. For example, one
2017 study found that professional software developers spend 11%
of their workdays on work-related browsing [27]. Similarly, soft-
ware developers at Google frequently search for code help online,
completing an average of 12 search queries every workday [33].
Studies have found that Stack Overflow can be as effective as tradi-
tional communication for conveying debugging information [36].

The Problem: Despite the prevalence of online debugging infor-
mation on Stack Overflow, developers can still struggle to efficiently
find helpful debugging information online [32]. These struggles are
particularly evident for novice programmers [7], including those in
their first year of programming instruction [4]. Debugging, includ-
ing debugging using Stack Overflow, can be daunting for novices
because they have insufficient knowledge about the program be-
havior, are unfamiliar with the programming language and environ-
ment, or do not know how to apply effective debugging strategies
for the task at hand [1, 7, 28].

Various support systems, including tools that automatically mine
for helpful Stack Overflow posts [24, 31], have been proposed to
augment IDEs and ameliorate finding online debugging informa-
tion. However, these tools are typically not aimed at novices and
often have limited empirical basis in studies of human behavior.
As another way to support novices, direct mentoring by experts
for training Stack Overflow search query formation has been pro-
posed [4]. For writing Stack Overflow posts, such mentorship has
been found to increase the community reception of novices’ ques-
tions by 50% [14]. However, the effects of mentorship on the post
search process (rather than the post writing process) is less ex-
plored. Approaches that incorporate multiple factors influencing
the behavior of different developers, including experience, have the
potential to be even more effective in practice.

This Study: We help close this knowledge gap by conducting
and reporting the results of a human study of 40 programmers with
varying levels of experience. We investigate, in a controlled man-
ner, experience-related differences in searching for Stack Overflow

!https://stackoverflow.com


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://stackoverflow.com

Conference’17, July 2017, Washington, DC, USA

posts that are relevant to debugging a set of Python bugs. Our goals
are to identify and characterize which search practices and behaviors
distinguish programming experts from novices, as well as to under-
stand the magnitude of such observed differences. Our participants
have varying levels of both general programming experience (0.5
25 years) and Python experience (0-10 years), admitting analysis
of both general and language-specific expertise.

Our key insight is that we can measure and understand student
behavior by recording and analyzing whole-screen interactions.
This allows us to use an experimental setup with more ecological
validity than previous studies: participants search for debugging
help using a standard web browser and search engine (Google in
our experiment) rather than the built-in Stack Overflow search used
by some previous studies [8, 24]. Previous work has indicated that
Google is one of the most common search platform for code-related
help [42]. Indeed, 37 out of 40 participants in our study reported
Google as their preferred search engine. At the same time, we
capture aspects of the search process including navigation behavior,
search result content and search query text, that can otherwise be
difficult to access without intrusive plug-ins.

Research Context: Previous work has identified that novices
are more likely to formulate successful Stack Overflow queries when
collaborating with an expert [4]. However, we do not yet know
the magnitude of experience-related differences overall, making it
difficult to know if online code search training should be prioritized.
Furthermore, while previous work has investigated how novice
programmers write Stack Overflow posts [14], browse a given Stack
Overflow post [10], or focused on how experienced programmers
search for help with an unfamiliar language [6], we do not yet
know what factors during the search process correlate with overall
expertise, which could help inform pedagogy and training. To the
best of our knowledge, this work is the first study to compare the
effects of both general and language-specific experience on search
behavior for Stack Overflow posts.

Summary of Results: Overall, we find significant and substan-
tial experience-related differences in the efficacy of using Google
to search for helpful debugging information on Stack Overflow
(p < 0.05). In particular, we find that programming experts with
Python experience are able to find helpful information on Stack
Overflow for a given Python error 63% of the time, compared to
49% of the time for experts without Python experience, and only
44% of the time for programming novices. This represents a 19%
difference between Python-familiar experts and novices, a moder-
ate size effect (Cramer’s V = 0.12). Furthermore, in an exploratory
analysis, we find that various search factors, such as the Google
search result rank of clicked links and the number of links clicked
per search query, are positively correlated with programming ex-
perience: experts click on more links further down in the Google
search results than do novices, suggesting that novices might be
trained to emulate these behaviors, or that they may be supported
by tools. Finally, we find that the error type of the given bug has a
significant moderate-strong effect on the ability of the participant
to find helpful information on Stack Overflow (p < 0.001, Cramer’s
V = 0.14): participants are more likely to find helpful Stack Over-
flow posts for IndentationErrorsand AttributeErrors, and less

Annie Li, Madeline Endres, and Westley Weimer

(a) Buggy code example stimulus

, a=1[1,2,3,0,3]
2 for i in a:

: if li:

, break

5 print(i)

(b) Error message associated with buggy stimulus

: File "script.py", line 3
2 if li:
A

i SyntaxError: invalid syntax

Figure 1: Simple example bug from our survey. In this case,
the programmer mistakenly used ! rather than the word not
to indicate logical negation.

likely to find helpful posts for SyntaxErrors or TypeErrors, infor-
mation that may help focus the design of future automated tools.
We conclude with a discussion of the implications of our results.

2 MOTIVATING EXAMPLE

In this section, we demonstrate the efficacy difference between
how experts and novices search for online debugging help, and also
show how concrete actions during the search may help explain
that difference, using an example from our experiment. Consider
the buggy Python program and associated Python error message
in Figure 1. This program contains a Python SyntaxError caused
by the use of “!” rather than “not” to express logical negation.
Developers with different levels of programming experience may
take different approaches to finding relevant debugging information
for this error on a website like Stack Overflow. Decisions made
while searching for relevant information can influence whether the
activity is helpful for debugging.

Table 1 shows an example of indicative web search processes
(including query content and the display rank of links clicked) used
by an expert and novice programmer in response to that error.
While both sets of queries capture the notion of a syntax error, they
vary in prose content. For example, some novice queries spell out
“exclamation” rather than using the “!” symbol. On the other hand,
all of the expert-written queries include the “if !i” prefix, which
none of the novice queries include. These differences in query text
result in different candidate Stack Overflow pages being returned
by Google. Further differentiating the two programmers, the novice
always clicks on the first link displayed in the search result, while
the expert is more likely to investigate later links.

Ultimately the search queries written by the novice did not lead
to a search process that was helpful in resolving the bug. By settling
on the “exclamation point python” query in Table 1 and choosing
the first result returned by Google (a common novice tactic observed
in our study), the search process leads to a Stack Overflow page



Debugging with Stack Overflow: Web Search Behavior in Novice and Expert Programmers

Novice Programmer Search Queries Links Rank
! invalid syntax python 0
python invalid syntax exclamation 0
python invalid syntax 1 1
exclamation point python 1 1
Expert Programmer Search Queries

if !i: *SyntaxError: invalid syntax 1 1
if 1i: SyntaxError: invalid syntax 1 3
if !i SyntaxError: invalid syntax python not operator 2 1,8

Table 1: Queries made by Novice and Expert programmers
in response to the error in Figure 1. The literal search query
is shown on the left. The “Links” column indicates the num-
ber of links clicked per query while the “Rank” column indi-
cates the display rank of each link clicked. The query yield-
ing the information reported as the most helpful is high-
lighted, while the display rank of the link that contained
this information is bolded.

that does not contain relevant information. The link? contains text
explaining that, “!= means “not equal to” and is a logical comparison,”
but that statement is not relevant for fixing the bug.

By contrast, the expert’s search process in Table 1, with its more
complicated queries and use of links displayed further down in the
search results, resulted in finding a Stack Overflow post with much
more helpful information: “Some of the operators you may know
from other languages have a different name in Python. The logical
operators && and | | are actually called and and or. Likewise the
logical negation operator ! is called not.”®

We hypothesize that these differences in expert and novice behav-
ior, such as the construction of query strings and the consideration
of multiple candidate search results, can have a significant impact
on the efficacy of using Stack Overflow to help with debugging.
The degree to which such behaviors are relevant and influential
can impact how we teach the use of search in introductory pro-
gramming as well as the aspects of this process that may most
benefit from tool support. While this motivating example showed
how such features can be relevant using the queries and results of
two programmers, the remainder of this paper investigates such
hypotheses systematically in a controlled human study involving
40 programmers with multiple levels of expertise.

3 BACKGROUND

In this section, we provide a brief summary of related works across
three main categories: how developers use and search for online re-
sources like Stack Overflow, existing tools that automatically mine
Stack Overflow content, with a focus on different levels of program-
ming expertise, and general processes involved while debugging.

Zhttps://stackoverflow.com/questions/22209729/what- does-do-mean-in-python
3https://stackoverflow.com/questions/2485466/pythons-equivalent-of-logical-and-
in-an-if-statement

Conference’17, July 2017, Washington, DC, USA

3.1 Stack Overflow Usage

The search for new information using online resources is a common
and a significant task during software development [10, 20, 23,
26]. Developers commonly search for explanations for unknown
terminologies, explanations for error messages, and solutions to
common programming bugs [42]. Various studies have investigated
how developers interact with crowd-sourced forums, of which Stack
Overflow is the most popular, to assist with programming tasks.

There is a body of work that examines how Stack Overflow
questions can be categorized, with the goal of understanding the
context behind questions being asked, as well as how to leverage
this categorization for more efficient retrieval. Stack Overflow is
a particularly effective resource for code reviews and conceptual
questions [37, 40]: the Stack Overflow community was found to
more frequently provide accepted answers to “review,” “conceptual,”
“how-to,” and “error” questions compared to other categories.

Researchers have also evaluated the quality of Stack Overflow
post answers, discovering that explanations accompanying code
examples are as important as the examples themselves [29]. Ad-
ditionally, one study of the usability of Python snippets on Stack
Overflow found that they are 76% parsable and 25% runnable. These
numbers are higher for the top Stack Overflow results returned by
Google [44].

Social aspects of Stack Overflow have also been explored. For
instance, Ford et al. identified barriers women face when contribut-
ing to the site (e.g., doubts regarding the necessary level of exper-
tise to contribute) [15]. Further research found that some gender-
based barriers may be alleviated through peer parity, a community-
focused process that pairs users based on identity such that an
“individual can identify with at least one other peer when interact-
ing in a community” [13].

Studies have also investigated how developers formulate
programming-related search queries for online resources such as
Stack Overflow. In an empirical study on how developers search
the web, Hora found that queries typically start with keywords,
are short, omit functional words, and are similar to each other [19].
By contrast, students often used familiar terms in searches [6].
Critically for our investigation, such changes (e.g., moving the lan-
guage name from the beginning to the end of a query) can have
non-negligible search result effects [19].

Previous work has identified expertise-related patterns in Stack
Overflow interactions. For example, Chatterjee et al. found that
novice programmers pay attention to only 27% of the code and
15-21% of the text in a Stack Overflow post, focusing primarily
on accepted answers [10]. Additionally, explicitly teaching novice
programmers on how to search for online debugging help has been
proposed: Al-Sammarraie found that novices are more likely to
formulate successful Stack Overflow queries when collaborating
with an expert than when working alone [4], indicating expertise
is connected with search query efficacy. However, expertise-related
differences in how participants search for Stack Overflow posts is
under-explored. In this study, we seek to fill this gap by carefully
considering Stack Overflow search query content and web search
browsing behavior as a function of experience.


https://stackoverflow.com/questions/22209729/what-does-do-mean-in-python
https://stackoverflow.com/questions/2485466/pythons-equivalent-of-logical-and-in-an-if-statement
https://stackoverflow.com/questions/2485466/pythons-equivalent-of-logical-and-in-an-if-statement

Conference’17, July 2017, Washington, DC, USA

3.2 Automated Information Retrieval Tools

Several automated tools have been proposed to assist in finding
relevant Stack Overflow posts or to facilitate the search query
construction process [24, 31, 36, 45]. For example, Thiselton and
Treude constructed Pycee, a Sublime Text plugin that enhances
Python error messages by automatically summarizing information
from Stack Overflow.

There is significant educational potential for tools that augment
Stack Overflow. Dondio and Shaheen found that incorporating
Stack Overflow as a resource in a university-level programming
course was at least as effective as traditional means [11]. Further-
more, previous research has found that expert mentorship can help
novices successfully find information on Stack Overflow [4]. How-
ever, overwhelmingly created with data from programming experts
[24, 31, 36, 45], extant tools do not account for differences between
novices and experts.

3.3 General Debugging Processes

Beyond studies and tools specific to Stack Overflow, researchers
have also studied the general processes involved in debugging.
Gilmore proposed a model of debugging with three stages: pro-
gram comprehension, mental representations of the behavior of the
buggy and correct program, and a process of mismatch correction
between the two representations [16]. Similarly, Von Mayrhauser
and Vans identified hypothesis generation along with knowledge
use as key debugging processes [39]. Researchers have also used
medical imaging to investigate debugging processes at the neuro-
logical level. For example, Castelhano et al. found that decision
areas of the brain activate in the moment when developers discover
the cause of a bug [9].

Hypothesis generation is a debugging process of particular in-
terest to the current work: Alaboudi and LaToza found that having
a correct hypothesis early was a strong predictor of debugging
success [5]. However, even when having access to online resources,
they found that developers struggled to generate said debugging
hypothesis, correct or otherwise. As they both involve the gen-
eration of questions and a search for a solution, Stack Overflow
queries may act as a medium for developers to both express and test
their debugging hypotheses. Additionally, it may also be that effec-
tive Stack Overflow query formation can help developers access
resources that inspire new debugging hypotheses more efficiently.
In this paper, we consider how programming expertise impacts the
the effective formation of such queries.

4 EXPERIMENTAL SETUP

To investigate how Stack Overflow search behavior differs by de-
veloper skill level and bug type, we conducted a controlled user
study with 40 participants. We observed how developers used a
standard browser and search engine (Google) to find relevant Stack
Overflow posts while debugging Python programs. All materials
regarding our experimental setup and data analysis can be found
in our replication package.* To increase confidence, a randomly
selected subset of all annotations were checked for accuracy by
another researcher.

4Our replication package can be found at: https://github.com/CelloCorgi/
StackOverflow_ICSE_SEET_2022

Annie Li, Madeline Endres, and Westley Weimer

4.1 Experimental Overview

During the 50-minute study, participants were presented with a
series of debugging prompts; each prompt consisted of a buggy
Python program and the associated error message (see Section 4.3).
Stimuli were shown to participants using the Qualtrics survey plat-
form. Participants were then asked to use a web browser to find a
Stack Overflow post that they perceive as helpful for debugging
(e.g., a related fix for the given error, or an explanation that identi-
fies why the error occurred). To ensure uniformity in search results,
participants were asked to use the Google search engine, and limited
their search results to only those from the Stack Overflow website
with the search prefix site:stackoverflow.com. Participants had
at most 10 minutes per prompt and were shown at most 12 prompts.

In total, we collected data regarding 1,201 queries from 332 de-
bugging sessions. Upon finding a helpful post using Google, partic-
ipants were asked to record the link to the post and to copy those
snippet(s) of the post that they found the most helpful. Participants
were also asked to describe how to fix each bug and if they thought
they knew how to solve the bug before searching. Because our
study uses real-world searches and posts, rather than curated infor-
mation, we conducted a separate expert annotation to provide an
assessment of found post helpfulness (see Section 5.2).

All study sessions were conducted over video conference with
screen recording. We annotated each recording to collect additional
data including search query text, search query timestamps, link
click timestamps, and the search order ranking of the each link
selected (see Section 5.1). Participants also provided self-reported
expertise and demographic information.

4.2 Participant Recruitment

To understand expertise-related differences in Stack Overflow
search behavior, we recruited participants with a diverse array
of programming experiences.

We recruited participants via direct email, university mailing
lists, and public forums such as Piazza and Twitter. 92 participants
filled out a pre-screening form, of which 40 participated in our
study. Table 2 contains a demographic breakdown of participants,
and Table 3 provides participants’ maximum, minimum, and aver-
age years of programming experience. This study’s 40 participants
had 0.5-25 years of programming experience, 0-9 years of profes-
sional development, and 0-10 years of Python. Participants were
compensated $50 for graduate students and professional developers
and $15 for undergraduates.

We call professional software developers or graduate students
with three or more years of programming experience and greater
than one year of Python experience “Python-familiar-experts”. We
note that developers with only three years of experience may not
be considered experts in the traditional industrial sense. However,
as our goal is to understand experience-related differences in search
behavior to inform tools supporting introductory programming
students, three years of experience is enough for a substantial com-
parison. “Non-Python-familiar-expert” participants had three or
more years of general programming experience but only limited
Python experience (one year or less). In our study, both “Python-
familiar-experts” and “Non-Python-familiar-experts” consisted of


https://github.com/CelloCorgi/StackOverflow_ICSE_SEET_2022
https://github.com/CelloCorgi/StackOverflow_ICSE_SEET_2022

Debugging with Stack Overflow: Web Search Behavior in Novice and Expert Programmers

Table 2: Study participants: Python-familiar-experts (PF),
Non-Python-familiar-experts (NPF) and Novices.

PF-experts NPF-experts Novices

Number of Participants 20 9 11
Gender

Woman 8 5

Man 12 3 5
Current Occupation

Professional in Industry 5 2 0
Professional in Academia 2 0 0
Graduate Student 10 1 0
Undergraduate Student 3 6 11

Table 3: Programming experience of study participants.

Experience in years Max Min  Average
General Programming Experience 25 05 5.2
Python Specific Experience 10 0 2.5

a mix of advanced undergraduates, graduate students, and profes-
sional developers. Finally, “Novice” participants were beginning
programmers, having limited experience both with Python and
with programming in general (one year or less of experience in
both). For our study, these were students enrolled in undergraduate
introductory computer science courses at two large public research
institutions.

4.3 Programming Stimuli

We presented participants with programs submitted by real users to
Python Tutor, a popular web-based program visualization tool [18].
We chose Python Tutor to help study errors that novices encounter,
and Python Tutor is widely used in both CS classrooms and also by
self-directed learners around the world [17], and has been studied
in software engineering contexts (e.g., see [12]).

To select our stimuli, we first filtered all 14,251,337 Python 3
programs submitted to Python Tutor between 2015 and 2017 for
those that did not require user or file input, were not likely to have
non-deterministic output. This resulted in 9,486,611 remaining pro-
grams, of which 3,735,811 produced runtime errors. We identified
the five most common categories of errors as determined by the
generated Python error message.” From most prevalent to least,
these were SyntaxErrors (56.8%), TypeErrors (13.0%), NameErrors
(14.1%), IndexErrors (6.0%), and AttributeErrors (2.9%), together
accounting for 92.8% of errors in the Python Tutor dataset. From
these each of these five error categories, we randomly selected
eight programs producing an error of that category. This resulted
in a corpus of 40 buggy programs used in our experiment. We
note that of the eight SyntaxError programs, three produced an
IndentationError, which is a common SyntaxError subclass in
our dataset.

Stimuli were presented to participants in a Qualtrics survey. Each
program and associated error message was provided in both image
and textual format. The image version preserved syntax highlight-
ing and formatting on the Qualtrics platform, while the textual

SThe category is the text before the colon in a Python 3.8 error message.

Conference’17, July 2017, Washington, DC, USA

version allowed participants to copy portions of the stimuli to aid
in searching should they wish to do so. To ensure we had the statis-
tical power for comparisons, we organized our study to ensure that
each participant received at least one randomly-selected stimulus
from each error category. Aside from this constraint, stimuli were
selected randomly from the 40 programs we included in our study.

5 ANALYSIS METHODOLOGY

We now present our analysis methodology for both annotating
the developer interaction screen captures (Section 5.1) and also
determining debugging helpfulness of participant-reported Stack
Overflow posts (Section 5.2). We conclude with a discussion of our
statistical methods in Section 5.3.

5.1 Video Annotations

From the video recordings of participant sessions, the first author
manually annotated screen recordings to mark various event times-
tamps, the contents of search queries, link URLs clicked by the
participant, and other relevant information. For example, to collect
data associated with search queries, we recorded the timestamps
corresponding to when the participant started typing the query
into the Google search bar, the timestamp for when the participant
finished typing, and the contents of the query itself. In addition, we
noted the search result ranking of the clicked link by the partici-
pant, as well as the Stack Overflow post ID. There were 12 instances
across 6 participants where the participant clicked on an invalid
link (marked as “-1” in our replication materials). Video annotations
were spot-checked for accuracy by the second author.

Critically, participants did not have to narrate or call out any
such information (e.g., “I am clicking on the second link”): debug-
ging search interactions were natural and uninterrupted, and the
annotation process was performed post hoc on recordings.

5.2 Post Relevance Assessments

Because participants could formulate any search query and visit
any Stack Overflow page, we could not pre-assess the helpfulness of
query results. We thus conducted an expert annotation with three
author annotators to establish a quality and helpfulness assessment
for all observed Stack Overflow posts and snippets (informally, a
“ground truth” for this aspect of the experiment).

We define the relevance of a Stack Overflow link or snippet
as a Boolean value. True means the Stack Overflow post content
identifies a possible cause, directly provides a solution or example
of correct code structure, explains how to resolve the error message
for a context specific to that of the debugging prompt, or teaches
general Python knowledge necessary for debugging the prompt.
False means that the post did not contain any such information.
Our full annotation rubric can be found in our replication materials
on the project website.

To decide on the relevance of participant survey responses, the
first two authors individually assessed each survey answer with
relevance categories,’ compared results, and arrived at a consensus
for any discrepancies found. In the 12 of 332 cases where there was
still no consensus about relevance, the third author was consulted to
reach a final consensus. A similar process was followed to determine

%See annotator spreadsheet in our replication package



Conference’17, July 2017, Washington, DC, USA

the correctness of the fix the participant proposed for each stimulus,
for which the third author was consulted for 2 out of 332 responses.

5.3 Statistical Methods

In general, our data was stored in a MySQL database, and we
conducted our analysis using a Python Jupyter Notebook and
Pandas [41]. For our statistical analyses, we used methods from
both SciPy [38] and Statsmodels [34].

When testing for a significant difference between two or more
categorical values (e.g., different experience levels), we use y? tests
of independence. This test is standard when comparing the values
of two or more categorical variables for which the data was col-
lected using independent observations, as in our study design [35].
We consider results significant when p is less than 0.05. Beyond
statistical significance, to better understand our y? tests (e.g., which
categories are driving the significant result), we analyze standard-
ized residuals as suggested by Sharpe [35]. Standardized residuals
are a measure of the difference between what was expected and
what was actually observed for any given result in the y? test ad-
justed for differences in the frequency of observations. Generally,
standardized residuals with absolute values of at least two are con-
sidered to strongly contribute to the significant result [35], while
residuals greater than three or four have a very strong effect. Finally,
as a measure of the effect size of our )(2 statistic, we use Cramer’s V
(see Akoglu [3, Table 2] for a guide for interpreting Cramer’s V).

When testing the significance and magnitude of a relation be-
tween two continuous variables (e.g., age or years of programming
experience), we use Spearman’s rank-order correlation coefficient.
We use Spearman’s rather than the more common Pearson’s cor-
relation coefficient because Spearman’s captures all monotonic
relationships, not just linear ones. Correlations with » > 0.3 are
considered significant and of weak effect.

Finally, in this study, we investigate multiple research questions
and conduct many statistical tests. Thus, it is necessary to consider
and correct for multiple comparisons. For our first and third re-
search question, we defined our questions when designing the study
to avoid fishing, and we correct for multiple comparisons for each
sub-question using a Benjamini-Hochberg False Discovery Thresh-
old of g = 0.05. All significant results reported for these research
questions pass this threshold. Our second research question, on the
other hand, is an exploratory analysis for factors that may explain
our primary result in the first research question. Thus, correction
for multiple comparisons is not appropriate for this question.

6 EXPERIMENTAL RESULTS

In this section, we report our experimental results. We organize
our analysis of the data around three research questions:

® RQI—Post Relevance: Is there a relationship between general
programming experience or language-specific experience
and successfully selecting relevant and helpful Stack Over-
flow posts?

® RQ2—Browsing Features: What features of browsing behavior
correlate with programming experience?

e RQ3—Error Type: Does debugging performance with Stack
Overflow differ by Python error type?

Annie Li, Madeline Endres, and Westley Weimer

6.1 RQ1: Post Relevance

We first investigate whether general or language-specific experi-
ence level impacts a programmer’s ability to use a search engine
to find relevant and helpful information from Stack Overflow for
debugging Python errors. Specifically, we investigate if Python-
familiar-experts, Non-Python-familiar-experts, or Novices are more
or less likely to find helpful debugging information (see Section 4.2
for an overview of our three experience categories).

We investigate both the ability of participants to find an overall
relevant Stack Overflow post and also to their ability to identify
a helpful snippet within a post (see Section 4.1). To assess the
relevance of posts and snippets provided by participants, we use a
multi-annotator relevance notion (see Section 5.2).

Primary Result — Posts: We find a significant relationship
between experience level and the ability to find a relevant Stack
Overflow post for a given error (y?(2, N = 332) = 6.68, p = 0.035).
By examining the standardized residuals for this result (see Ta-
ble 5), we find that that this significant y? statistic is primarily
caused by Python-familiar-experts performing better and Novices
performing worse than predicted by the null hypothesis. Specif-
ically, Python-familiar-experts are more likely to find a relevant
Stack Overflow post than both Non-Python-familiar-experts and
Novices. Python-familiar-experts find a helpful post 60% of the time
(99 / 165) compared to 52% (42 / 81) of the time for Non-Python-
familiar-experts and only 43% (37 / 86) of the time for Novices.
Beyond being statistically significant, this finding is representative
of a moderate size effect (Cramer’s V = 0.10) [3].

Secondary Result — Snippets: We also find a significant re-
lationship of moderate effect size between programming experi-
ence and the helpfulness of the specific snippet within the Stack
Overflow post that the participant identified to be most useful for
debugging the survey prompt (y%(2, N = 332) = 9.38, p = 0.009,
V =0.12). As with overall post helpfulness, this result is driven by
Python-familiar-experts and Novices (see the standardized residu-
als in Table 5). Python-familiar-expert participants are more likely
to identify a helpful snippet than both Non-Python-familiar-experts
and Novices: Python-familiar-experts find a helpful post 63% of
the time (104 / 165) compared to 49% (40 / 81) of the time for
Non-Python-familiar-experts and only 44% (38 / 86) of the time
for Novices. These results, along with our overall link helpfulness
results, are presented in Table 4.

Implications: Our primary result showing that expertise has a
significant and substantial effect on Stack Overflow search efficacy
is important because it demonstrates that expert programmers are
able to find Stack Overflow posts that contain relevant debugging
information at a higher rate than novices. More importantly, this
confirms that novices can improve their Stack Overflow search
skills over time as they gain experience in programming and de-
bugging. This builds upon previous works, which establishes that
expert-novice pairs have more successful web search query rates
than novice-only pairs [4]. Furthermore, our results show that both
general and language-specific programming experience facilitates
search efficacy: while Python-familiar-experts performed the best
overall, Non-Python-familiar-experts still performed better than
Novices for both overall posts and for snippets. This indicates that
while language-specific expertise is helpful, even language-agnostic



Debugging with Stack Overflow: Web Search Behavior in Novice and Expert Programmers

Table 4: Percent of links and snippets identified by partici-
pants that annotators found relevant for debugging the er-
ror, broken down by participant experience level.

% Posts % Snippets Total
Experience Level Relevant Relevant ~ Observations
Python-familiar-experts 60.0 63.0 165
Non-Python-familiar-experts 51.9 49.4 81
Novices 43.0 44.2 86

Table 5: Standardized residuals for Chi-square tests of inde-
pendence for post and snippet relevance by participant ex-
perience level. Residuals with an absolute value above 2 are
highlighted and considered significant, while those with an
absolute value above three are bolded and considered very
significant factors.

Post Snippet
True False | True False
Python-familiar-experts 23 23| 3.0 -3.0
Non-Python-familiar-experts | -0.4 04| -1.1 1.1
Novices -2.3 23| -23 -23

“Google code search” training may still help Novice programmers
find online information more explicitly. This possibility that even
language-agnostic training my help Novices is further supported
by the importance of hypothesis generation to the debugging pro-
cess [5, 39]: training developers on code search query formation
may help developers to both more effectively communicate their
debugging hypothesis and also to access the information they need
to test their debugging hypotheses more efficiently.

We also note that our results for finding a helpful snippet are
very similar to our results for finding an overall post. This indicates
that while participants (experts in particular) do sometimes find
a helpful snippet taken out of context from an otherwise unhelp-
ful post, observed differences are primarily driven by browsing
behavior for finding a relevant Stack Overflow post rather than
within-post differences. As a result, pedagogical training and future
automated tools may benefit from focusing on finding a relevant
post (i.e., searching) rather than selecting a relevant snippet of the
post (i.e., page localization). In the next research question, we inves-
tigate what browsing behaviors may drive these experience-based
differences.

We find a relationship between both general and language-
specific programming experience and locating relevant debug-
ging help on Stack Overflow when using the Google search
engine. For example, Python-familiar-experts are 8% more
likely than Non-Python-familiar experts and 17% more likely
than Novices to identify helpful links (p = 0.035), a moderate
size effect. This confirms not only that experts are more ef-
fective at searching for relevant debugging information than
novices, but also that with experience (and potentially train-
ing), programmers can improve at debugging searches.

Conference’17, July 2017, Washington, DC, USA

6.2 RQ2: Browsing Behavior and Expertise

Having established that there is a significant relationship between
programming experience and effectively searching for debugging
help on Stack Overflow, we now conduct an exploratory inves-
tigation into factors that may drive this difference. We explore
the relationships between experience and search behavior for two
phases of the search process: search query construction, and se-
lecting links from the search query results. By identifying features
of Stack Overflow browsing behavior that correlate with experi-
ence for each of these phases, we can help direct educators on how
to teach novices to use online debugging help, and also provide
features relevant for designing future automated tools.

Phase 1 — Search Query Construction: We first investigate
expertise-related differences in the textual content of constructed
queries. In particular, we look at differences in query length, if the
query contains common Python keywords, and the edit-distance
between the query and the original error message.

We found that the length of users’ queries, both in terms of num-
ber of characters and number of words, is weakly correlated with
years of Python experience (p = 0.021 and r = 0.36 for characters,
and p = 0.015 and r = 0.38 for words). While not quite reach-
ing significance, we also observed a similar trend between both
of these features and years of general programming experience
(p = 0.068 and r = 0.29 for characters, p = 0.072 and r = 0.29
for words). This indicates that experts, both Python-familiar and
Non-Python-familiar, are more likely to write longer queries than
novices. Furthermore, it encourages automated Stack Overflow
mining tools to not avoid longer queries.

One hypothesis for why we observe this correlation is that pro-
grammers with language-specific experience may be more familiar
with language-specific vocabulary. As an alternate hypothesis, per-
haps experts are more likely to directly copy the error message
(which can often be quite long) into the search query, a hypothesis
supported by the anecdotal observations of the research team. We
note there are other hypotheses that could also explain the observed
results. However, to test our two primary hypotheses, we inves-
tigate if the number of Python-specific vocabulary in the query
(e.g., Python keywords’), or the query’s Levenshtein distance from
the error message also correlated with years of programming or
Python experience.

Overall, however, we did not find evidence that the semantic
content of search queries mediated experience-related differences:
for all six additional tests, p was greater than 0.16 and r was less
than 0.25. We encourage future work to investigate search query
construction and experience more directly. However, these results
may indicate that the bulk of experience-related differences in Stack
Overflow search are in a different phase of the search process.

Phase 2 — Selecting Search Results: We next analyze the re-
lationship between programming experience and how a participant
selects Stack Overflow posts from the search results. Specifically,
we investigate the ordered display rank of selected Stack Overflow
posts on the Google search page and the number of links investi-
gated per search query.

For the former, we perform a y?-test of independence between
experience level and whether the Stack Overflow link clicked was

https://docs.python.org/3/reference/lexical_analysis.html#keywords


https://docs.python.org/3/reference/lexical_analysis.html#keywords

Conference’17, July 2017, Washington, DC, USA

Average Number of Page Visits per Query vs. Python Experience

E' 35 Hl Python-familiar-experts
S * HEl Non-Python-familiar-experts
o Novices
o 30
b4}
@
S -
v 25 .
& . .
‘s .
E 20 ot . . .
.
g * s * .
=15 . . .
4 .
< 10 ¢
T T T T T T
0 2 4 6 8 10

Python Experience (years)

Figure 2: Plot of average number of page visits per unique
query over years of Python experience.

the first search result (represented as a Boolean value). We consider
all Stack Overflow links clicked, regardless of if the post was the
final one reported by the participant. We choose a Boolean rep-
resentation rather than a correlation with the numerical rank as
we are interested in if participants only check the first link in the
Google search results or also investigate links further down.

We find a small but significant relationship: compared to both
Novices and Non-Python-familiar-experts, Python-familiar-experts
are more likely to click on a link other than the first result (y?(2, N =
1201) = 11.43, p = 0.003, V = 0.07). In particular, 59% (374 / 639) of
links clicked by Python-familiar-experts had a rank greater than
one, compared to 50% (140 / 279) of links clicked by Non-Python-
familiar-experts, and 48% (135 / 283) of links clicked by Novices.?

Notably, compared to search success rate where language-
specific and general experience contributed similar overall gains
(see Section 6.1), rank differences are most apparent for Python-
familiar-experts: Non-Python-familiar-experts and Novices are
more similar. Programmers with language-specific expertise are
more likely to scan further down the search result, perhaps as a
function of greater familiarity with language-specific vocabulary.

We also find that the number of posts investigated per search
query is weakly, but significantly, positively correlated with years
of Python experience (r = 0.32, p = 0.045), as shown in Figure 2.
This result is connected with the previous one: Python experts tend
to spend more time with each search query by clicking on more
links that are further down the page. In a sense, this is more of
a “depth first” approach, rather than the “breadth first” approach
observed in novices who are more likely to make a search query,
look at the first result, and then refine the search query rather
than look at another result. As experts have higher success rates
for finding relevant information on Stack Overflow, this indicates
that explicitly teaching novices to check more posts per search
query may help increase their success. Based on our results, we
also hypothesize that selecting from the search page (Phase 2) may

8We note that a similar pattern emerges when considering a rank higher than 1, though
generally with a slightly smaller y? statistic. For example, Python-familiar-experts are
also significantly more likely to click on results with a rank greater than three, also
with small effect (y2(2, N = 1201) = 9.72, p = 0.008, V = 0.06).

Annie Li, Madeline Endres, and Westley Weimer

better explain observed experience-related differences than search
query construction (Phase 1). We encourage future research to more
directly investigate this hypothesis.

In an exploratory analysis, we find evidence that experience-
related differences in Stack Overflow search efficacy are con-
nected to differences in how programmers select links from the
search result (Phase 2). Experts tend to click more search re-
sults than novices. We also observe limited evidence that query
construction (Phase 1) may also facilitate some experience-
related difference. Our results encourage teachers to focus
training on the second phase of the search process.

6.3 RQ3: Error Type Effects

Beyond expertise-related differences in Stack Overflow searching
behavior, we also investigate differences associated with Python
error types (e.g., SyntaxError vs. TypeError). Understanding the
intersection between Stack Overflow post-relevance and error types
may help direct instructors who are teaching students when (i.e., in
which error contexts) to search for help on Stack Overflow. It may
also help scope future generations of automated tools that mine
Stack Overflow. To determine whether debugging search outcomes
vary by Python error type, we compare how characteristics such
as post and snippet relevance, correctness of the fix proposed by
the participant, and Stack Overflow link uniqueness varied by the
error type of the debugging stimulus.

Post and Snippet Relevance: For our primary result regard-
ing this research question, we analyze if there were significant
differences in the ability of participants to find relevant Stack Over-
flow posts depending on the Python error type of the bug. We
conduct a y-square test of independence between stimulus error
type and link relevance, and find evidence that a significant rela-
tionship does exist between the error type and whether a partic-
ipant’s Stack Overflow post provided in the survey was relevant
to debugging the error (y?(5, N = 332) = 31.59, p < 0.001). This
difference is of strong-moderate effect (V = 0.14). Table 6 con-
tains a breakdown of the likelihood of finding a relevant Stack
Overflow post by error type. We find that relevant posts are most
likely to be found for IndentationErrors (73% success rate) and
AttributeErrors (70% success rate), but least likely to be found
for SyntaxErrors (only 25% success rate). These results indicate
that finding relevant and helpful information on Stack Overflow
may be more challenging for general SyntaxErrors and less chal-
lenging for IndentationErrors and AttributeErrors, both for
programming students and potentially also for automated tools.

Similarly, we also find a significant relationship exists between
error type and relevance of the particular snippet the participant
identified as the most helpful from the post (y2(5, N = 332) = 13.37,
p = 0.02). As shown in Table 6, we find that our snippet results
largely align with the results for the overall post: the three error
types with the highest success rate for finding an overall post are
also the three highest for finding a relevant snippet. However, the
magnitude of the difference is smaller and only of small effect
(V =0.09). In particular, we note that while participants were able
to find a relevant post for SyntaxErrors only 25% of the time, they



Debugging with Stack Overflow: Web Search Behavior in Novice and Expert Programmers

Conference’17, July 2017, Washington, DC, USA

Error Type Found Relevant Post Found Relevant Snippet Able to Fix the Bug

Yes No % Yes Rank ‘ Yes No %Yes Rank | Yes No % Yes Rank
Syntax Error 14 41 254 6| 30 25 54.5 4| 45 10 818 2
Type Error 46 47 49.5 5 43 50 46.2 5 59 34 63.4 4
Index Error 28 26 51.9 4 23 31 42.6 6 23 31 42.6 6
Name Error 34 18 65.4 31 34 18 65.4 2| 36 16 69.2 3
Attribute Error 31 13 704 2| 31 13 705 1] 25 19 568 5
Indentation Error 25 9 735 1 21 13 618 3] 30 4 882 1

Table 6: Percentage of relevant posts and snippets found, broken down by error type, as well as the percentage of responses
for which the participant correctly fixed the bug. For each of these three catagories, the rank column indicates which error
type had the lowest (6) and the highest (1) success rate. Cells with over a 70% success rate are underlined and highlighted in
green, while cells with a success rate under 30% are bolded and highlighted in red.

were able to identify a relevant snippet 54% of the time. Anecdotally,
this difference was driven by participants finding a correct example
of the buggy syntax in the question or answer of an otherwise not-
relevant Stack Overflow post.’ This suggests that for many Syntax
Errors, resources such as language documentation or tutorials with
example code may be more helpful than Stack Overflow posts, and
thus a better focus of pedagogical training.

Fix Correctness: We further contextualize our results regarding
post and snippet relevance by comparing with the likelihood a
participant proposed a correct fix for the bug. As with post and
snippet relevance, we find a moderate significant difference between
error type and correctly fixing the bug (y*(5,N = 332) = 28.82,
p < 0.001, V = 0.13). The full results for our fix correctness analysis
can be found in Table 6. However, we emphasize that while the error
type rankings for finding a relevant post and finding a relevant
snippet were relatively similar, the rankings for fix correctness are
less so, especially for SyntaxErrors and AttributeErrors. For
example, while SyntaxErrors were the error type with the lowest
likelihood for finding a relevant post (25%), they were the second
most common for the participant to be able to fix the bug (82%).
This may indicate that even though SyntaxErrors are challenging
to find help for on Stack Overflow, they are still generally easier to
fix for participants. This indicates that future automated tools that
mine Stack Overflow will likely be more beneficial to users if they
focus on error types that are not SyntaxErrors.

Stack Overflow Post Uniqueness: Finally, we investigate the
uniqueness of Stack Overflow posts for each debugging stimulus to
see if participants were more likely to “converge” on a single Stack
Overflow post for bugs of a particular error type. In this context, a
post is defined to be unique if its Stack Overflow link ID, extracted
from the URL, appears only once within the set of participant
responses for that stimulus.'? Understanding post uniqueness may
be an important factor for directing future automated tools that

9 As an example, for one SyntaxError caused by not having a closing quote at the
end of a string in an input call, one participant selected a Stack Overflow post about
using f-strings in Python (https://stackoverflow.com/questions/58463606/how-do-you-
format-user-input-as-an-f-string-in-python). Even though the given stimulus did not
contain an f-string, the snippet selected by the participant coincidentally had code
showing matching string quotes in an input call.

19Posts marked as duplicate questions on Stack Overflow are treated as their own post
in our analysis as long as they have their own URL. Such questions typically have
distinct question wording or answers, even if they were later marked as a duplicate of
another question by Stack Overflow users.

Error Type % Posts Unique Residual
Syntax Error 75.6 4.7
Name Error 60.0 1.7
Index Error 57.1 1.3
Attribute Error 34.1 -1.7
Type Error 33.3 -3.5
Indentation Error 30.3 -2.3

Table 7: Analysis of the uniqueness of selected Stack Over-
flow posts, broken down by Error type. Residual contains
the standardized residual from our y-square test. Residuals
with an absolute value above 2 are highlighted and consid-
ered significant, while those with an absolute value above
three are bolded and considered very significant factors.

mine Stack Overflow: if participants tend to converge on a single
helpful post for errors of a given error type, it may be more likely
for an automated tool to be constructed to do the same.

We find that there is indeed a significant and strong relation-
ship between error type and post uniqueness (y?(5, N = 332) =
38.67, p < 0.001, V = 0.15). Table 7 contains the percentage of
unique links broken down by error type, as well as standardized
residuals from our y-square test (see Section 5.3). This signifi-
cant difference is largely driven by SyntaxErrors, TypeErrors,
and IndentationErrors, all of which have residuals with an ab-
solute value of over 2, indicating they contribute strongly to
the significant y-square statistic. Specifically, 76% of posts se-
lected for SyntaxErrors were unique, compared to only 33% and
30% of TypeErrors and IndentationErrors respectively. Even
though the residuals are not quite as large, they still also ap-
proach significance for both NameErrors and AttributeErrors,
with 60% of NameError posts unique compared to only 34.1% of
AttributeError posts.

These results indicate that future automated Stack Overflow tool
design may want to focus on TypeErrors, IndentationErrors,
and AttributeErrors rather than SyntaxErrors and NameErrors:
if humans are more likely to converge on a single helpful post
for these error types, it may also be easier for an automated tool
mimicking human online search behavior to do the same.


https://stackoverflow.com/questions/58463606/how-do-you-format-user-input-as-an-f-string-in-python
https://stackoverflow.com/questions/58463606/how-do-you-format-user-input-as-an-f-string-in-python

Conference’17, July 2017, Washington, DC, USA

We find that significant differences in Stack Overflow search
outcomes exist between Python error types for the ability
to find relevant stack posts (p < 0.001), relevant snippets
(p = 0.02), and correctly fix the bug (p < 0.001). We also find
that the likelihood of participants to converge on the same
Stack Overflow post also differs by error type (p < 0.001).
Taken together, these results indicate that Stack Overflow may
be more helpful for IndentationErrors, TypeErrors, and
AttributeErrors, but less helpful for general SyntaxErrors
and NameErrors, information that may help the development
of future automated tools.

7 DISCUSSION

In this discussion, we first contextualize our exploratory results
regarding search behavior from RQ2. We then discuss the implica-
tions of our results, focusing on impacts on pedagogy and on future
automated tools.

Contextualization of our exploratory results: In our second
research question (see Section 6.2), we focused our analysis on
connections between programming experience and behavior during
two phases of the search process: search query construction and
selecting search results. However, there is an additional third phase
of the search process: locating helpful snippet(s) within a selected
Stack Overflow post. In this paper, we focus on the first two phases
as they are the most understudied in previous work. Also, our results
in RQ1 indicate that the majority of experience-related differences
are apparent by the time the programmer identifies a relevant post.

However, we also explored differences in the location of helpful
snippets (“Phase 3”) as doing so admits comparison to previous
work [10, 30]. To do so, we coded the location of the helpful snip-
pet provided by the participant (e.g., Answer, Question, Comment,
etc.) using our same inter-annotator agreement procedure (see Sec-
tion 5.2). Table 8 contains our full location information breakdown.
As anticipated, we found no significant relationships between pro-
gramming experience and the location of helpful snippets. However,
our results do align and support prior work in that developers are
more likely to focus on post text than titles [30], and within that
text, they primarily focus on accepted answers [10]. For example,
Chatterjee et al. found 42% of the time, information novices high-
lighted as helpful for debugging in a Stack Overflow post was in
the post’s Accepted Answer [10]. This is very similar to the 40% of
novices in our study who did the same, an observation which helps
us gain confidence in the repeatability of our results.

Pedagogical Implications: First and foremost, we provide evi-
dence of how expertise influences Stack Overflow debugging. How-
ever, it is an open question if the correlations we observed result
from a causal relationship. We encourage future work to investi-
gate if training that induces behaviors similar to those displayed by
experts (e.g., clicking more search results, framing longer queries,
etc.) can help novices. To the best of our knowledge, however, train-
ing online code search is not yet standard in computing curricula.
Our results provide evidence that instigating such training may
have a noticeable effect: we observed a significant, moderate-sized
effect of programming expertise on Stack Overflow search efficacy.

Annie Li, Madeline Endres, and Westley Weimer

Table 8: Page locations of snippets identified as helpful
for debugging, by experience: Python-familiar-experts (PF),
Non-Python-familiar-experts (NPF) and Novices.

PF-Experts NPF-Experts Novices
Total Snippets 161 80 75

Post location

Answer 145 (90%) 72 (90%) 70 (93%)
Question 7 (4%) 4 (5%) 4 (5%)
Comment 7 (4%) 4 (5%) 1(1%)
Post Title 2 (1%) 0 (0%) 0 (0%)
Additional Answer Breakdown

Top Answer (Accepted) 73 (45%) 37 (46%) 30 (40%)
Top Answer (Not Accepted) 46 (29%) 19 (24%) 23 (31%)
Accepted Answer (Not Top) 0 (0%) 2 (3%) 0 (0%)
Other Answer 26 (16%) 14 (18%) 17 (23%)

Additionally, there is evidence for general debugging that train-
ing can help performance. For example LaToza et al. found that
providing developers with explicit debugging strategies improved
debugging success [21]. It may be possible to adapt this “explicit
stratagy” approach to hep guide novice developers with their debug-
ging query formation. For example, novices could be given explicit
instructions to copy parts of the error message or to check mul-
tiple results from a single search query. Such an approach could
complement the expertise-based mentoring approach proposed by
Al-Sammarraie [4].

Furthermore, we provide evidence that general and Python-
specific expertise effect search efficacy in different ways, a re-
sult which may influence pedagogy. For instance, we found that
experience-related differences in the page-rank of selected posts
was primarily observed as a function of Python-specific expertise
rather than general expertise (see Section 6.2). Thus, different ped-
agogical strategies may be effective depending on the student’s
type of programming experience (e.g., explicitly teach about the
rank order in which results appear primarily when training stu-
dents who lack Python-specific experience). We encourage future
work to investigate if these expertise-type differences generalize to
languages other than Python.

Implications for future automated Stack Overflow tools:
Our results also have implications for the design of future auto-
mated tools that interface with Stack Overflow. Experience-based
variance in search efficacy emphasizes the potential of such tools to
provide support to less experienced developers. Furthermore, our
results regarding error types can be used to inform which errors to
focus on when developing automated information retrieval tools.

In particular, our result that programmers are more likely to find
helpful information on Stack Overflow for certain error types (e.g.,
AttributeErrors) and less likely for others (e.g., SyntaxErrors)
indicates that the same may be true for some automated tools (e.g.,
those based on mined user data). Future tools that automatically
integrate Stack Overflow into a developer’s debugging workflow
may want to focus on providing help for those error types for
which it has the highest chance of providing helpful (rather than
potentially distracting) information. This finding is particularly
relevant as SyntaxErrors, the error type for which finding help



Debugging with Stack Overflow: Web Search Behavior in Novice and Expert Programmers

on Stack Overflow was the most challenging, are often the errors
most approachable by non-online automated tools such as language
compilers and error correcting parsers (e.g., [2]). For example, recent
versions of Python (e.g., Python 3.10.0!!) contain updated compiler
error messages, including clarifications for SyntaxErrors.

Furthermore, our finding that general and language-specific ex-
perience effect search success in different ways also has implications
for automated tools. In particular, it indicates that it may be benefi-
cial for some future automated tools that mine Stack Overflow to
focus on augmenting language-specific or general expertise, rather
than both simultaneously; if online search outcomes vary depend-
ing on the type of experience, it may follow that such programmers
would prefer different types of automated support.

8 THREATS TO VALIDITY

We now discuss some of the threats to validity and limitations of
our study, focusing on threats to generalizability, ecological validity,
and the reliance on manual annotation.

One potential limitation is generalizability. While we mitigate
this threat by recruiting participants from multiple institutions and
included participants from a number experience levels, bias may
remain. For instance, we recruited novices primarily from two large
public university computer science programs. Thus, our population
is not a random sample of programming novices (e.g., self-taught,
small liberal arts, and high school level novices are not included),
and so our results may not generalize to other populations. Addi-
tionally, our study used a corpus of 40 relatively small programs,
so our results may not generalize to other program types.

A second potential threat is our reliance on manual annota-
tion during our analysis. To retain as much ecological validity as
possible, we had developers complete the study using their own
computer and web browser. Doing so, however, necessitated using
manual annotation for event timestamps and search query contents
to prepare the data for analysis. Unfortunately, manual annotation
can be prone to error. To mitigate errors due to manual annotation
and gain confidence in our results, we had a second annotator ran-
domly check a subset of the annotated data. Furthermore, when
using manual annotation to establish values for post and snippet rel-
evance, we used a process involving three independent annotators
to establish a grounded consensus (see Sections 5.1 and 5.2).

Furthermore, while we aimed to get close to capturing an
ecologically-valid search process (e.g., using a personal computer or
using Google as the search engine rather than providing search re-
sults), we acknowledge that this may pose a threat to reproducibility:
Google’s search algorithm is not public, but it may provide different
search results at different times or for different users. Additionally,
there are still some constraints imposed by the controlled study
environment. For instance, as we focus on analyzing the most help-
ful post found by a given participant, our study structure does not
capture situations when information from multiple Stack Overflow
posts is used to fill in gaps that one post alone cannot encompass.
Similarly, as we focus only on Stack Overflow, we are not able to
capture interactions between Stack Overflow and other sources
such as API documentation or tutorials. This pattern of combining
Stack Overflow posts either with other such posts or with other

Hhttps://docs.python.org/3/whatsnew/3.10.html#better-error-messages

Conference’17, July 2017, Washington, DC, USA

sources has been observed in previous studies of the platform [43].
Even so, our results still give insight into how individuals of dif-
ferent programming experience levels search for and navigate to
helpful Stack Overflow posts.

9 CONCLUSION

Debugging can be a challenging task for programmers at all experi-
ence levels. Programmers often use online resources, such as Stack
Overflow, for help. However, expert and novice programmers use
Stack Overflow in different ways and with varying levels of success.
Tools that automatically search for posts to help developers have
been explored. However, these tools are generally aimed only at
experts, and often are designed without a firm understanding of
how programmers with different types of expertise search for and
use online debugging information. Such limited knowledge may
also make designing and implementing training for finding and
using online resources pedagogically challenging.

In this paper, we help fill these knowledge gaps with the results
of human study with 40 programmers investigating differences in
Stack Overflow search behavior at three levels of programming ex-
perience: Novices, experienced programmers who are novices in
Python, and experienced Python programmers. We observe signifi-
cant and substantial differences between all three experience levels.
Python-familiar-experts are able to find helpful debugging infor-
mation at a higher rate than Non-Python-familiar-experts, and
Non-Python-familiar-experts have more success than than Novices
programmers. This demonstrates that both general and language-
specific expertise impact success. We also conduct an exploratory
analysis of search behaviors that correlate this difference. In this
analysis, we find that features during the post selection phase of
the search (e.g., display rank of the selected post) are generally
more predictive of programming experience than features during
the query construction or within-post phases. Finally, we find that
there are strong significant differences in Stack Overflow search
efficacy depending on the error type of the bug. Our findings can
both guide teaching of the skill of searching for online debugging
help and also inform future automated tools.

ACKNOWLEDGEMENTS

We acknowledge the partial support of the National Science Foun-
dation (CCF 1908633, CCF 1763674) and a Google Faculty Research
Award. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the NSF or
Google. Additionally, we extend our thanks to Ben Cosman and
Steve Oney who both kindly agreed to allow us to recruit novice
participants from their university courses.

REFERENCES

[1] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. 2005. An analysis of
patterns of debugging among novice computer science students. ACM SIGCSE
Bulletin 37, 3 (2005), 84-88. https://doi.org/10.1145/1151954.1067472

[2] Alfred V. Aho and Thomas G. Peterson. 1972. A Minimum Distance Error-

Correcting Parser for Context-Free Languages. SIAM J. Comput. 1, 4 (1972),

305-312. https://doi.org/10.1137/0201022

Haldun Akoglu. 2018. User’s guide to correlation coefficients. Turkish journal of

emergency medicine 18, 3 (2018), 91-93.

[4] Mareh Fakhir Al-sammarraie. 2017. An Empirical Investigation of Collaborative
Web Search Tool on Novice’s Query Behavior. Master’s thesis. University of

[3


https://docs.python.org/3/whatsnew/3.10.html#better-error-messages
https://doi.org/10.1145/1151954.1067472
https://doi.org/10.1137/0201022

Conference’17, July 2017, Washington, DC, USA

(5

=

=

[9

=

[10]

[11]

[12

(13

[14]

[15]

[16

[17]

[18

[19]

[20]

North Florida. https://digitalcommons.unf.edu/cgi/viewcontent.cgi?article=
1810&context=etd

Abdulaziz Alaboudi and Thomas D. LaToza. 2020. Using Hypotheses as a Debug-
ging Aid. In IEEE Symposium on Visual Languages and Human-Centric Comput-
ing, VL/HCC 2020, Dunedin, New Zealand, August 10-14, 2020, Michael Homer,
Felienne Hermans, Steven L. Tanimoto, and Craig Anslow (Eds.). IEEE, 1-9.
https://doi.org/10.1109/VL/HCC50065.2020.9127273

Gina R. Bai, Joshua Kayani, and Kathryn T. Stolee. 2020. How Graduate Comput-
ing Students Search When Using an Unfamiliar Programming Language. In ICPC
’20: 28th International Conference on Program Comprehension, Seoul, Republic of
Korea, July 13-15, 2020. ACM, 160-171. https://doi.org/10.1145/3387904.3389274
Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter Michael
Osera, Janice L. Pearce, and James Prather. 2019. Compiler error messages
considered unhelpful: The landscape of text-based programming error message
research. Annual Conference on Innovation and Technology in Computer Science
Education, ITiCSE (2019), 177-210. https://doi.org/10.1145/3344429.3372508
Kaibo Cao, Chunyang Chen, Sebastian Baltes, Christoph Treude, and Xiang Chen.
2021. Automated Query Reformulation for Efficient Search based on Query Logs
From Stack Overflow. November (2021), 1273-1285. https://doi.org/10.1109/
icse43902.2021.00116 arXiv:2102.00826

Joao Castelhano, Isabel C Duarte, Carlos Ferreira, Joao Duraes, Henrique Madeira,
and Miguel Castelo-Branco. 2019. The role of the insula in intuitive expert bug
detection in computer code: an fMRI study. Brain imaging and behavior 13, 3
(2019), 623-637.

Preetha Chatterjee, Minji Kong, and Lori Pollock. 2020. Finding help with pro-
gramming errors: An exploratory study of novice software engineers’ focus
in stack overflow posts. Journal of Systems and Software 159 (2020), 110454.
https://doi.org/10.1016/].jss.2019.110454

Pierpaolo Dondio and Suha Shaheen. 2019. Is stackoverflow an effective com-
plement to gaining practical knowledge compared to traditional computer sci-
ence learning? ACM International Conference Proceeding Series (2019), 132-138.
https://doi.org/10.1145/3369255.3369258

Madeline Endres, Georgios Sakkas, Benjamin Cosman, Ranjit Jhala, and Westley
Weimer. 2019. InFix: Automatically Repairing Novice Program Inputs. In 34th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2019,
San Diego, CA, USA, November 11-15, 2019. IEEE, 399-410. https://doi.org/10.
1109/ASE.2019.00045

Denae Ford, Alisse Harkins, and Chris Parnin. 2017. Someone like me: How does
peer parity influence participation of women on stack overflow?. In 2017 IEEE
Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2017,
Raleigh, NC, USA, October 11-14, 2017, Austin Z. Henley, Peter Rogers, and Anita
Sarma (Eds.). IEEE Computer Society, 239-243. https://doi.org/10.1109/VLHCC.
2017.8103473

Denae Ford, Kristina Lustig, Jeremy Banks, and Chris Parnin. 2018. "We Don’t
Do That Here": How Collaborative Editing with Mentors Improves Engagement
in Social Q&A Communities. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, CHI 2018, Montreal, QC, Canada, April 21-26, 2018,
Regan L. Mandryk, Mark Hancock, Mark Perry, and Anna L. Cox (Eds.). ACM,
608. https://doi.org/10.1145/3173574.3174182

Denae Ford, Justin Smith, Philip J. Guo, and Chris Parnin. 2016. Paradise un-
plugged: identifying barriers for female participation on stack overflow. In Pro-
ceedings of the 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016, Thomas
Zimmermann, Jane Cleland-Huang, and Zhendong Su (Eds.). ACM, 846-857.
https://doi.org/10.1145/2950290.2950331

David J. Gilmore. 1990. Models of Debugging. In Proceedings of the 2nd Annual
Workshop of the Psychology of Programming Interest Group, PPIG 1990, Wolver-
hampton, UK, January 4-6, 1990. Psychology of Programming Interest Group, 8.
http://ppig.org/library/paper/models-debugging

Philip Guo. 2021. Ten Million Users and Ten Years Later: Python Tutor’s Design
Guidelines for Building Scalable and Sustainable Research Software in Academia.
In UIST °21: The 34th Annual ACM Symposium on User Interface Software and
Technology, Virtual Event, USA, October 10-14, 2021, Jeffrey Nichols, Ranjitha
Kumar, and Michael Nebeling (Eds.). ACM, 1235-1251. https://doi.org/10.1145/
3472749.3474819

Philip J. Guo. 2013. Online python tutor: embeddable web-based program vi-
sualization for cs education. In The 44th ACM Technical Symposium on Com-
puter Science Education, SIGCSE 2013, Denver, CO, USA, March 6-9, 2013, Tracy
Camp, Paul T. Tymann, J. D. Dougherty, and Kris Nagel (Eds.). ACM, 579-584.
https://doi.org/10.1145/2445196.2445368

Andre Hora. 2021. Googling for software development: What developers search
for and what they find. Proceedings - 2021 IEEE/ACM 18th International Conference
on Mining Software Repositories, MSR 2021 2 (2021), 317-328. https://doi.org/10.
1109/MSR52588.2021.00044

Amy J. Ko, Robert DeLine, and Gina Venolia. 2007. Information needs in collocated
software development teams. Proceedings - International Conference on Software
Engineering (2007), 344-353. https://doi.org/10.1109/ICSE.2007.45

[21

[22

[23

[25

[26

~
=

[28

[29

(31]

(32]

®
&

(34

[35

[36

S
=

[38

Annie Li, Madeline Endres, and Westley Weimer

Thomas D. LaToza, Maryam Arab, Dastyni Loksa, and Amy J. Ko. 2020. Explicit
programming strategies. Empir. Softw. Eng. 25, 4 (2020), 2416-2449. https:
//doi.org/10.1007/s10664-020-09810-1

Lucas Layman, Madeline Diep, Meiyappan Nagappan, Janice Singer, Robert
DeLine, and Gina Venolia. 2013. Debugging Revisited: Toward Understanding
the Debugging Needs of Contemporary Software Developers. In 2013 ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement,
Baltimore, Maryland, USA, October 10-11, 2013. IEEE Computer Society, 383-392.
https://doi.org/10.1109/ESEM.2013.43

Hongwei Li, Zhenchang Xing, Xin Peng, and Wenyun Zhao. 2013. What help do
developers seek, when and how? Proceedings - Working Conference on Reverse
Engineering, WCRE (2013), 142-151. https://doi.org/10.1109/WCRE.2013.6671289
Mingwei Liu, Xin Peng, Qingtao Jiang, Andrian Marcus, Junwen Yang, and
Wenyun Zhao. 2018. Searching stackoverflow questions with multi-faceted
categorization. In ACM International Conference Proceeding Series. Association
for Computing Machinery. https://doi.org/10.1145/3275219.3275227

Sonal Mahajan, Negarsadat Abolhassani, and Mukul R. Prasad. 2020. Recom-
mending stack overflow posts for fixing runtime exceptions using failure sce-
nario matching. ESEC/FSE 2020 - Proceedings of the 28th ACM Joint Meeting
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (2020), 1052-1064. https://doi.org/10.1145/3368089.3409764
arXiv:2009.10174

Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Bjérn Hart-
mann. 2011. Design lessons from the fastest Q&A site in the west. Confer-
ence on Human Factors in Computing Systems - Proceedings (2011), 2857-2866.
https://doi.org/10.1145/1978942.1979366

Andre N. Meyer, Laura E. Barton, Gail C. Murphy, Thomas Zimmermann, and
Thomas Fritz. 2017. The Work Life of Developers: Activities, Switches and
Perceived Productivity. IEEE Transactions on Software Engineering 43, 12 (2017),
1178-1193. https://doi.org/10.1109/tse.2017.2656886

Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. 2008. Debugging: the good, the bad, and the quirky
- a qualitative analysis of novices’ strategies. In Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education, SIGCSE 2008, Portland, OR,
USA, March 12-15, 2008, J. D. Dougherty, Susan H. Rodger, Sue Fitzgerald, and
Mark Guzdial (Eds.). ACM, 163-167. https://doi.org/10.1145/1352135.1352191
Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012. What
makes a good code example?: A study of programming Q&A in StackOverflow.
IEEE International Conference on Software Maintenance, ICSM (2012), 25-34. https:
//doi.org/10.1109/ICSM.2012.6405249

Cole S. Peterson, Natalie M. Halavick, Jonathan A. Saddler, and Bonita Sharif.
2019. A gaze-based exploratory study on the information seeking behavior of
developers on stack overflow. Conference on Human Factors in Computing Systems
- Proceedings (2019), 1-6. https://doi.org/10.1145/3290607.3312801

Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining stackoverflow to turn the IDE into a self-confident
programming Prompter. 11th Working Conference on Mining Software Repositories,
MSR 2014 - Proceedings (2014), 102-111. https://doi.org/10.1145/2597073.2597077
Md Masudur Rahman, Jed Barson, Sydney Paul, Joshua Kayani, Federico Andrés
Lois, Sebastian Fernandez Quezada, Christopher Parnin, Kathryn T. Stolee, and
Baishakhi Ray. 2018. Evaluating how developers use general-purpose web-search
for code retrieval. Proceedings - International Conference on Software Engineering
(2018), 465-475. https://doi.org/10.1145/3196398.3196425 arXiv:1803.08612
Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. How developers
search for code: A case study. 2015 10th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, ESEC/FSE 2015 - Proceedings (2015), 191-201. https:
//doi.org/10.1145/2786805.2786855

Skipper Seabold and Josef Perktold. 2010. statsmodels: Econometric and statistical
modeling with python. In 9th Python in Science Conference. SciPy, Austin, TX, US,
92-96.

Donald Sharpe. 2015. Chi-square test is statistically significant: Now what?
Practical Assessment, Research, and Evaluation 20, 1 (2015), 8.

Emillie Thiselton and Christoph Treude. 2019. Enhancing Python Compiler Error
Messages via Stack Overflow. International Symposium on Empirical Software
Engineering and Measurement 2019-September (2019). https://doi.org/10.1109/
ESEM.2019.8870155 arXiv:arXiv:1906.11456v1

Christoph Treude, Ohad Barzilay, and Margaret Anne Storey. 2011. How do
programmers ask and answer questions on the web? (NIER track). Proceedings -
International Conference on Software Engineering (2011), 804-807. https://doi.
org/10.1145/1985793.1985907

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. ]J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, lan Henriksen, E. A. Quintero,


https://digitalcommons.unf.edu/cgi/viewcontent.cgi?article=1810&context=etd
https://digitalcommons.unf.edu/cgi/viewcontent.cgi?article=1810&context=etd
https://doi.org/10.1109/VL/HCC50065.2020.9127273
https://doi.org/10.1145/3387904.3389274
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1109/icse43902.2021.00116
https://doi.org/10.1109/icse43902.2021.00116
https://arxiv.org/abs/2102.00826
https://doi.org/10.1016/j.jss.2019.110454
https://doi.org/10.1145/3369255.3369258
https://doi.org/10.1109/ASE.2019.00045
https://doi.org/10.1109/ASE.2019.00045
https://doi.org/10.1109/VLHCC.2017.8103473
https://doi.org/10.1109/VLHCC.2017.8103473
https://doi.org/10.1145/3173574.3174182
https://doi.org/10.1145/2950290.2950331
http://ppig.org/library/paper/models-debugging
https://doi.org/10.1145/3472749.3474819
https://doi.org/10.1145/3472749.3474819
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1109/MSR52588.2021.00044
https://doi.org/10.1109/MSR52588.2021.00044
https://doi.org/10.1109/ICSE.2007.45
https://doi.org/10.1007/s10664-020-09810-1
https://doi.org/10.1007/s10664-020-09810-1
https://doi.org/10.1109/ESEM.2013.43
https://doi.org/10.1109/WCRE.2013.6671289
https://doi.org/10.1145/3275219.3275227
https://doi.org/10.1145/3368089.3409764
https://arxiv.org/abs/2009.10174
https://doi.org/10.1145/1978942.1979366
https://doi.org/10.1109/tse.2017.2656886
https://doi.org/10.1145/1352135.1352191
https://doi.org/10.1109/ICSM.2012.6405249
https://doi.org/10.1109/ICSM.2012.6405249
https://doi.org/10.1145/3290607.3312801
https://doi.org/10.1145/2597073.2597077
https://doi.org/10.1145/3196398.3196425
https://arxiv.org/abs/1803.08612
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1109/ESEM.2019.8870155
https://doi.org/10.1109/ESEM.2019.8870155
https://arxiv.org/abs/arXiv:1906.11456v1
https://doi.org/10.1145/1985793.1985907
https://doi.org/10.1145/1985793.1985907

Debugging with Stack Overflow: Web Search Behavior in Novice and Expert Programmers

[39]

[40]

[41]

[42]

Charles R. Harris, Anne M. Archibald, Anténio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261-272.
https://doi.org/10.1038/s41592-019-0686-2

Anneliese von Mayrhauser and A Marie Vans. 1997. Program understanding
behavior during debugging of large scale software. In Papers presented at the
seventh workshop on Empirical studies of programmers. 157-179.

Shaowei Wang, David Lo, and Lingxiao Jiang. 2013. An empirical study on
developer interactions in StackOverflow. Proceedings of the ACM Symposium on
Applied Computing March (2013), 1019-1024. https://doi.org/10.1145/2480362.
2480557

Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference, Stéfan van der Walt and Jarrod
Millman (Eds.). SciPy, Austin, TX, US, 56-61. https://doi.org/10.25080/Majora-
92bf1922-00a

Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E. Hassan, and
Zhenchang Xing. 2017. What do developers search for on the web? Empirical

[43

(44

]

Conference’17, July 2017, Washington, DC, USA

Software Engineering 22, 6 (2017), 3149-3185. https://doi.org/10.1007/s10664-
017-9514-4

Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo. 2017. AnswerBot: auto-
mated generation of answer summary to developersz technical questions. In
Proceedings of the 32nd IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017,
Grigore Rosu, Massimiliano Di Penta, and Tien N. Nguyen (Eds.). IEEE Computer
Society, 706-716. https://doi.org/10.1109/ASE.2017.8115681

Di Yang, Aftab Hussain, and Cristina Videira Lopes. 2016. From query to usable
code: An analysis of Stack Overflow code snippets. Proceedings - 13th Working
Conference on Mining Software Repositories, MSR 2016 (2016), 391-401. https:
//doi.org/10.1145/2901739.2901767 arXiv:1605.04464

Xuejiao Zhao, Hongwei Li, Yutian Tang, Dongjing Gao, Lingfeng Bao, and
Ching Hung Lee. 2018. A Smart Context-Aware Program Assistant Based on
Dynamic Programming Event Modeling. Proceedings - 29th IEEE International
Symposium on Software Reliability Engineering Workshops, ISSREW 2018 (2018),
24-29. https://doi.org/10.1109/ISSREW.2018.00-36


https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/2480362.2480557
https://doi.org/10.1145/2480362.2480557
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1109/ASE.2017.8115681
https://doi.org/10.1145/2901739.2901767
https://doi.org/10.1145/2901739.2901767
https://arxiv.org/abs/1605.04464
https://doi.org/10.1109/ISSREW.2018.00-36

	Abstract
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Stack Overflow Usage
	3.2 Automated Information Retrieval Tools
	3.3 General Debugging Processes

	4 Experimental Setup
	4.1 Experimental Overview
	4.2 Participant Recruitment
	4.3 Programming Stimuli

	5 Analysis Methodology
	5.1 Video Annotations
	5.2 Post Relevance Assessments
	5.3 Statistical Methods

	6 Experimental Results
	6.1 RQ1: Post Relevance
	6.2 RQ2: Browsing Behavior and Expertise
	6.3 RQ3: Error Type Effects

	7 Discussion
	8 Threats to Validity
	9 Conclusion
	References

