
Evolutionary Computation for
Improving Malware Analysis

Kevin Leach1, Ryan Dougherty2, Chad Spensky3,
Stephanie Forrest2, Westley Weimer1

1University of Michigan
2Arizona State University

3University of California, Santa Babara

May 23, 2019

1/6



Introduction

2/6



Malware Analysis

Ï Analysts want to quickly identify
malware behavior

Ï What damage does it do?
Ï How does it infect a system?
Ï How do we defend against it?

3/6



Stealthy Malware
Ï Growing volume of stealthy malware
Ï Malware sample maintains secrecy by using

artifacts to detect analysis environments
Ï Timing artifacts — overhead introduced by analysis

Ï Single-stepping instructions with debugger is slow
Ï Imperfect VM environment does not match native speed

Ï Functional artifacts — features introduced by analysis
Ï isDebuggerPresent() — legitimate feature abused by

adversaries
Ï Incomplete emulation of some instructions by VM
Ï Device names (hard drive named “VMWare disk”)

Ï Too much effort to analyze

4/6



Transparency

Ï We want to understand stealthy samples
Ï We want a transparent analysis

Ï We can mitigate artifacts
Ï Hook API calls

(e.g., isDebuggerPresent())
Ï Spoof timing

(e.g., virtualize result of rdtsc instruction)
Ï Use alternate virtualization

(e.g., a sample that detects VMWare may not detect
VirtualBox)

5/6



Cost of Transparency
Ï Mitigation takes resources

Ï Development effort
(e.g., modifying virtualization)

Ï Execution time
(e.g., due to runtime overhead)

Ï Mitigation covers some subset of
malware

Ï Artifact category
(i.e,. hooking disk-related APIs covers
malware that checks the disk)

6/6


