
A Human Study of Comprehension and Code Summarization

Sean Stapleton
University of Michigan

seancs@umich.edu

Yashmeet Gambhir
University of Michigan

ygambhir@umich.edu

Alexander LeClair
University of Notre Dame

aleclair@nd.edu

Zachary Eberhart
University of Notre Dame

zeberhar@nd.edu

Westley Weimer
University of Michigan

weimerw@umich.edu

Kevin Leach
University of Michigan

kjleach@umich.edu

Yu Huang
University of Michigan

yhhy@umich.edu

ABSTRACT

Software developers spend a great deal of time reading and under-

standing code that is poorly-documented, written by other devel-

opers, or developed using differing styles. During the past decade,

researchers have investigated techniques for automatically docu-

menting code to improve comprehensibility. In particular, recent

advances in deep learning have led to sophisticated summary gen-

eration techniques that convert functions or methods to simple Eng-

lish strings that succinctly describe that code’s behavior. However,

automatic summarization techniques are assessed using internal

metrics such as BLEU scores, which measure natural language prop-

erties in translational models, or ROUGE scores, which measure

overlap with human-written text. Unfortunately, these metrics do

not necessarily capture how machine-generated code summaries

actually affect human comprehension or developer productivity.

We conducted a human study involving both university students

and professional developers (n = 45). Participants reviewed Java
methods and summaries and answered established program com-

prehension questions. In addition, participants completed coding

tasks given summaries as specifications. Critically, the experiment

controlled the source of the summaries: for a given method, some

participants were shown human-written text and some were shown

machine-generated text.

We found that participants performed significantly better (p =
0.029) using human-written summaries versus machine-generated

summaries. However, we found no evidence to support that partici-

pants perceive human- and machine-generated summaries to have

different qualities. In addition, participants’ performance showed

no correlation with the BLEU and ROUGE scores often used to

assess the quality of machine-generated summaries. These results

suggest a need for revised metrics to assess and guide automatic

summarization techniques.

ACM Reference Format:

Sean Stapleton, Yashmeet Gambhir, Alexander LeClair, Zachary Eberhart,

Westley Weimer, Kevin Leach, and Yu Huang. 2020. A Human Study of

Comprehension and Code Summarization. In 28th International Conference

on Program Comprehension (ICPC ’20), October 5–6, 2020, Seoul, Republic of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7958-8/20/05. . . $15.00
https://doi.org/10.1145/3387904.3389258

Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3387904.

3389258

1 INTRODUCTION

Source code comments play an invaluable role in facilitating pro-

gram comprehension [6]. Short, descriptive summary comments

preceding subroutines have been shown to significantly improve

programmers’ ability to answer questions about source code [66, 70].

Recent work has shown that developers consider comments to be

the most important documentation artifacts for software main-

tenance tasks, other than the source code itself [14, 55]. Well-

documented source code manifestly affects developer productivity

both when investigating an existing software project for the first

time and when maintaining existing large codebases [12].

Despite their well-known importance, comments are often in-

complete or incorrect in practice [18], both in general, and for

specific aspects (e.g., exceptions [9, Sec. 5] or commit messages [10,

Sec. 3]). These missing or outdated comments can substantially im-

pair the development process. In a large-scale study of professional

programmers, Xia et al. [71] found that insufficiently-commented

code was the most frequent cause of program comprehension diffi-

culties. One solution is to enforce strict style guidelines that require

up-to-date comments—however, these guidelines can be costly and

difficult to enforce [32].

To address these problems, researchers have proposed numer-

ous techniques to automatically generate summary comments for

source code [47]. These techniques traditionally rely on elaborate

heuristics and templates to generate comments that resemble nat-

ural language [44, 63]. However, designing these methods can en-

tail substantial human effort and implicit assumptions about the

ideal structure of comments (e.g., some Java documentation sys-

tems [24, 42, 57] rely on a verb-noun style imposed by the devel-

oper). In recent years, a new generation of code summarization

techniques have emerged that take advantage of deep learning and

large, publicly-available code repositories [2, 30, 34, 37, 45]. These

neural-network-based approaches have demonstrated tremendous

promise, as they are capable of producing summaries that are nearly

indistinguishable from human-written comments.

Still, even state-of-the-art neural approaches to code summariza-

tion have room for improvement. Consider the examples shown in

Figure 1. Each example contains a reference comment written by a

programmer for a particular method paired with a summary gener-

ated using the neural model published by LeClair et al. [34]. The

automatically-generated summaries, while potentially helpful, do

not necessarily express what the function does or what its intended

purpose is in the same way that the human-written summaries do.

2

2020 IEEE/ACM 28th International Conference on Program Comprehension (ICPC)

Human Summary: begin UML doc

Machine Summary: copy the contents of this entry into another

Human Summary: sorts the specified range of the receiver into

ascending numerical order

Machine Summary: sorts the receiver according to the order of

the order by the

1 public void copy(Entry otherEntry) {

2 if (otherEntry == null)

3 return;

4
5 super.copy((NiCEObject) otherEntry);

6
7 this.allowedValues = otherEntry.allowedValues;

8 this.allowedValueType = otherEntry.allowedValueType;

9 this.changeState = otherEntry.changeState;

10 this.defaultValue = otherEntry.defaultValue;

11 this.ready = otherEntry.ready;

12 this.value = otherEntry.value;

13 this.secretFlag = otherEntry.secretFlag;

14 this.parent = otherEntry.parent;

15 this.tag = otherEntry.tag;

16 }

(a) Example snippet whose summary has a low BLEU score.

1 public void quickSortFromTo(int from , int to) {

2 int mySize = size();

3 checkRangeFromTo(from , to , mySize);

4
5 short [] myElements = elements ();

6 java.util.Arrays.sort(myElements , from , to+1);

7 elements(myElements);

8 setSizeRaw(mySize);

9 }

(b) Example snippet whose summary has a moderately high BLEU score.

Figure 1: Example code snippets, each shown with a Human-written and Machine-generated summary using state-of-the-art

neural summarization. The intended purpose of the code is not necessarily reflected in the machine-generated summaries or

the associated BLEU scores.

The synthesis of text is often guided by common statistical eval-

uation metrics such as BLEU [51], ROUGE [38], and METEOR [4].

These metrics compare generated text to reference text without

considering semantic meaning. In neural machine translation, these

metrics have been shown to correlate reasonably well with human

judgment [13], but such correlation has not been sufficiently es-

tablished in the domain of automatic code summarization. For this

reason, many proposed code summarization techniques are accom-

panied by a human study, in which programmers are asked to judge

the quality of generated comments [23, 46, 62].

These types of “intrinsic” evaluation allow for comparison be-

tween different summarization techniques, but they fail to explicitly

capture one key quality: the extent to which automatically gener-

ated comments actually improve program comprehension. It is well

known that high-quality comments help to facilitate program com-

prehension, but misleading comments may actually produce the

opposite effect. According to one subject in a study by Ibrahim et

al. [29], “Wrong comments are worse than none at all."

We propose to evaluate the “extrinsic” quality ofmachine-generated
summaries (i.e., their value to programmers during comprehen-

sion) by having programmers engage in code comprehension tasks

aided by either machine-generated or human-generated summaries.

By comparing the performance of programmers that are given

machine-generated comments to those given human-generated

comments, we can measure and determine, with high confidence,

the degree to which automatic comment generation techniques can

serve as a functional replacement for manual comment generation.

To our knowledge, there are no human studies of automatic

comment generation techniques that include a thorough extrinsic

evaluation of the impact on program comprehension. There are

several possible reasons for the omission, including the high cost

of hiring qualified programmers to participate, the difficulty of cre-

ating and evaluating tasks that adequately effectuate real program

comprehension processes, and the fact that intrinsic evaluations

are typically considered to be sufficient for publication.

In this paper, we aim to fill this gap by conducting an extrinsic

study to evaluate the extent to which comments generated by a

state-of-the-art deep learning technique facilitate program compre-

hension. We recruited 45 student and professional participants to

complete a set of program comprehension tasks, aided by either

human-written or machine-generated code summaries. These tasks

involved answering questions about individual methods or adding

new functionality to a program.

We found that human-written summaries help developers com-

prehend code significantly better (p = 0.029) thanmachine-generated
summaries. Moreover, developer assessment of summary quality

did not correlate with their comprehension, regardless of whether

they were provided human-written or machine-generated sum-

maries. Finally, we found that BLEU and ROUGE scores of machine-

generated summaries did not strongly correlate with developer

comprehension. Overall, our results indicate there is a need to re-

assess underlying assumptions about the use of internal statistics

to assess the quality of automatic summarization techniques.

2 MOTIVATING EXAMPLES

There is a pressing need for extrinsic studies that show how auto-

matic summarization techniques impact developer comprehension.

In this section, we explore the two examples shown in Figure 1 as

a basis for establishing potential issues with relying on metrics like

BLEU and ROUGE for automatic summarization evaluation.

The first example in Subfigure 1a contains a human-written

comment that refers to “UML.” However, the code snippet itself does

not mention UML anywhere—the human who wrote the comment

knew about the context in which the method would be used or its

intended purpose. Indeed, the human-written summary on its own

3

does not reflect what the method accomplishes in isolation. On the

other hand, the machine-generated summary succinctly describes

what behavior the method implements—a copy of an Entry object.

While the machine-generated comment describes the method’s

behavior in isolation, its BLEU score is 0 because it does not overlap

with the human comment. This low score does not necessarily

match one’s intuition for summary quality—a new developer may

find the machine-generated summary more illuminating than the

human-written summary in this example.

The second example in Subfigure 1b contains human-written

and machine-generated summaries that both indicate a sorting op-

eration will occur. However, the machine-generated comment is

potentially misleading in that it does not communicate the type of

data being sorted nor the final ordering. However, the BLEU score

is moderately high (0.06, among top 50% of BLEU scores for our

dataset of 2 million summaries). In this case, a new developer may

not find the automatically-generated summary as useful. These ex-

amples illustrate potential limitations with the prevailing approach

to using internal scoring like BLEU to assess summarization tech-

niques. In this paper, we investigate the impact of such automatic

summarization techniques on developer comprehension.

3 BACKGROUND AND RELATEDWORK

We discuss two key research areas relevant to our problem: em-

pirical studies of program comprehension, and automatic source

code summarization. We introduce work in these areas, and discuss

current evaluation methodologies for each.

3.1 Studies of Program Comprehension

Empirical studies of program comprehension can typically be char-

acterized as either understanding and modeling the underlying

cognitive processes, or evaluating the impact of various factors

on comprehension. These two subdisciplines work hand in hand:

theories of program comprehension can help guide researchers to

develop tools to meet specific developer needs [65].

3.1.1 Comprehension Models. Researchers typically acknowledge

broad categories of program comprehension models: top-down

models, bottom-up models, and integrated models [59, 60, 67]. The

process of top-down comprehension begins with a programmer

making a general hypothesis about a program’s purpose, and itera-

tively refining the hypothesis by developing subsidiary hypotheses,

until a low-level understanding of the code is achieved. Bottom-up

comprehension works the other way, with a programmer initially

parsing low-level statements, and then iteratively grouping them

together into higher-level abstractions until a hypothesis about the

program’s purpose can be developed. Integrated models combine

both prior models, allowing for a programmer to use top-down

processes when they are able to form an initial hypothesis and

bottom-up processes when they cannot.

Bottom-up comprehension is a slower, more laborious task than

top-down comprehension [60, 65]. To help facilitate top-down com-

prehension, programmers will often search for beacons — sets of

features in source code that are familiar to the programmer, which

are indicative particular structures or operations [7]. Source code

comments can play a beacon-like role by explicitly describing the

purpose, usage, or functionality of a code segment. As a result, the

presence of comments has been shown to expedite and improve

program comprehension [6, 66, 70].

3.1.2 Evaluation. With an understanding of the underlying mental

processes, researchers have evaluated the impact of a plethora of

different factors on program comprehension [56]. For instance, Cec-

catto et al. [11] investigated the extent to which code obfuscation

inhibits code comprehension, in the context of preventing reverse

engineering attacks. They found that obfuscation makes code more

difficult to comprehend, supporting its use as a security mechanism.

Prechelt et al. [52] performed a study to determine whether in-line

design pattern documentation helped to improve program compre-

hension. They found the comments containing pattern information

helped programmers perform maintenance tasks faster and more

accurately. Bauer et al. [5] investigated the role of indentation style

on comprehension, while Hofmeister et al. [25] found that shorter

identifiers take longer to comprehend. Researchers have proposed

and evaluated tools to improve program comprehension, such as

JRipples [8], DynaRia [3], Jsea [68], and many others.

In each of these studies, researchers had to determine an appro-

priate methodology to measure the impact of the factor or tool on

the programmers’ comprehension. Ceccatto et al. [11] asked par-

ticipants to perform a series of code change tasks. They recorded

the participants’ times and success rates, as well as participants an-

swers on a questionnaire rating perceived task difficulty, usefulness

of various debugging features, etc. Lawrie et al. [33] performed a

study in which they showed participants code snippets, and later

asked them to recall and describe the snippets they had seen. Dun-

smore et al. [15] compared and contrasted four broad measures of

program comprehension: maintenance tasks, mental simulation,

static questions, and subjective ratings. Each study must use an

evaluation that is carefully designed to measure particular, relevant

aspects of program comprehension.

While there is no single way to measure “program comprehen-

sion,” researchers have identified key activities involved in com-

prehension and designed several questions and tasks to simulate

those activities. Sillito et al. [61] performed empirical studies to

determine the most common types of questions programmers ask

during software evolution tasks. They observed 44 different ques-

tion types, which they grouped into 4 categories: questions designed

to find focal points, build on those points, understand subgraphs,

and understand relationships between subgraphs. Pacione et al. [50]

devised a set of 9 principle comprehension activities by reviewing

tasks used in other comprehension evaluation literature. Several

researchers have relied on the comprehension activities identified

by Sillito and Pacione to develop appropriate comprehension tasks

for their evaluations [1, 17, 20, 31, 69].

3.2 Automatic Source Code Summarization

Automatic Source Code Summarization is the task of generating a

brief, natural language summary description of some unit of source

code. Much of the research in this area is concentrated on summa-

rizing individual subroutines [23, 30, 34, 39, 43], though researchers

have also worked on class-level [41] and segment-level [19] summa-

rization. Research in automatic source code summarization can be

broadly categorized according to (1) the techniques used to generate

summaries, and (2) the methods used to evaluate those techniques.

4

3.2.1 Summarization. Traditional approaches to automatic source

code summarization consist of two key subtasks: selecting key-

words, and assembling those keywords into a natural-language

summary. A large body of work is devoted to the first subtask.

Haiduc et al. [23] used Latent Semantic Indexing to generate a set

of terms that were conceptually related to a Java method, demon-

strating that existing summarization techniques may be applicable

to the programming domain. Similarly, Rodeghero et al. [54] identi-

fied key terms in Java methods using an approach that combined

term frequency-inverse document frequency (tf-idf) with empirical

data about the locations in a method’s structure that programmers

were most likely to look for keywords. More recent approaches,

such as those by Nazar et al. [49] and Allamanis et al. [2], have used

machine learning techniques to identify keywords.

Other work has tackled both summarization subtasks by finding

key terms within a piece of source code, and then placing those

terms into a pre-defined template. Sridhara et al. [62] modeled each

summary as a verb phrase, consisting of an action, a theme, and

secondary-arguments. They used a custom language model and

hand-crafted heuristics to select and arrange key terms, and used

additional templates to account for nested methods and conditional

statements. McBurney et al. [43] took a similar approach, but used

more robust templates to ensure that the summary included infor-

mation about the method’s functionality, usage, and output.

Recent advancements in deep learning have given rise to a new

generation of data-driven summarization techniques that use end-

to-end neural networks to generate summaries, without using sep-

arate processes to select terms and to arrange them into sentences.

These techniques are largely inspired by those used in the field of

neural machine translation. They typically involve using an encoder-

decoder model to generate vector representations of source code,

from which summary descriptions are inferred. These techniques

rely on big data in the form of massive source code repositories

in order to train the neural models. Initial results from a neural

approach used by Iyer et al. [30] proved remarkably effective at

generating short summaries for Java methods. Loyola et al. [40]

demonstrated the efficacy of a similar approach on commit message

generation. Liang et al. [37] and Hu et al. [27] achieved even better

results by incorporating structural information about the code in

the form of an Abstract Syntax Tree (AST). Subsequent approaches

have demonstrated additional improvements [39, 45, 58].

3.2.2 Evaluation. The methods used to evaluate summarization

techniques can be classified as automatic statistical evaluations,

intrinsic human evaluations, or extrinsic human evaluations.

Automatic statistical evaluation generally involves comparing

a generated summary to a reference or baseline summary [48].

Approaches that use existing source code repositories to train their

summarization models often set aside a portion of the dataset as a

“test set” for evaluation. During testing, the automatically-generated

comments for each subroutine or class are compared to the original,

human-written comments for the same subroutine or class in the

test set. The summaries are often scored using Machine Translation

metrics like BLEU [51] and METEOR [4]. When baseline summaries

are not readily available, researchers may first perform a human

study in which programmers are asked to generate summaries to

serve as baselines [22, 54].

As noted in Section 1, the application of these automatic met-

rics to code summaries can be problematic for a variety of reasons.

First, as Reiter [53] points out, BLEU was designed as a diagnostic

metric to provide quick, approximate evaluation — its actual corre-

lation with human judgment can vary greatly. Second, BLEU was

designed specifically to evaluate machine translation systems [53].

Although automatic summarization is often framed in terms of

machine translation, they are fundamentally different problems as

summarization inherently reduces information. Third, BLEU (and

similar metrics) are heavily dependent on the context and quality of

the reference strings, which are often inconsistent across different

evaluations [35]. Fourth, machine translation metrics frequently

depend on syntactic properties of strings rather than nuanced se-

mantics. For example, BLEU is a composite score based upon n-gram

overlaps between two strings that does not account for style or qual-

ity of information. Finally, these metrics can be hard to interpret. As

we note in the example in Subfigure 1a, the automatically-generated

summary has a BLEU score of 0 even though it is a readable, useful

summary. These limitations imply that machine translation metrics

may not always be appropriate for evaluating summarization.

Intrinsic human evaluations are ones in which human partici-

pants judge the output of a summarization technique. They gen-

erally involve human participants rating various aspects of the

content or naturalness of the summaries [72]. These evaluations

overcome some of the issues of automatic statistical evaluations,

but have other weaknesses. They are considered to be more robust,

as humans are more capable of interpreting the syntax and seman-

tics of summaries than metrics like BLEU. However, they introduce

other threats to validity — human ratings are subjective, and differ-

ent raters may have different backgrounds or levels of experience

that influence their scores. When analyzing human ratings, it is

important to report some metric of inter-rater reliability [26].

Extrinsic human evaluations of automatic code summarization

techniques, in which summaries are indirectly analyzed in the

context of some programming task, are rare. McBurney et al. [44]

and Sridhara et al. [64] performed extrinsic evaluations by showing

human participants code snippets accompanied by automatically-

generated summaries, and asking them to rate how helpful they

believed the summaries to be to their understanding. Note that both

evaluations asked programmers to rate how useful they believed

the summaries to be — neither measured the objective impact of

the summaries on the programmers’ ability to comprehend code.

In the following sections, we describe the methodology we use to

measure that impact.

4 SUMMARY COMMENT GENERATION

In this section, we discuss the models, methodology, and data we

used to generate machine written comments. For our model we use

the encoder-decoder+AST model proposed by LeClair et al. [34]

which they made available in an online repository. For our data

set we used the Java method-comment parallel corpus provided by

LeClair et al. [35].We chose to use this particular model architecture

for three reasons: (1) it achieved state of the art results against

multiple baselines, (2) the source code, training scripts, and sample

models are available online and the models were easily reproduced,

and (3) the model is based on a standard architecture that has seen

wide use in the literature for translation and summarization tasks.

5

Figure 2: LeClair et al. [34] Model Architecture.

Note that we claim no novelty in the model or algorithm used to

generate summary comments. While this section briefly describes

that model architecture for completeness, the focus of this paper

is on the extrinsic evaluation of those comments in the context of

realistic code comprehension tasks (Section 5).

4.1 Model Overview

Themodel proposed by LeClair et al. is based on an encoder-decoder

architecture with an added encoder for the AST [34]. Their work

uses the Structure Based Traversal (SBT) method proposed by Hu

et al. [27] to create a flattened AST sequence. This gives the model

three inputs: (1) the source code token sequence, (2) the flattened

AST token sequence, and (3) the predicted sequence so far. A high-

level diagram of the model architecture is shown in Figure 2.

Then, the model has two encoders: (1) source code token encoder

and (2) flattened AST encoder. These encoders use an embedding

layer and recurrent layer to generate a vector representation of the

input sequence. The recurrent layers process the input sequences

over time, with each token of the input sequence representing a

time-step. For example, given the sequence [‘the’, ‘cat’, ‘sat’], the

recurrent layer would process the sequence as:

['the',0,0] -> ['the','cat',0] -> ['the','cat','sat']

creating a vector representation of the input at each time-step, and

then using that vector as the initial state for the next time step. The

decoder, similarly to the encoders, utilizes an embedding layer and

recurrent layer to generate a vector representation for the current

predicted summary.

Next, there are two attention mechanisms to combine the output

of the recurrent layers from the encoders and decoder: (1) attention

between the source code and summary, and (2) attention between

the AST and summary. The attention mechanisms learn which to-

kens are most important to the prediction of the next token. The

attention mechanisms are combined to create an overall represen-

tation of the context of the input sequences. Next, a dense layer is

applied and flattened to create a single vector representation which

is then used to predict the next token in the sequence.

Additional model-specific details are found in LeClair et al. [34];

in summary, we note that this is a representative, high-performance

approach using a now-standard model architecture.

Human Summary: frees all resources consumed by this compo-

nents and destroys it

Machine Summary: p release all resources allocated to the appli-

cation

public void destroy() {

if (properties != null) {

properties.clear();

properties = null;

}

if (supportedLocales != null) {

supportedLocales.clear();

supportedLocales = null;

}

}

Figure 3: Example code and corresponding summaries.

4.2 Model Example

To further illustrate the model’s operation, we present an example

showing how the source code and the AST contribute to producing

a summary of code shown in Figure 3. In this example, the human-

written and machine-generated summaries do not match perfectly

(yielding a BLEU-1 score of 0.15).

Since the token ‘resources’ does not appear in the source code

text, the model cannot rely on the source code sequence to provide

the next token. Instead, it uses the structure of the code to help it

determine which token should be predicted. In this example, the

model has focused on the first portion of the AST sequence; in the

training set, the token ‘resources’ is used frequently as a function

name or in parameter lists. This allows the generated summary to

(correctly) contain ‘resources’ even though the local source text

does not. In brief, summaries generated by this technique focus

on structural and syntactic properties in individual methods and

throughout a training set, and evaluated with respect to metrics

such as BLEU and ROUGE. Our experiments explore the degree to

which these metrics reflect developer comprehension of code.

4.3 Dataset Overview

In our evaluation, we use a published dataset made available by

LeClair et al. [35]. Their work on effective methods for creating

a dataset for source code summarization outlined common mis-

takes that are made in data handling for this task. Their dataset

contains 2.1 million Java methods and associated JavaDoc com-

ments in two forms: (1) filtered: where they have already excluded

methods for which no comment exists or those which appear in

automatically-generated files but keep the the comment and source

code unchanged from the original Java file, and (2) tokenized: where

text preprocessing steps have already been applied to the code and

comment. For this paper, we use the provided tokenized data set

unchanged to train, validate, and test the model, achieving similar

results to those reported in LeClair et al. [34].

5 EVALUATION METHODOLOGY

In this section, we describe our methodology for measuring the im-

pact of code summaries on developer productivity. We designed an

6

IRB-approved human study involving 45 undergraduate and gradu-

ate computer science students and industrial software developers.

Participants were asked to complete two tasks in an anonymous

online survey. First, theywere shownmethods written in Java along-

side corresponding summaries and asked to answer comprehension

questions. Second, participants were given partially-completed Java

classes including summaries for all the methods in these classes and

asked to complete a method in the class with respect to a held-out

test suite. By measuring time taken and answer accuracy, we can

develop a model of developer comprehension as a function of type

and quality of the code summary used.

5.1 Participant Selection

In this study, we recruited combination of undergraduate computer

science students, graduate computer science students, and profes-

sional industrial developers with less than five years experience.

Participants were eligible if they had completed a data structures

and algorithms course at the undergraduate level (i.e., second-year

CS students and above). We drew students from three undergrad-

uate courses and a graduate student mailing list at the University

of Michigan, as well as industrial developers from a local startup

company who had fewer than five years of professional experience.

This participant cohort enables the examination of newer develop-

ers who we suspect are more sensitive to changes in documentation

than more seasoned developers.

Participants were given a URL to visit to complete the study,

which was administered as an online survey (described in fur-

ther detail in Section 5.5). By controlling whether documentation

was human-written or machine-generated, we can measure per-

formance differences among sub-populations of participants who

received one type of summary compared to another. Participant

data was anonymized, but they could optionally leave contact infor-

mation to obtain a $20 USD cash reward for their participation. All

told, participation in the survey took between 45 and 75 minutes to

complete in one sitting.

5.2 Code Comprehension Task

Each participant in this study was presented with 10 randomly-

chosen Java snippets from a set of 50, filtered from the dataset

created by LeClair et al. [35]. To filter the 2.1 million snippets in

this dataset, we first limited the population of snippets to only those

that had 6 or more immediate children in the body of the code’s

Abstract Syntax Tree (AST).

We found that this heuristic significantly increased the quality of

the code over more rudimentary approaches such as filtering by line

length. We chose our final set of 50 methods by uniformly sampling

from this sub-population. These methods contained between 1 and

5 control flow statements, between 0 and 17 method invocations,

and between 0 and 3 parameters.

For each participant and method, we randomly presented a

human-written or machine-generated summary for that method.

We visited the AST of each method to obtain a list of invoked meth-

ods for which we presented summaries as well. The participant

was shown one entire method at a time, its summary, and a list of

methods invoked (statically) with their corresponding summaries.

Participants were shown a single question at a time.

What will be the impact of changing the value of x to 4?

Summary: get sum with offset

public int add (int p1, int p2) {

int x = getOffset();

debug("Reached statement.");

return p1 + p2 + x;

}

Referenced Summaries:

getOffset: retrieve config-

ured offset

debug: print string to

stderr

Text entry for participant answer...

Figure 4: Example comprehension stimulus shown in our

study. We adapted questions Q1–Q8 to target each specific

method shown to participants. We also provided summaries

for child methods invoked by the method shown to provide

the participant with additional context.

For each Java method shown, participants were asked to com-

plete three randomly-assigned, open-ended questions intended to

assess their ability to comprehend the code. These questions cover

three broad categories of program comprehension described in Ta-

ble 1. We employed modifications of eight questions presented in

Sillito et al. [61]. Specifically, we considered the following questions:

Q1 What data can we access from this object?

Q2 What are the arguments to this function?

Q3 What data is being modified in this code?

Q4 What is the correct way to use or access this data structure?

Q5 Under what circumstances is this function called?

Q6 How are these types or objects related?

Q7 How can we tell that this function has executed correctly?

Q8 What will be (or has been) the direct impact of this change?

These questions were chosen because they relate to the compre-

hension of single methods (i.e., we did not consider questions that

relate to entire classes or software ecosystems). For each method,

we further adapted the questions above to relate to the specifics

of the method and randomly chose 3 of these adapted questions

to present to the user. An example of such a question is shown in

Figure 4.

Finally, participants subjectively rated the quality of the code

summaries provided for each method on a scale of 1 (lowest quality)

to 5 (highest quality).

5.3 Code Writing Task

Participants also completed a high-level code writing task: imple-

menting a new class method based upon summaries of other meth-

ods in a class.

For each task, participants were shown a semi-complete Java

data structure class taken from a entry-level course: a Binary Tree, a

Singly-Linked List, or an Adjacency Matrix. We selected these data

structures because they did not require domain-specific expertise.

In this code implementation task, a data structure was randomly

chosen and assigned either human-written or machine-generated

summaries (for all methods in that class). We removed one method

from the class at random and tasked participants with implementing

the held-out method given a method description as well as the other

methods and summaries present in the class.

7

Table 1: Taxonomy of program comprehension questions in our study.

Comprehension Activity Description Questions Used

Static and Dynamic Comprehension Must reason about syntactic properties (e.g., variable names) and runtime properties (e.g.,

variable values)

Q1, Q2, Q3

Context-Dependent Interpretation Must reason about situations in which a method could be used by understanding context

or assessing high level behavior

Q4, Q5, Q6

Reverse-engineering Must reason about changes made to a snippet or test cases to elicit particular program

behavior

Q7, Q8

We implemented a web-based IDE akin to LeetCode [36] and

HackerRank [21] that allowed users to submit code and automati-

cally evaluated it against a held-out test suite. We developed held-

out test suites of 6–8 test cases covering all methods in each class,

accounting for exceptions and edge cases. Participants were allowed

to submit answers up to 15 times, and we recorded the subset of

test cases passed with each submission.

5.4 Answer Annotation and Grading

At a high level, we collected two types of data: (1) Comprehension,

in which participants read code and summaries and answered sev-

eral comprehension questions, and (2) Implementation, in which

participants were given an incomplete Java class and asked to write

a missing method based on a held-out test suite. We describe our

methodology for quantitatively analyzing this raw participant data.

Comprehension. Because participants are given a free space to

write an open answer to each comprehension question, we devel-

oped a rubric for each snippet-question pair to provide a robust

quantitative assessment of participant data. We ranked answers on

a 1 to 5 scale, where 1 indicated a low quality response (e.g., com-

plete misunderstanding of the method shown), and 5 indicated a

high quality response (e.g., the participant correctly identified high-

level function behavior). We refer to this scale as rater-assessed

Correctness. Four raters graded all responses with respect to these

snippet-question rubrics. Additionally, all responses were rated

“Yes” or “No” for Completeness (i.e., is the answer complete, or

did the participant skip the question?) and Relevance (i.e., is the

answer in scope, or did the participant provide garbage input?). We

show examples of answers marked as Relevant, Complete, and with

different levels of rater-assessed Correctness in Figure 5.

We achieved moderate inter-rater agreement [16] for the 5-point

Correctness rubrics (κ = 0.655), and high agreement for the Com-
pleteness (κ = 0.947) and Relevance (κ = 0.993) rubrics. The results
and interpretation of participant answers are discussed in Section 6.

Implementation. Participants wrote and submitted code online

that automatically evaluated their submission against a held-out

test suite. We used the fraction of passed test cases as a proxy

for correctness in conjunction with the number of submissions

required to attain their highest score.

Data Filtering. For the comprehension questions, we only con-

sidered data marked as Complete and Relevant by all graders. Addi-

tionally, because we used a web survey, we excluded any answers

that took longer than 30 minutes to complete—participants who

left the web survey, closed the browser, or otherwise stopped par-

ticipating. After filtering our data as described above, we retained a

total 1,100 comprehension question data points. Among these, 564

were answered with machine-generated comments, and 536 were

answered with human-written comments.

5.5 Survey Instrument

To deliver our code comprehension questionnaire and code im-

plementation test to participants, we created a lightweight web

application allowing them to complete the survey remotely at their

convenience. This permitted anonymous completion of the survey.

We required desktop versions of Chrome or Firefox to complete the

survey (i.e., no mobile devices).

For each of the snippets shown in the comprehension section

of the survey, participants could view the snippet in a syntax-

highlighted box, along with any relevant code summaries, which

appear alongside the code in another column.

We developed an in-browser IDE for participants to complete the

code writing task while easily referring to the rest of the data struc-

ture class and relevant summaries. Methods in each class contained

either entirely human- or machine-generated comments, placed to

help participants understand and use other methods in the class.

Test cases for each class were run in a containerized Flask appli-

cation to prevent malicious inputs and to set equitable resource

consumption limits among participant submissions. We make our

survey instrument available for reuse in further human studies.1

6 EXPERIMENTAL RESULTS

We seek to understand how developer productivity is influenced

by the presence of and perception of human-written and machine-

generated summaries of code. We evaluate several research ques-

tions based on the data we collected:

RQ1 Do developers better comprehend code snippets when given

human-written versus machine-generated summaries?

RQ2 Do developers interpret human-written as being higher qual-

ity than machine-generated summaries?

RQ3 Do internal measurements of machine-generated summaries

such as BLEU and ROUGE scores correlate with code com-

prehension?

We present quantitative results and interpretations for each of

these research questions. We also provide a qualitative discussion

of the data collected from the code writing task.

1https://dijkstra.eecs.umich.edu/code-summary/

8

Human Summary: calculates the crc and size of the resource and

updates the jar entry

Machine Summary: calculate the checksum for a jar entry
1 private void calculateCrcAndSize(JarEntry jarEntry ,

IFile resource , byte[] readBuffer)

2 throws IOException , CoreException {

3 InputStream contentStream =

resource.getContents(false);

4 int size = 0;

5 CRC32 checksumCalculator= new CRC32();

6 int count;

7 try {

8 while ((count= contentStream.read(readBuffer , 0,

readBuffer.length)) != -1) {

9 checksumCalculator.update(readBuffer , 0, count);

10 size += count;

11 }

12 } finally {

13 if (contentStream != null)

14 contentStream.close();

15 }

16 jarEntry.setSize(size);

17 jarEntry.setCrc(checksumCalculator.getValue ());

18 }

(a) Example snippet.

Q: What would be the effect of changing “readBuffer.length” to “read-

Buffer.length/2”?

A: The function would still eventually read the entire contentStream

out, but it would take twice as many iterations. And I believe that

the checksumCalculator. update() function would then be using the

same values for the latter half of the readBuffer every iteration (po-

tentially uninitialized values too), which could introduce undefined

behavior.
(b) Example response with high rater-assessed Correctness.

Q: What is the relationship between “size” and “checksumCalcula-

tor.getValue()”?

A: equal

(c) Example response with low rater-assessed Correctness.

sdahfjkafea

(d) Example response that is considered not Relevant.

No clue.
(e) Example response that is considered not Complete.

Figure 5: Example code snippet, summaries, comprehension questions, and corresponding answers collected in our study. We

highlight examples that were graded as highly Correct (Subfigure 5b), not Correct (Subfigure 5c), not Relevant (Subfigure 5d),

and not Complete (Subfigure 5e). The answermarked as Correct contains a detailed assessment of the code and effects the ques-

tion introduces. The not-Correct answer is Relevant, but missed a key step understanding checksums. The other answers are

removed from consideration because the participant did not provide a coherent answer or any understanding of the snippet.

6.1 RQ1: Code Comprehension

We seek to understand the impact had on developer code compre-

hension when given machine-generated summaries versus human-

written summaries. Participants were shown ten snippets of code,

each randomly paired with machine or human summaries. For each

snippet, they were asked three randomly-selected code compre-

hension questions (see Q1–Q8 in Section 5.2), and were asked to

rate from 1 to 5 their perception of the summary’s helpfulness in

answering the questions. We then graded all responses in terms of

Correctness, Completeness, and Relevance (see Section 5.4).

We divide our raw data into two groups: responses given human-

written comments, and responses given machine-generated com-

ments. We considered rater-assessed Correctness for each response

and the time taken for participants to complete each question. We

note a significant difference in rater-assessed Correctness between

these two populations. We show the distribution of Rater-Assessed

Correctness scores in Figure 6. Participants given human-written

summaries scored an average of 3.52 out of 5, while those given

machine-generated summaries scored an average of 3.40 out of 5.

This difference is significant using a two-tailed Mann-Whitney U

test (p = 0.029).
We did not find a significant difference in times to complete

comprehension questions in general (p = 0.30). The distribution of
average time taken by participants per snippet is shown in Figure 7—

while we filtered out participants who took longer than 30 minutes

per question, some of the snippets elicited substantial variability in

time taken to complete (e.g., snippets 8, 23, and 24).

We find that human-written summaries help participants an-

swer comprehension questions more correctly compared to machine-

generated summaries. This result is reasonably intuitive—recall from

0

20

40

60

Average Rater-Assessed Correctness Rating

C
o
u
n
t

human

machine

Figure 6: Distribution of rater-assessed Correctness. Each

quarter-point increment has two semi-transparent bars that

indicate the number of answers, given either machine-

generated or human-written comments, that scored in that

range. The distributions differ significantly using a two-

tailed Mann Whitney U test (p = 0.029).

Section 1 that automatic summarization techniques can produce

unhelpful comments. We suspect that these results are explained by

participants struggling to answer some comprehension questions

when given low-quality machine-generated summaries.

9

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0

50

100

150

200

250

Snippet ID

S
ec
o
n
d
s

Figure 7: Distribution of times taken by participants for each snippet shown in our study. In general, questions took between 30

to 120 seconds for participants to answer. The data are sorted by ascending average time to complete; in the survey, participants

were shown snippets in random order to mitigate fatigue and learning effects.

6.2 RQ2: Developer Perception of Summaries

Next, we consider how helpful developers perceive the given sum-

mary to be when completing a comprehension task. We split our

data into two groups: participants given human-written summaries,

and those given machine-generated summaries. After seeing each

snippet, participants were asked to rate the quality of summaries on

a scale from 1 to 5. Using a two-tailed Mann-Whitney U test, we fail

to reject the null hypothesis that the two groups of samples follow

the same distribution (p = 0.108). While we cannot conclude that

the distributions are the same, our data suggests the participants

did not see a clear difference in quality between human-written

and machine-generated comments.

Moreover, participants’ quality ratings did not correlate with

their correctness on comprehension questions. We compared each

participant’s perception of summaries to the rater-assessed Cor-

rectness scores for each participant’s answers. Using Spearman’s

ρ, we found ρ = −0.022 with p = 0.518, indicating no signifi-

cant correlation between developer-perceived summary quality

and rater-assessed Correctness.

We find that participants exhibited no significantly predictable

patterns in assessing the quality of summaries for code they are exam-

ining. Our data suggests that developers’ subjective ratings are not

reliable predictors of how much a summary helps them understand

code. This aligns with previous findings that developer intuitions

can align poorly with reality when assessing which information is

most relevant for software maintenance tasks (e.g,. [20, Sec. 4.3]).

6.3 RQ3: Summaries, Metrics and
Comprehension

We next investigate the extent to which BLEU and ROUGE scores re-

flect howwell machine-generated summaries improve a developer’s

ability to comprehend code. Prevailing summarization techniques

are evaluated using these metrics, based on the assumption that a

higher BLEU or ROUGE score indicates the quality of the resulting

summary is higher (and thus more useful to a developer). We assess

the degree to which that assumption holds in practice for developer

comprehension tasks.

For this research question, we consider all participant responses

that were given machine-generated comments. Next, we average

the rater-assessed Correctness for all participant responses for

each code snippet in our dataset. We note there is a very weak

(ρ = .151) but significant (p = 0.0004) correlation between a sum-
mary’s ROUGE score and rater-assessed Correctness. A scatter plot

of this data is shown in Figure 8. We also applied the same method-

ology using BLEU scores. The results are similar: a very weak but

significant correlation between BLEU scores and rater-assessed

Correctness (ρ = .140, p = 0.0008).
BLEU and ROUGE scores were very weakly correlated with rater-

assessed Correctness (Spearman’s ρ = 0.151,p = 0.0004 for ROUGE
vs. Correctness; ρ = 0.140,p = 0.0008 for BLEU vs. Correctness).

Developer comprehension, as measured by extrinsic correctness at

performing comprehension-based tasks, is not strongly related to

the internally-measured quality of the machine-generated summary

they receive. We suggest considering alternative methodologies to

the use of BLEU and ROUGE to evaluate summarization models.

6.4 Qualitative Discussion of Writing Tasks

In this subsection, we discuss qualitative data to augment our quan-

titative evaluation, with a specific focus on the writing section of

our study. Recall from Section 5.3 that participants completed code

writing tasks. For writing tasks, they were given a Binary Tree,

Linked List, or Graph class with one method missing. They were

given either human-written or machine-generated summaries for

all methods in the class. Based on a held-out test suite, they were

tasked with writing the missing method. Participant submissions

were executed against a held-out test suite as a proxy for correct-

ness. While we do not report significant correlations or results with

our writing tasks, we note two points for qualitative discussion.

First, keywords present in summaries appeared to influence

variable names used by participants in their solutions. For exam-

ple, our Graph class was implemented with an adjacency matrix

10

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

ROUGE Score

R
at
er
-a
ss
es
se
d
C
o
rr
ec
tn
es
s
(1
–
5)

Figure 8: Scatter plot showing the distribution of ROUGE

scores for each machine-generated code summary and the

rater-assessed Correctness for participants who answered

comprehension questions using that summary. We note a

very weak correlation using Spearman’s ρ = 0.151 (p =
0.0004). The best fit line is shown in red. High or low ROUGE

scores do not appear to influence developer comprehension.

called adjMatrix. Participants were tasked with implementing a

getUnvisitedChildNode method. The machine-generated sum-

maries for this method did not mention the adjacency matrix.

We found that only 20% of participants who were given machine-

generated summaries used the matrix, whereas 75% of participants

who were given human-written summaries used the matrix.

Second, we note that method length appeared to modulate the

usefulness of the summary. For example, one task involved a Binary

Tree delete method that contained over 100 lines of code. None of

the participants who were given this method completed the task

(i.e., all submissions passed 0 test cases), regardless of whether they

were given machine-generated or human-written summaries.

6.5 Results Summary

First, we find that human-written summaries help developers com-

prehend code significantly better than do machine-generated sum-

maries. Second, developer perception of summary quality, whether

human-written or machine-generated, did not significantly cor-

relate with developer comprehension—developers cannot assess

which summaries are most helpful. Finally, we found that BLEU

and ROUGE scores were significantly uncorrelated (i.e., ρ = 0.151
with p = 0.0004 for ROUGE and ρ = 0.140 with p = 0.0008 for

BLEU) with developer comprehension—developers do not bene-

fit from summaries with higher-valued BLEU or ROUGE scores.

This indicates a need for new metrics for measuring automatic

summarization techniques.

7 THREATS TO VALIDITY

We acknowledge threats to validity in our study, including our

participant selection process, our code snippets, our code summa-

rization model, and the design and sensitivity of our methodology.

Our participant selection pool varied in programming experi-

ence, from second-year undergraduate computer science students

to professional developers with under five years of experience.

The overwhelming majority were undergraduate students (i.e., 35

participants), thus subgroup analysis was difficult. Moreover, our

institution primarily focuses on a C/C++ curriculum—several par-

ticipants were wary of participating in a Java-based survey.

We selected 50 random snippets from a larger dataset containing

over 2 million methods. While we constrained our search, it is

possible that our 50 selected snippets are not representative of the

entire dataset. Moreover, our results are based on Java snippets,

which may not generalize to other languages. This is endemic to

code summarization—we mitigate this threat by working with a

dataset published specifically for this task.

We considered one code summarization model in our experi-

ments [34]. While others are available (e.g., [28]), we selected this

model because it represents the state-of-the-art and for experimen-

tal expediency (i.e., because the dataset was readily available).While

possible that other techniques could influence comprehension dif-

ferently (e.g., models that use templates or that enforce particular

comment styles), we choose to focus on deep learning techniques.

Finally, we selected particular program comprehension activities

(answering questions and writing code). These activities may not

elicit the clearest patterns relating to the impact of summaries. We

referred to a large body of literature, building tasks from established

best practices (i.e., Sillito et al. [61] and Pacione et al. [50]).

8 CONCLUSION

Automatic code summarization is becoming increasingly impor-

tant for addressing the shortage of well-documented code. Well-

documented code is known to influence comprehension for both

new and experienced developers. However, while state-of-the-art

automatic code summarization techniques exist, they are frequently

internally evaluated with respect to metrics like BLEU and ROUGE,

designed for machine translation tasks. These metrics do not neces-

sarily reflect what developers rely on when examining code. To our

knowledge, no prior work has explored the impact of automatic

summarization on extrinsic developer comprehension.

In this paper, we present a human study of 45 undergraduate

students, graduate students, and professional developers. These par-

ticipants examined Java methods documented with human-written

or machine-generated summaries, and answered comprehension

questions about each. We found that human-written summaries

yielded significantly improved developer comprehension compared

to machine-generated summaries (p = 0.029). However, we did

not find a significant correlation between developer perception of

summary quality and their comprehension. Finally, we found that

BLEU and ROUGE scores were both significantly uncorrelated with

comprehension (ρ = 0.140,p = 0.0008 and ρ = 0.151,p = 0.0004,
respectively). These results suggest a need to developmore appropri-

ate metrics for evaluating the quality or effectiveness of automatic

code summarization techniques.

9 ACKNOWLEDGMENT

The authors gratefully acknowledge the partial support of US Na-

tional Science Foundation (NSF) (CCF-1452959, CCF-1717607, CCF-

1908633, CCF-1763674).

11

REFERENCES
[1] Abbes, M., Khomh, F., Gueheneuc, Y.-G., and Antoniol, G. An empirical

study of the impact of two antipatterns, blob and spaghetti code, on program
comprehension. In 2011 15th European Conference on Software Maintenance and
Reengineering (2011), IEEE, pp. 181–190.

[2] Allamanis, M., Peng, H., and Sutton, C. A convolutional attention network for
extreme summarization of source code. In International Conference on Machine
Learning (2016), pp. 2091–2100.

[3] Amalfitano, D., Fasolino, A. R., Polcaro, A., and Tramontana, P. The
dynaria tool for the comprehension of ajax web applications by dynamic analysis.
Innovations in Systems and Software Engineering 10, 1 (2014), 41–57.

[4] Banerjee, S., and Lavie, A. METEOR: An automatic metric for MT evaluation
with improved correlation with human judgments. In Proceedings of the ACL
Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Transla-
tion and/or Summarization (Ann Arbor, Michigan, June 2005), Association for
Computational Linguistics, pp. 65–72.

[5] Bauer, J., Siegmund, J., Peitek, N., Hofmeister, J. C., and Apel, S. Indentation:
simply a matter of style or support for program comprehension? In International
Conference on Program Comprehension (2019), pp. 154–164.

[6] Brooks, R. Using a behavioral theory of program comprehension in software
engineering. In Proceedings of the 3rd international conference on Software engi-
neering (1978), IEEE Press, pp. 196–201.

[7] Brooks, R. Towards a theory of the comprehension of computer programs.
International journal of man-machine studies 18, 6 (1983), 543–554.

[8] Buckner, J., Buchta, J., Petrenko, M., and Rajlich, V. Jripples: A tool for pro-
gram comprehension during incremental change. In 13th International Workshop
on Program Comprehension (IWPC’05) (2005), IEEE, pp. 149–152.

[9] Buse, R. P. L., and Weimer, W. Automatic documentation inference for ex-
ceptions. In International Symposium on Software Testing and Analysis (2008),
pp. 273–282.

[10] Buse, R. P. L., and Weimer, W. Automatically documenting program changes.
In Automated Software Engineering (2010), pp. 33–42.

[11] Ceccato, M., Di Penta, M., Nagra, J., Falcarin, P., Ricca, F., Torchiano, M.,
and Tonella, P. The effectiveness of source code obfuscation: an experimental
assessment. pp. 178–187.

[12] Cioch, F. A., Palazzolo, M., and Lohrer, S. A documentation suite for main-
tenance programmers. In Proceedings of the 1996 International Conference on
Software Maintenance (1996), pp. 286–295.

[13] Coughlin, D. Correlating automated and human assessments of machine trans-
lation quality. In Proceedings of MT summit IX (2003), pp. 63–70.

[14] de Souza, S. C. B., Anqetil, N., and de Oliveira, K. M. A study of the
documentation essential to software maintenance. In Proceedings of the 23rd
annual international conference on Design of communication: documenting &
designing for pervasive information (2005), ACM, pp. 68–75.

[15] Dunsmore, A., and Roper, M. A comparative evaluation of program compre-
hension measures. The Journal of Systems and Software 52, 3 (2000), 121–129.

[16] Fleiss, J. L. Measuring nominal scale agreement amongmany raters. Psychological
bulletin 76, 5 (1971), 378.

[17] Floyd, B., Santander, T., and Weimer, W. Decoding the representation of
code in the brain: an fmri study of code review and expertise. In International
Conference on Software Engineering (2017), pp. 175–186.

[18] Fluri, B., Wursch, M., and Gall, H. C. Do code and comments co-evolve?
on the relation between source code and comment changes. In 14th Working
Conference on Reverse Engineering (WCRE 2007) (2007), IEEE, pp. 70–79.

[19] Fowkes, J., Chanthirasegaran, P., Ranca, R., Allamanis, M., Lapata, M., and
Sutton, C. Autofolding for source code summarization. IEEE Transactions on
Software Engineering 43, 12 (2017), 1095–1109.

[20] Fry, Z. P., Landau, B., and Weimer, W. A human study of patch maintainabil-
ity. In Proceedings of the 2012 International Symposium on Software Testing and
Analysis (2012), pp. 177–187.

[21] HackerRank. HackerRank. https://www.hackerrank.com/.
[22] Haiduc, S., Aponte, J., and Marcus, A. Supporting program comprehension

with source code summarization. In Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering-Volume 2 (2010), ACM, pp. 223–226.

[23] Haiduc, S., Aponte, J., Moreno, L., andMarcus, A. On the use of automated text
summarization techniques for summarizing source code. In 2010 17th Working
Conference on Reverse Engineering (2010), IEEE, pp. 35–44.

[24] Hill, E., Pollock, L., and Vijay-Shanker, K. Automatically capturing source
code context of nl-queries for software maintenance and reuse. In 2009 IEEE 31st
International Conference on Software Engineering (May 2009), pp. 232–242.

[25] Hofmeister, J. C., Siegmund, J., and Holt, D. V. Shorter identifier names take
longer to comprehend. Empirical Software Engineering 24, 1 (2019), 417–443.

[26] Hsieh, H.-F., and Shannon, S. E. Three approaches to qualitative content
analysis. Qualitative health research 15, 9 (2005), 1277–1288.

[27] Hu, X., Li, G., Xia, X., Lo, D., and Jin, Z. Deep code comment generation.
In Proceedings of the 26th Conference on Program Comprehension (2018), ACM,
pp. 200–210.

[28] Hu, X., Li, G., Xia, X., Lo, D., and Jin, Z. Deep code comment generation with
hybrid lexical and syntactical information. Empirical Software Engineering (2019),
1–39.

[29] Ibrahim, W. M., Bettenburg, N., Adams, B., and Hassan, A. E. On the relation-
ship between comment update practices and software bugs. Journal of Systems
and Software 85, 10 (2012), 2293–2304.

[30] Iyer, S., Konstas, I., Cheung, A., and Zettlemoyer, L. Summarizing source
code using a neural attention model. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers) (2016),
pp. 2073–2083.

[31] Jbara, A., and Feitelson, D. G. On the effect of code regularity on comprehen-
sion. In Proceedings of the 22nd international conference on program comprehension
(2014), ACM, pp. 189–200.

[32] Kajko-Mattsson, M. A survey of documentation practice within corrective
maintenance. Empirical Software Engineering 10, 1 (2005), 31–55.

[33] Lawrie, D., Morrell, C., Feild, H., and Binkley, D. Effective identifier names
for comprehension and memory. Innovations in Systems and Software Engineering
3, 4 (2007), 303–318.

[34] LeClair, A., Jiang, S., and McMillan, C. A neural model for generating natural
language summaries of program subroutines. In 2019 International Conference on
Software Engineering (ICSE) (May 2019).

[35] LeClair, A., and McMillan, C. Recommendataions for datasets for source code
summarization. In 2019 Annual Conference of the North Americal Chapter of the
Association for Computational Linguistics (NAACL) (June 2019).

[36] LeetCode, LLC. LeetCode - The World’s Leading Online Programming Learning
Platform. https://leetcode.com/.

[37] Liang, Y., and Zhu, K. Q. Automatic generation of text descriptive comments for
code blocks. In Thirty-Second AAAI Conference on Artificial Intelligence (2018).

[38] Lin, C.-Y. ROUGE: A package for automatic evaluation of summaries. In Text
Summarization Branches Out (Barcelona, Spain, July 2004), Association for Com-
putational Linguistics, pp. 74–81.

[39] Liu, B., Wang, T., Zhang, X., Fan, Q., Yin, G., and Deng, J. A neural-network
based code summarization approach by using source code and its call dependen-
cies. In Proceedings of the 11th Asia-Pacific Symposium on Internetware (2019),
pp. 1–10.

[40] Loyola, P., Marrese-Taylor, E., and Matsuo, Y. A neural architecture for
generating natural language descriptions from source code changes. arXiv
preprint arXiv:1704.04856 (2017).

[41] Malhotra, M., and Chhabra, J. K. Class level code summarization based on
dependencies and micro patterns. In 2018 Second International Conference on
Inventive Communication and Computational Technologies (ICICCT) (2018), IEEE,
pp. 1011–1016.

[42] McBurney, P. W., and McMillan, C. Automatic documentation generation
via source code summarization of method context. In Proceedings of the 22nd
International Conference on Program Comprehension (New York, NY, USA, 2014),
ICPC 2014, Association for Computing Machinery, p. 279–290.

[43] McBurney, P. W., and McMillan, C. Automatic documentation generation
via source code summarization of method context. In Proceedings of the 22nd
International Conference on Program Comprehension (2014), pp. 279–290.

[44] McBurney, P. W., and McMillan, C. Automatic source code summarization of
context for java methods. IEEE Transactions on Software Engineering 42, 2 (2015),
103–119.

[45] Moore, J., Gelman, B., and Slater, D. A convolutional neural network for
language-agnostic source code summarization. In ENASE (2019).

[46] Moreno, L., Aponte, J., Sridhara, G., Marcus, A., Pollock, L., and Vijay-
Shanker, K. Automatic generation of natural language summaries for java
classes. In 2013 21st International Conference on Program Comprehension (ICPC)
(May 2013), pp. 23–32.

[47] Nazar, N., Hu, Y., and Jiang, H. Summarizing software artifacts: A literature
review. Journal of Computer Science and Technology 31, 5 (Sep 2016), 883–909.

[48] Nazar, N., Hu, Y., and Jiang, H. Summarizing software artifacts: A literature
review. Journal of Computer Science and Technology 31, 5 (2016), 883–909.

[49] Nazar, N., Jiang, H., Gao, G., Zhang, T., Li, X., and Ren, Z. Source code
fragment summarization with small-scale crowdsourcing based features. Frontiers
of Computer Science 10, 3 (2016), 504–517.

[50] Pacione, M. J., Roper, M., and Wood, M. A novel software visualisation model
to support software comprehension. In 11th working conference on reverse engi-
neering (2004), IEEE, pp. 70–79.

[51] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics (Philadelphia, Pennsylvania, USA,
July 2002), Association for Computational Linguistics, pp. 311–318.

[52] Prechelt, L., Unger-Lamprecht, B., Philippsen, M., and Tichy, W. F. Two
controlled experiments assessing the usefulness of design pattern documentation
in program maintenance. IEEE Transactions on Software Engineering 28, 6 (2002),
595–606.

[53] Reiter, E. A structured review of the validity of BLEU. Computational Linguistics
44, 3 (2018), 393–401.

12

[54] Rodeghero, P., McMillan, C., McBurney, P. W., Bosch, N., and D’Mello, S.
Improving automated source code summarization via an eye-tracking study of
programmers. In Proceedings of the 36th international conference on Software
engineering (2014), pp. 390–401.

[55] Roehm, T., Tiarks, R., Koschke, R., and Maalej, W. How do professional devel-
opers comprehend software? In Proceedings of the 34th International Conference
on Software Engineering (2012), IEEE Press, pp. 255–265.

[56] Schröter, I., Krüger, J., Siegmund, J., and Leich, T. Comprehending studies on
program comprehension. In International Conference on Program Comprehension
(2017), pp. 308–311.

[57] Shepherd, D., Fry, Z. P., Hill, E., Pollock, L., and Vijay-Shanker, K. Using
natural language program analysis to locate and understand action-oriented
concerns. In Proceedings of the 6th International Conference on Aspect-Oriented
Software Development (New York, NY, USA, 2007), AOSD ’07, Association for
Computing Machinery, p. 212–224.

[58] Shido, Y., Kobayashi, Y., Yamamoto, A., Miyamoto, A., and Matsumura, T. Au-
tomatic source code summarizationwith extended tree-lstm. ArXiv abs/1906.08094
(2019).

[59] Siegmund, J. Program comprehension: Past, present, and future. In 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER) (2016), vol. 5, IEEE, pp. 13–20.

[60] Siegmund, J., Peitek, N., Parnin, C., Apel, S., Hofmeister, J., Kästner, C.,
Begel, A., Bethmann, A., and Brechmann, A. Measuring neural efficiency
of program comprehension. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (2017), pp. 140–150.

[61] Sillito, J., Murphy, G. C., and De Volder, K. Questions programmers ask during
software evolution tasks. In Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering (2006), pp. 23–34.

[62] Sridhara, G., Hill, E., Muppaneni, D., Pollock, L., and Vijay-Shanker, K.
Towards automatically generating summary comments for java methods. In

Proceedings of the IEEE/ACM international conference on Automated software
engineering (2010), ACM, pp. 43–52.

[63] Sridhara, G., Pollock, L., and Vijay-Shanker, K. Automatically detecting
and describing high level actions within methods. In Proceedings of the 33rd
International Conference on Software Engineering (2011), ACM, pp. 101–110.

[64] Sridhara, G., Pollock, L., and Vijay-Shanker, K. Generating parameter com-
ments and integrating with method summaries. In 2011 IEEE 19th International
Conference on Program Comprehension (2011), IEEE, pp. 71–80.

[65] Storey, M.-A. Theories, tools and research methods in program comprehension:
past, present and future. Software Quality Journal 14, 3 (2006), 187–208.

[66] Tenny, T. Program readability: Procedures versus comments. IEEE Transactions
on Software Engineering 14, 9 (1988), 1271–1279.

[67] Von Mayrhauser, A., and Vans, A. M. Program comprehension during software
maintenance and evolution. Computer 28, 8 (1995), 44–55.

[68] Wang, T., and Liu, Y. Jsea: A program comprehension tool adopting lda-based
topic modeling. International Journal of Advanced Computer Science and Applica-
tions 2, 3 (2017).

[69] Wettel, R., Lanza, M., and Robbes, R. Software systems as cities: A controlled
experiment. In Proceedings of the 33rd International Conference on Software
Engineering (2011), pp. 551–560.

[70] Woodfield, S. N., Dunsmore, H. E., and Shen, V. Y. The effect of modularization
and comments on program comprehension. In Proceedings of the 5th international
conference on Software engineering (1981), IEEE Press, pp. 215–223.

[71] Xia, X., Bao, L., Lo, D., Xing, Z., Hassan, A. E., and Li, S. Measuring program
comprehension: A large-scale field study with professionals. IEEE Transactions
on Software Engineering 44, 10 (Oct 2018), 951–976.

[72] Zhao, L., Zhang, L., and Yan, S. A survey on research of code comment auto gen-
eration. In Journal of Physics: Conference Series (2019), vol. 1345, IOP Publishing,
p. 032010.

13

