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ABSTRACT
Understanding how to best support and train novice programmers
is a critical component of producing better and more diverse soft-
ware engineers. In this paper, we present the results of a controlled
11-week longitudinal study with 57 CS1 students comparing two
skill-based interventions to improve programming performance.
The first intervention involves spatial training, an established base-
line known to be helpful in engineering contexts. The second inter-
vention is a novel CS-focused technical reading training.

In our reading training, we teach strategies for summarizing sci-
entific papers and understanding scientific charts and figures; most
of the covered readings were CS1-accessible portions of computer
science research papers. For the spatial training, we use a standard-
ized training curriculum previously found to improve programming
skills by focusing on spatial ability (i.e., the ability to mentally ma-
nipulate objects). We first replicate findings that both reading ability
and spatial ability correlate with programming success. Signifi-
cantly, however, we find that those in our reading training exhibit
larger programming ability gains than those in the standard spatial
training (𝑝 = 0.02, 𝑓 2 = 0.10). We also find that reading trained
participants perform particularly well on programming problems
that require tracing through code (𝑝 = 0.03, 𝑓 2 = 0.10). Our re-
sults suggest that technical reading training could be beneficial
for novice programmers. Finally, we discuss the implications of
our results for future CS1 interventions, the possibility for non-
programming based training to positively impact developers, and
future directions for software engineering education research.

CCS CONCEPTS
• Social and professional topics → Software engineering ed-
ucation; CS1.
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1 INTRODUCTION
For many aspiring software engineers, successfully completing a
first computer science course (CS1) is an essential step toward a
technology-focused career. In recent years, the software engineer-
ing research community has demonstrated an increased interest
in both supporting novice programmers [18, 28, 51, 67] and un-
derstanding what cognitive skills are most important for software
engineering success [18, 22, 32, 59, 60]. However, CS1 students often
struggle [4, 36], and less affluent students with weaker preparatory
education struggle disproportionately [46]. This may contribute to a
lack of diversity endemic in manymodern software workplaces [52].
In this paper, we investigate software engineering training methods
for novices at the university level. The techniques in this paper
combine insights from cognitive studies of software engineering
with CS pedagogy through the comparison of two skills-based CS1
interventions: spatial ability training and technical reading training.
Specifically, we propose a novel computer science focused technical
reading training for novice software engineers, and we compare its
effectiveness to that of an established spatial ability curriculum.

One reason under-prepared novice programmers struggle is that
they may have less incoming facility with cognitive skills helpful
for software engineering. Students’ incoming math, reading, and
spatial abilities correlate with CS1 success [6, 21, 34]. Such skills
also relate to key software engineering tasks such as data structure
manipulation [32] and code review [22]. Consequently, one poten-
tial intervention for supporting struggling novices is facilitating
learning transfer to programming from a concurrently taught sup-
plemental training course [7], where learning transfer refers to the
use of skills in a separate context from where they were learned.
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One of the most common skill-based training interventions
proposed and tested for STEM education is spatial ability train-
ing [7, 15, 65, 70]. Spatial ability refers to the ability to mentally
manipulate objects, and it is a cognitive skill directly connected
with problem solving [31], a necessary component for software
engineering expertise [74]. Supplemental training designed to help
improve spatial ability has been shown to both improve outcomes
in several key engineering classes and also increase engineering
degree retention [63]. There is also evidence that spatial ability
training directly improves novice programming outcomes [7, 15].
The connection between spatial skills and software engineering is
amplified by the finding that tree-based data-structure manipula-
tion and spatial ability problems activate similar brain regions [32].

We observe, however, that there are many aspects of software
that are not obviously spatial. It is possible, therefore, that techni-
cal reading ability may sometimes be more important for initial
software engineering success. Technical reading ability is a key
component of software engineering. For instance, programmers
generally spend significant time switching between reading project
specifications and documentation [13]. Similarly, over half of de-
velopers consider readability to be the most important property of
code [61, Sec. 4.1], time spent reviewing code is among the top three
factors for assessing productivity and is more important than time
spent writing code [43, Fig. 2], and managers and developers rank
readability in the top three development analytic [9, Fig. 4]. At a
cognitive level, recent medical imaging studies have found that with
more programming expertise, brain activation patterns while read-
ing code are more similar to patterns while reading prose [18, 22],
and that language aptitude can explain a significant portion of
learning outcomes for programming course participants [48].

In this paper, we propose a novel CS-focused technical reading
training, and we use an 11-week randomized trial with 57 par-
ticipants to compare the efficacy of two CS1 interventions: our
novel technical reading training and an established standardized
spatial ability training. Our proposed technical reading training is
CS-focused to better cover CS-specific reading tasks, such as read-
ing API documentation. Reading transfer training interventions
have been carried out in other fields, but they are rare for STEM
education. To the best of our knowledge, we are the first to test for
transfer between technical reading ability and computer science.

We find that reading training participants had significantly larger
programming gains than those in the spatial training (𝑝 = 0.02). We
also find that the reading training’s benefit is most significant for
tasks that require tracing code. Furthermore, we observe that read-
ing ability tends to correlate more strongly with final programming
ability than spatial ability. This paper’s contributions include:

• A novel CS-focused technical reading intervention.
• Results of an 11-week randomized control trial comparing
the effects of our reading training and an established spatial
training on novice programming ability.

• The finding that reading training participants exhibit signif-
icantly larger CS1 programming gains than spatial partici-
pants, primarily during code-tracing tasks.

• A replication of prior findings that both spatial ability and
reading ability correlate with programming performance.

• An analysis of cognitive and demographic features predictive
of CS1 programming ability.

• A discussion of the implications of our findings on CS1 edu-
cation and software engineering in general.

2 RELATEDWORK
In this section, we give a brief summary of relevant research. We
define technical reading and discuss reading training and transfer.
We then outline connections between software engineering, pro-
gram comprehension, and reading ability. Finally, we define spatial
ability and describe its connections with computer science.

Technical Reading Ability: Closely related to general read-
ing ability, Technical Reading Ability is a person’s ability to read
and understand technical or scientific texts [55]. Both reading and
technical reading can be predictive of success in various fields. For
instance, when investigating elementary school students’ facility
with math word problems, Vilenius-Tuohimaa et al. found that both
technical and general reading ability were strongly related to stu-
dent success [71]. Similarly, reading was found to be the second
most important academic area for predicting success in nursing
school behind science and ahead of mathematics [76].

There is evidence that technical reading training may contribute
to improved performance in various fields. For instance, a writing-
intensive technical reading course improved biology students’ per-
ceived understanding of primary scientific papers and their ability
to communicate science [8]. A large body of work explores how to
teach reading (see Grabe for a summary [25]). Grabe proposes key
guidelines for developing reading curricula, including “emphasiz-
ing vocabulary learning,” “promoting strategic reading,” “activat-
ing background knowledge in appropriate ways,” and developing
“intrinsic motivation for reading” [25]. To both increase student
motivation and also to deliberately promote transfer, we develop
our own CS-focused technical reading training (see Section 3.1).

Technical Reading andComputer Science:There is evidence
that reading ability correlates with programming success [26, 34, 39,
44]. For instance, Leeper et al. found that, while effort and comfort
level were the strongest predictors of success, verbal SAT scores
were more predictive than math SAT scores of computer science
course grades [34]. Furthermore, Shute found that scores on algebra
word problems predicted programming skill acquisition [58].

Others connect programming to reading or tracing through a
program and describing its function in natural language [39, 41, 44].
That is, there is a positive correlation between verbally contextual-
izing programs “in plain English” and programming ability. Mayer
found that “asking learners to put technical information in their
own words (through making comparisons) results in broader learn-
ing” that supports transfer to computer science [41]. Furthermore,
Fedorenko et al. argue that learning to program is akin to learning
a language and thus teaching programming can be “informed by
pedagogies for developing linguistic fluency” [20].

Beyond direct connections between programming ability and
reading ability, many essential software engineering tasks, such
as code review, code summarization, or managing documentation,
require technical reading ability. For example, professional soft-
ware developers use a significant portion of their time on the web
reading documentation and debugging forums [77]. Furthermore,
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software developers often use prose summaries of code, either in the
form of documentation or inline comments, to facilitate program
comprehension and communication with other programmers [23].
Techniques for automatically generating prose summaries of code
reduce time spent writing documentation, keep up with rapidly
changing code bases, and aid developer comprehension [27, 42].

Programming and reading also relate on a cognitive level. Sieg-
mund et al. identified five brain areas that activate when reading
programs, most of which are also associated with language [59].
Similarly, Floyd et al. found that while code review and prose re-
view were distinct neurological processes, they became less distinct
with more programming experience [22]. This pattern was further
supported by Endres et al., who directly compared visualization,
reading, and programming with novices at the cognitive level [18].

Researchers have also explored reading and program compre-
hension using eye-tracking. For example, Busjahn et al. used eye-
tracking results to argue for using natural language reading as
a basis for understanding code comprehension [11]. Rodeghero
et al. found that, when possible, programmers use keywords to
capture high-level program information rather than reading code
details [54]. Similarly, Rodeghero and McMillan found that develop-
ers prefer to skim code and follow common reading patterns [53].
Furthermore, Busjahn et al. found that developers generally read
code non-linearly, a pattern that increases with expertise [10]. These
results inform the design of our reading training (see Section 3.1).

In an educational context, Gunawardena et al. observed “there
may be a stable correlation between student’s ability to success-
fully comprehend and detect errors in a document and their course
performance” [26]. Similarly, Hebig et al. conducted focus groups
with masters students discussing their perceptions of various soft-
ware comprehension techniques, finding generally positive views
of many reading-related comprehension aides such as systematic
code reading, documentation, and analysis dashboards [29]. These
lines of preliminary results invite a more controlled study.

We are not aware of any previous studies directly exploring
transfer training between technical reading and programming abil-
ity. A main contribution of this paper, therefore, is the development
and evaluation of the first (to our knowledge) CS-focused technical
reading software engineering intervention.

Spatial Ability and Computer Science: Spatial ability refers
to a person’s capacity to understand and reason about spatial re-
lationships among objects, and is a blanket term for skills such
as mental rotation, mental folding, spatial perception, and spatial
pattern recognition [40]. There is a large body of research on spatial
ability and its correlates. Generally, spatial ability correlates with
gender and socioeconomic status [12, 72]; on average, men have
higher spatial ability than women, and spatial ability and affluence
are positively correlated. Spatial ability positively correlates with
performance in a variety of fields including mathematics [30, 73],
natural sciences [5, 69, 78], and engineering [1].

Several studies have found evidence of a medium to strong posi-
tive correlation between spatial ability and programming [21, 33,
45, 47]. For instance, Parker et al. found that spatial ability was
a better mediating variable for socioeconomic gaps in computer
science than access to computing [45]. Additionally, Parkinson and
Cutts found that “spatial skills typically increase as the level of
academic achievement in computer science increases” [47].

Beyond correlational studies, researchers have used various
methods to connect spatial ability with programming. For example,
Huang et al. used medical imaging to find that similar parts of the
brain are recruited to solve mental rotation problems and tree-based
data structure problems, indicating that core software engineering
tasks use visiospatial cognitive processes [32]. Additionally, Mar-
gulieux proposed “spatial encoding strategy” (SpES), a theory about
the cognitive processes behind the transferability between spatial
ability and programming [40]. SpES posits that improving spatial
ability helps develop general strategies for encoding oriented “men-
tal representations of non-verbal information,” strategies that can
be applied to programming problems. We hypothesize that such
strategies also apply to software engineering problems.

Spatial ability is malleable, meaning it improves through training;
a meta-analysis [70] found that spatial training increases perfor-
mance on a variety of tasks. For example, Pribyl et al. found that
spatial training improved organic chemistry students’ ability to
“mentally manipulate two-dimensional representations of a mol-
ecule” [49]. Also, spatial training may reduce, or even eliminate,
observed gender gaps in spatial ability [35]. The important corre-
lates with spatial ability coupled with its malleability encourage us
to consider a spatial intervention to help train software engineers.

Recently, there have been two studies establishing causality be-
tween spatial ability training and computer science success. Cooper
et al. ran an exploratory study with 38 high school programmers,
finding that those who participated in spatial training performed
better on a final programming assessment [15]. Significantly, Bock-
mon et al. replicated the Cooper study at four different universities
with a much larger sample size (𝑛 = 345) [7]. They found that on a
final programming assessment, introductory students who partici-
pated in a spatial training intervention significantly outperformed
students who did not participate. All participation in the spatial in-
tervention was voluntary, leaving open the possibly of self-selection
biases affecting their results. Even so, the study provides compelling
evidence for the feasibility of spatial training transferring to CS1,
and thus software engineering, performance.

Due to established correlation with computer science outcomes
and evidence of transfer to programming ability, we use spatial
training as one of our two skills-based interventions. In our ex-
periment, spatial training functions as a baseline for analyzing the
efficacy of our reading treatment. Both Cooper et al. and Bockmon
et al. used spatial training materials based on interventions created
by Sorby and Baartmans [64], materials that have also been found
to improve performance in general engineering classes [63, 65]. We
also use Sorby and Baartmans’s materials.

3 TRAINING MATERIALS
In this section, we discuss the structure and content of the two
interventions. In Section 3.1, we present our novel CS-focused tech-
nical reading intervention (Reading Treatment), and in Section 3.2
we describe the standardized spatial training (Spatial Treatment).

3.1 Technical Reading Training
For the Reading Treatment, we designed a novel computer science
focused technical reading curriculum. We had several key design
goals. First, for the purposes of direct comparison with the Spatial
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Treatment (see Section 3.2), we required that our Reading Treat-
ment consist of nine two-hour weekly training sessions and include
workbook practice problems, group work, and physical props —
snap-blocks for the Spatial Treatment and vocabulary flashcards for
the Reading Treatment. We also required that the Reading Treat-
ment use active learning techniques such as think-pair-share, group
work, and in-class practice problems, as these have been found to en-
hance learning [50]. Finally we required our training be CS-focused
to increase participant engagement and programming relevance. To
accomplish this, we integrated computer science research papers
and API documentation into the course.

Overall Session Structure: Each session followed the same
general lesson plan: a 20-minute ice-breaker and workbook warm-
up, general (not CS specific) vocabulary, a short lecture covering a
technical reading strategy, and finally reading and analysis practice.
This practice typically accounted for half of each training session.

Warm-up and Vocabulary: The initial ice-breaker and work-
book warm-up served to get students on task and excited for the
rest of the session [17]. For the workbook, students completed
pages from Reading Comprehension Skills and Strategies: Level 8, a
commercially-available workbook [56]. We included vocabulary
practice due to the established benefit of emphasizing vocabulary
when teaching reading [25]. Vocabulary words were selected from
a curated list of common GRE words. Generally, we emphasized
words that we believed were prevalent in technical or scientific
writing. For the lecture portion, we focused on teaching established
technical reading strategies.

Lecture Topic Selection: During the lecture portion, we cov-
ered various technical reading strategies. The majority of these
strategies focused on using structural cues to quickly and accu-
rately scan texts to retrieve and understand key points. Topics
included focusing on outlines when reading to improve compre-
hension, understanding figures and charts in scientific writing, and
strategies for understanding persuasive technical proposals (e.g.,
Heilmeier’s Catechism). Our focus on teaching structural cues and
patterns to efficiently skim texts was motivated by findings that
experienced programmers tend to read code non-linearly, focusing
on high level features [10, 53].

CS-Paper Selection: All but two of the reading and analysis
practice sections involved computer science research papers se-
lected using several criteria. First, papers were selected from the
reading lists of various software engineering and computer science
education courses at a top-tier public university. All papers were
published in reputable computer science journals or conferences.
Second, to ensure the material was understandable for CS1 stu-
dents, we deliberately selected accessible research papers that were
interesting to first year students; in particular, many readings in-
volved computer science education so the content was relatable.
Finally, for more complex readings, students were only asked to
read a curated subset of the paper such as the introduction, related
work, and conclusion. We asked students to summarize readings
and to write and share short reading responses; previous work has
found that asking learners to put technical information in their own
words results in increased comprehension and broader learning
for transfer [41]. The other two sessions contained general review
(roots and affixes) or API documentation reading strategies.

Training Materials: For replication purposes, we have made
our reading training materials publicly available in our replication
package.1 This replication package contains session slide decks and
a list of all lecture topics and all CS-papers covered. We also provide
study recruitment materials and data analysis scripts.

3.2 Spatial Training
For our Spatial Treatment, we used a spatial ability course devel-
oped atMichigan Technical University by Sorby and Baartmans [64].
Intended to help incoming engineers improve their spatial ability,
Sorby and Baartmans’s curriculum has been shown to improve not
only students’ spatial skills [65], but also their grades in several key
engineering courses [63]. The course consists of 10 modules and
covers the following topics: surfaces and solids of revolution, com-
bining solid objects, isomorphic sketching, orthographic sketching,
orthographic projections, flat pattern folding, 3D shape rotation
around single and multiple axes, object reflection or symmetry,
and mental cutting. Provided teaching materials included training
videos, software, and individual practice workbooks.

We taught the material in Sorby and Baartmans’s curriculum in
nine two-hour weekly sessions. Each session involved showing the
provided lecture videos, working through the software in pairs, and
completingworkbook problems.We also gave each participant snap-
blocks, as recommended by the provided training materials, to help
them visualize challenging workbook problems. To ensure student
engagement, we held the training sessions in-person on campus
until COVID-19 necessitated remote instruction. We discuss the
impact of COVID-19 on our experiment in more detail in Section 4.

4 EXPERIMENTAL DESIGN
In this section, we cover our experimental design and protocol.

Design Overview: To compare the effects of our CS-focused
technical reading training and spatial training,2 we conducted an
11-week controlled study with 57 participants. Participants were
enrolled in the same CS1 course at the University of Michigan dur-
ing Spring 2020, and they were randomly assigned into either the
Spatial Treatment or the Reading Treatment. These two Treatments
required participants to make the same weekly time commitment
for the same number of weeks, and all participants were compen-
sated the same monetary amount. Participants were not aware of
their Treatment group when they took the pre-test. We measured
training effectiveness using a validated CS1 assessment [46].

Both Treatments had nine two-hour in-person weekly training
sessions with the same instructors. The study started in the the
fourth week of term and lasted until the end of the semester. Partic-
ipants had to complete at least 6/9 training sessions to be included
in our analysis. Participants also attended two additional two-hour
assessment sessions, a pre-test the week before the start of the study
and a post-test the week after the last training session. At the two
assessments, participants took spatial ability, reading ability, and
programming ability tests. They also completed a demographics
questionnaire during the pre-test and a qualitative survey during
the post-test. We describe the assessments in detail in Section 5.
1Replication package: https://github.com/CelloCorgi/FSE2021_To_Read_or_to_Rotate.
2While we initially speculated that the Spatial Treatment might be more effective than
the Reading Treatment due to historical results, we focus our discussion and framing
on the Reading Treatment’s effectiveness given our surprising results.
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Design Motivation: An alternate study design for evaluating
our reading training’s effectiveness would have been to compare
programming gains of the participants to those in a “no treatment”
group (i.e., students in the same CS1 course who were not in the
reading treatment). We choose instead to compare between two
interventions: our CS-focused technical reading training and an
extant spatial training of the same duration and intensity. The main
factor behind this choice was to mitigate self-selection bias. In stud-
ies of educational interventions with supplementary instruction,
self-selection into the treatment group can introduce significant
bias, even after controlling for demographics factors [16, 38]. Thus,
we designed our study such that participants first self-selected
into the study and only then were they randomly assigned into a
treatment group.

We also considered comparing both interventions against a
weaker placebo course as a control, but rejected it as participant
drop-out rate (and thus our potential statistical power) was a real
concern. We hypothesized that drop-out would be significantly
higher with any control appearing unrelated to CS. Finally, we note
that we emailed a post-test invitation to all participants who were
pre-tested but later dropped out of the study to form a potential ad-
ditional no-treatment comparison group. Unfortunately, likely due
to COVID-19 and exam timing, only five participants responded.
While we observed lower programming gains in this group than
those in either treatment, five responses is not enough to support
meaningful analysis.

ParticipantRecruitment: Participants were recruited from the
same CS1 course at the University of Michigan, a large public uni-
versity. A prerequisite for declaring a computer science major, the
course is in C++ and Python. We recruited using email, forum posts,
and in-class presentations. Participants had to be over 18, be able
to attend at least six sessions, have no prior programming experi-
ence, and only be enrolled in one programming course. Recruitment
occurred during the third week of the fifteen-week semester.

Out of 736 students in CS1, 187 students completed the pre-
screening. Of those, 151 met the eligibility requirements, and 97
completed the pre-test. These 97 participants were then assigned
randomly to one of the two Treatments. For each two-hour ses-
sion attended, participants were compensated $20 in cash ($220 for
participants who attended all 11 weeks). Ultimately, 57 valid partici-
pants (29 in the Reading Treatment and 28 in the Spatial Treatment)
completed at least 6/9 training sessions and took the post-test, a
58.7% study completion rate for pre-test takers. Four additional
students who took the post-test and attended the requisite number
of training sessions were eliminated due to invalid post-test scores;
all four rushed through assessments, completing them faster than
two standard deviations below the mean. We note that the majority
of participant drop-out occurred in weeks four and five of the study,
coinciding with intensification of the COVID-19 pandemic (see
Section 4). Table 1 contains demographic breakdowns of the final
57 participants.

Population Homogeneity:We also checked for differences be-
tween our Treatment populations. While we assigned participants
randomly and all participants had no prior programming experi-
ence, one group could have greater reading, spatial, or programming
skills than the other, yielding a potential advantage in CS1. We find
no significant differences between the incoming reading scores

Table 1: Profile of study participants by Treatment type. We
only include racial and ethnic categorieswith at least 5 study
participants. The pre-test scores are all average raw scores.

Spatial Reading
Total Participants 28 29
Female Participants 23 17
Male Participants 5 12
Native English Speakers 21 20
Native Chinese Speakers 4 8
White / Caucasian 10 10
Asian / Pacific Islander 15 12
Hispanic American 2 3
Pre-test PFT (out of 20) 13.1 15.1
Pre-test PSVT:R II (out of 30) 17.5 21.6
Pre-test GRE (out of 25) 8.0 9.6
Pre-test Programming (out of 12) 3.1 2.8

or the incoming programming scores of the two Treatments. We
do, however, find a significant difference between incoming spa-
tial ability on both spatial assessments (PFT: 𝑝 = 0.01, PSVT:R II:
𝑝 = 0.004). The average raw pre-test scores are presented in Table 1.
We account for this in our mathematical analyses (e.g., by consider-
ing programming gains, see Figure 3) as well as in Limitations and
Threats to Validity (see Section 9).

To ensure participants did not have prior programming expe-
rience, we checked for programming ability during recruitment
and pre-screening. During recruitment, we emphasized that partici-
pants could have no prior experience includingminimal exposure to
textual or visual programming languages such as Scratch. During
pre-screening, participants indicated if they “had any prior pro-
gramming experience” with either “Yes,” “No,” or “Other/unsure.”
Respondents were only included in the study if they chose “No” out-
right. Potential participants also indicated previous course enroll-
ment from a list. Students in courses with “programming” or “code”
in their description were excluded. Finally, we observe that, on our
programming pre-test, participants scored 24.6%, only slightly more
than the 20% expected with random guessing.

COVID-19Adjustments:Our experiment was concurrent with
the COVID-19 pandemic, and our institution suspended in-person
research activities during the study’s fifth week. Therefore, we
moved the remainder of the training sessions and the post-test
to a virtual format; students attended a proctored two-hour video
conference each week in lieu of the in-person training session. They
then emailed scans of their completed work to the research team.
For the post-test, the participants took online Qualtrics versions
of each assessment. Like the virtual sessions, the virtual post-test
was proctored over a video-conference. Beyond session format,
the COVID-19 epidemic affected study retention. During the last
week with full in-person sessions before university-wide COVID-19
measures, the study had 82 attendees, while in the first full-week
of virtual sessions, the study had only 61 participants, a 25.6% drop.

5 EXPERIMENTAL INSTRUMENTS
In this section, we describe instruments used during the study’s
pre- and post-tests to collect demographics and assess participants’
spatial, reading, and programming abilities.
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Figure 1: PFT: Participants select the choice which corre-
sponds to the paper on the left unfolded. Answer is “C.”

Figure 2: PSVT:R II: Participants select the shape that is ro-
tated in the same way as the top shape. Answer is “D.”

SpatialAbilityAssessments:Weadministered two spatial abil-
ity assessments: the Paper Folding Test (PFT) [75] and the Revised
Purdue Spatial Visualization Test (PSVT:R II) [79]. Both are validated
standard assessments of different facets of spatial ability. The PFT
measures mental folding and contains 20 multiple choice questions
split into two halves, each timed at three minutes. Participants took
the PFT during the pre- and post-tests. An example problem is
shown in Figure 1. The PSVT:R II measures mental rotation and
contains 30 multiple choice questions of increasing difficulty, and
takes 20 minutes. Participants took the PSVT:R II during the pre-
and post-tests. An example problem is shown in Figure 2.

Reading Assessment: To assess reading ability, we gave stu-
dents verbal sections of theGraduate Record Examination (GRE) [19],
a required exam for admission to many graduate programs. We
chose verbal sections from the official GRE practice test, using sec-
tions from the old (pre-2010) GRE format to minimize the chance
of participants taking a test they had seen before. Each GRE verbal
section had 25 multiple choice questions and a 35 minute time limit.
The test includes vocabulary questions and reading comprehension
questions. Students were randomly assigned one of two GRE verbal
sections during the pre-test and took the other GRE section during
the post-test to avoid re-testing effects. We checked for difficulty
differences between the two test versions by comparing the means
and medians of both versions’ pre- and post-test scores. We did not
find any significant difference in difficulty between the two ver-
sions. We note that the GRE is a general measure of reading ability
rather than a measure of CS-focused technical reading. While there
is a CS version of the GRE, it primarily measures programming
ability rather than technical reading. To the best of our knowledge,
there does not yet exist a validated measure of CS-focused reading.

ProgrammingAssessment:To assess programming ability, we
used the Second CS1 Assessment (SCS1) developed by Parker et
al. [46]. Written in pseudocode, the SCS1 is a validated language-
agnostic measure of CS1 programming ability. It is also the same

programming assessment used by Bockmon et al. for evaluating
their spatial training intervention [7]. An updated version of the
FCS1 [66], the SCS1 consists of 27 multiple choice questions evenly
divided into three question types: definition questions which ask
students to recall the function of a programming construct, trace-
based questions which require students to mentally walk through
code before choosing the answer, and code-completion questions
which ask students to choose a code snippet that causes a given
program to have a specified behavior when inserted into a specified
program location. The SCS1 has a one-hour time limit. Along with
the full-length version, Parker et al. created a shorter 12-question
subset. Due to students’ limited initial programming ability, we
used this shortened version during the pre-test and had participants
complete the full SCS1 during the post-test.

Demographic and Qualitative Instruments: We also col-
lected a variety of demographic and qualitative data. During the
pre-test, students took a demographic survey for gender, race, eth-
nicity, native language, intended major(s), and computing attitudes.
We also included a version of the Financial Affluence Survey III, a
validated measure estimating socioeconomic status [68]. During
the post-test, we had participants self-report anticipated CS1 course
grades and other measures of programming ability. We also asked
students for feedback on the Treatments including which modules
they found the most challenging or helpful and if they thought that
the training helped them in CS1. Finally, we asked for short-answer
reflections on their experiences in the study.

6 TRAINING EFFECTIVENESS VALIDATION
We first analyzed the effectiveness of both Treatments in their
respective domains. Especially due to COVID-19, it is important
to verify the interventions’ effectiveness. We used a multiple re-
gression approach, with pre-test score as a predictor to control
for individual variation in spatial and reading ability, and included
Treatment Group as a predictor as well.3

We observed main effects of pre-test score for all three measures
(PSVT:R, PFT, and GRE) suggesting that pre-test scores significantly
predicted participants’ post-test scores (see Table 2). We did not,
however, find significant differences between Treatment Groups
for the PSVT:R, PFT, nor the GRE Reading Assessment at post-test
(see Table 2); we would expect a main effect of Treatment Group
for each of these regression analyses. While it was surprising that
our interventions did not appear to improve spatial ability nor GRE
reading scores, closer examination of the data makes clear why we
do not see significant improvements. For one, the students in our
study had relatively high spatial ability. For example, in the study
upon which we base our spatial ability training [63], the mean
PSVT:R pre-test score of intervention participants was 52%, while
the average pre-test PSVT:R score of our participants was 65%. A
one-sample t-test comparing our pre-test data on the PSVT:R to a
.522 suggested that our pre-test scores were significantly higher
than those in the original study (𝑡 (54) = 4.99, 𝑝 < .001).

Furthermore, our reading intervention could target different
skills than those assessed by the GRE. We note that the GRE is a
3For all regressions, we report (1) the regression coefficient 𝐵, the direction and
strength of the relationship between the predictor and dependent variable; and (2) the
uncertainty around that estimate 𝑆𝐸 (𝐵) , the outcome of a t-test 𝑡 (𝑥) with 𝑥 degrees
of freedom, and the significance level of this test.
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Table 2: Training Validation: Regression analysis on the ef-
fectiveness of the training interventions.

Post-test Score
Predictor Estimate (B) SE(B) t(54) P-value
PSVT:R II

Intercept 0.29 0.07 4.14 <0.001
Pre-test 0.63 0.09 6.87 <0.001
Training Type 0.01 0.04 0.24 0.810

PFT

Intercept 0.16 0.07 2.24 0.030
Pre-test 0.85 0.09 9.43 <0.001
Training Type −0.01 0.03 −0.33 0.750

GRE

Intercept 0.18 0.04 4.15 <0.001
Pre-test 0.02 < 0.01 6.35 <0.001
Training Type −0.04 0.04 −1.13 0.270

general assessment of reading ability and potentially not the best
measure of skills taught in a CS-focused Reading Treatment. To the
best of our knowledge, there does not yet exist a validated measure
of CS-focused reading ability that does not also test programming
ability. We hope the efficacy of our proposed Reading Treatment
may help facilitate the future development of such a tool.

7 EXPERIMENTAL RESULTS
We now present our analysis of the data collected during the ex-
periment described in Section 4. This experiment compares two
potential CS1 skill-training interventions: Spatial Ability Training
and our CS-focused Technical Reading Training. We center our
investigation around the following five questions:
• RQ1—Efficacy: Did Reading Treatment participants perform bet-
ter than Spatial participants on the final programming test?

• RQ2—Question Type: Were the effects the Treatments more pro-
nounced for some programming question types than others?

• RQ3—Subpopulation: Were participant subpopulations better
supported by either Treatment?

• RQ4—Correlation: Which participant demographic- and skill-
based traits were most predictive of, and/or correlated with, pro-
gramming success regardless of Treatment?

• RQ5—Perception: Howdo participants subjectively describe their
experiences in both Treatments?
In this paper, we use the phrase Final Programming Outcomes to

refer to scores on the final programming assessment.
Notes on Statistical Methods: Most statistics were conducted

with R statistical software, primarily using the lm function for re-
gression analysis. All analysis scripts, including tests for violations
of statistical assumptions and graph generation with ggplot2, are
available in the replication package

For each of the first three research questions, we specified multi-
ple linear regression models. We specified separate multiple linear
regression models for each question containing only the variables
that we report with the results for each research question. For ex-
ample, the model for RQ1 contains pre-test programming scores

(to control for participant variation) and participant Treatment
Group. We did not specify an overarching model between research
questions that includes all of the individual differences explored in
RQ4 for two reasons. First, there is no effect of these variables on
treatment effectiveness (as shown in RQ3, see Section 7.3). Second,
adding them would increase model complexity in RQ1 and RQ2
and possibly introduce a multicollinearity issue [2], as confirmed
by the variance inflation factors we observed for each model.

Beyond multiple linear regression models, we also compute a
correlation matrix for RQ4 and perform chi-square tests for RQ5.
To measure the effect size of our results, we compute Cohen’s
𝑓 2 [14]. Finally, we note that correction for multiple statistical
tests is necessary when multiple dependent variables are used to
search for an effect on at least some variable as a function of an
independent variable. As a result, we employ false discovery rate
correction when calculating the correlation matrix for RQ4. For
RQ1, however, we have only one dependent variable of interest.
Similarly, RQ2 acts as a breakdown of this dependent variable and
thus serves to provide more information about what students learn.
As a result, it is not necessary to control for multiple comparisons
in RQ1 and RQ2. Finally, RQ3 and RQ5 contain no statistically
significant tests even without correction, making further correction
unnecessary.

7.1 RQ1: Treatment Efficacy
To answer our main question of whether the reading training would
improve programming abilities, we compared Final Programming
Outcomes between participants in the Spatial and Reading Treat-
ments. Using a multiple regression model with pre-test program-
ming score to control for individual variation and Treatment Group
as predictors, we found a significant main effect of pre-test score
(𝐵 = .37, 𝑆𝐸 (𝐵) = .14, 𝑡 (54) = 2.68, 𝑝 < .01), suggesting that
participants’ pre-test score predicted their post-test score.

More importantly, we also found a significant main effect of
Treatment Group (𝐵 = −0.09, 𝑆𝐸 (𝐵) = 0.14, 𝑡 (54) = −2.33, 𝑝 = .02):
the students in the Reading Treatment performed significantly
better on the post-test programming test than students in the Spatial
Treatment (see Figure 3). This is our primary result, and it indicates
that technical reading ability may facilitate programming for novice
software engineers more than spatial ability in some cases. We
discuss further implications of this result in Section 8.

Reading Treatment participants perform better than Spatial
Treatment participants on Final Programming Outcomes (𝑝 =

0.02), a small effect (𝑓 2 = 0.10).

7.2 RQ2: Treatment Effects by Question Type
In this section, we analyze if the Reading Treatment’s benefit varies
based on programming question type. As mentioned in Section 5,
the SCS1 has three types of questions: definitional, tracing, and
code-completion [46]. We computed a multiple regression model
for each type of question, with pre-test on the subtype questions
and Treatment Group as predictors in order to determine if the
Reading Treatment significantly improved more on specific ques-
tion subtypes in comparison to the Spatial Treatment. We found
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Figure 3: Percentage Programming Gains by Treatment:
Reading Treatment participants exhibit significantly larger
gains than Spatial Treatment participants.

evidence that the Reading Treatment improved more on the trac-
ing questions than the Spatial Treatment (𝐵 = −1.04, 𝑆𝐸 (𝐵) =

0.45, 𝑡 (54) = −2.31, 𝑝 = .03), a small sized effect (𝑓 2 = 0.10).
However, the Reading Treatment did not improve more on the
definitional (𝐵 = 0.41, 𝑆𝐸 (𝐵) = 0.23, 𝑡 (54) = 1.76, 𝑝 = .33) nor
code-completion (𝐵 = .27, 𝑆𝐸 (𝐵) = .32, 𝑡 (54) = −1.61, 𝑝 = 0.11)
questions (see Figure 4). We consider hypotheses for the effect of
the Reading Treatment on Tracing questions in Section 8.

The Reading Treatment was especially helpful for code-tracing
questions (𝑝 = 0.03, 𝑓 2 = 0.10). There were no significant
performance differences on definitional (𝑝 = 0.33) nor code-
completion (𝑝 = 0.11) questions.

7.3 RQ3: Participant Subpopulation Effects
In this section, we analyze variations in both Treatments’ effective-
ness by participant sub-population. To avoid spurious effects due
to multiple comparisons, we performed a limited number of sub-
population analyses. In particular, we considered incoming spatial
ability, incoming reading ability, native language, and gender. To
examine whether one treatment was more effective than the other
for different subpopulations, we ran a series of multiple regression
analyses. In each analysis we consider post-test programming score
as the dependent variable and include the individual difference of
interest, pre-test programming score, Treatment Group, and the
individual difference × Treatment Group interaction as predictors.

If one treatment were more effective for improving programming
scores than another for a specific sub-population, we would expect
to see a significant interaction. However, we were unable to see
any variations in Treatment effectiveness by subpopulation for
any of the models (see Table 3). This is not surprising given the
sizes of our subpopulations. It is difficult to analyze individual
difference data without a large sample size. Future work might

Table 3: Subpopulation analysis: results of regression tests
for individual differences.

Interaction:
Treatment Group * X Estimate (B) SE(B) t(53) 𝑝-value
Incoming PSVT:R II −0.04 0.20 −0.18 0.86
Incoming PFT −0.27 0.24 −1.12 0.27
Incoming Reading −0.06 0.19 −0.30 0.76
Native Language −0.13 0.08 −0.30 0.94
Gender −0.09 0.09 −0.99 0.33

replicate the current study with a larger sample size to determine
if sub-population variation in treatment effectiveness exists.

We did not find evidence that variation in the effectiveness of
the Treatments existed by participant sub-population when
considering incoming spatial ability, incoming reading ability,
native language, and gender.

7.4 RQ4: Treatment-Agnostic Correlations
We also analyze which skills-based and demographic features across
both Treatments predict Final Programming Outcomes using cor-
relations to capture how assessment scores relate to each other.
Figure 5 contains a Spearman’s rank correlation matrix for pre- and
post-test scores and select demographic features for all 57 study
participants.4 In particular, it contains the spatial ability measures
(PFT and PSVT:R II), reading test (GRE), programming test (SCS1),
gender, and native language. We report only significant correlations
that pass false discovery rate correction (𝑝 < 0.05, 𝑞 < 0.05).

Perhaps unsurprisingly, the pre- and post-tests for both spatial
measures were all positively correlated (0.63 < 𝑟 < 0.78). We note
that cross-assessment (PFT vs. PSVT:R II) correlations trend lower
than pre- post-test correlations on the same assessment. The pre-
and post-test reading scores also correlate (𝑟 = 0.62). We do not
observe any significant correlations between either spatial test with
the reading assessment.

We also observe that all reading and spatial assessments other
than the pre-test PFT correlated significantly with Final Program-
ming Outcomes (see row 8 in Figure 5). The correlations with post-
tests for reading and PSVT:R II were particularly strong, both with
𝑟 ≥ 0.50. This indicates that while reading and spatial ability are
separate skills, they are both important for software engineering.
We also note that the PSVT:R II tended to correlate more strongly
with coding than the PFT. It appears that mental rotation is more
connected to introductory programming than mental folding.

Additionally, we observe a trend that reading may correlate more
with programming than spatial ability; reading was both the most-
correlated pre-test and the most-correlated post-test with Final
Programming Outcomes (𝑟 = 0.47 and 0.56 respectively), and when
considering only code-replacement questions, only reading was
significantly correlated with programming. This trend may indicate
that reading is more predictive of software engineering success than
spatial ability. However, replication with larger statistical power
4We chose Spearman’s rank correlation instead of Pearson’s because Spearman’s
captures both linear and non-linear monotonic relationships.
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Figure 4: Question-type specific programming gains by Treatment: Reading Treatment participants exhibit significantly larger
gains than Spatial Treatment participants on the Tracing questions but not on the Code Completion or Definitional questions.
For each graph, score is out of a maximum of 9.

Figure 5: Correlation Matrix: contains significant Spear-
man’s rank correlations for pre-tests, post-tests, and select
demographic traits for all participants.

is required to confirm our observation. We did not observe any
significant correlations between gender or native language with
spatial ability, reading ability, nor programming scores.

Spatial ability and reading ability, while distinct tasks, are both
correlated with programming ability. We also observe a trend
that reading ability may bemore correlated with programming
ability than spatial ability.

7.5 RQ5: Perception
Finally, we present a brief analysis of participants’ experiences in
each Treatment. After the skills-based post-test, participants filled
out a questionnaire to capture self-reported assessments of training

Figure 6: Participant Experiences: participant response
counts regarding their subjective experiences in both Treat-
ments

efficacy and programming competency (see Section 5). Participants
also wrote short-answer explanations for their self-reported assess-
ments. We focus on two questions: (1) “Did participating in the
Transfer Training Study increase or decrease your desire to major
or minor in computer science?” and (2) “Do you personally feel that
the training sessions helped you with CS1? Why or why not?.”

Perception Question 1 — Major Declaration: In both Treat-
ments, a majority of participants reported that our study did not
change their desire to major or minor in computer science (75.1%
of Reading vs. 81.5% of Spatial). Similar proportions of each Treat-
ment reported that participating actually increased their desire
to continue (18.5% of Spatial vs. 17.9% of Reading). A Chi-square
test compared the proportion of different responses to this ques-
tion between groups, and there were no significant differences
(𝜒2 (2) = 2.01, 𝑝 = .37).
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Perception Question 2 — Perceived Helpfulness: We also
compared the proportion of responses between Treatments for
whether students thought the training helped with CS1. We find
no statistically significant differences between groups (𝜒2 (2) =

4.25, 𝑝 = .12). Although this test did not reach significance, the
Spatial Treatment appeared to be perceived to be more effective
than the Reading Treatment (40.2% vs 17.9%). All but one Spatial
Treatment participant who described the training as useful also
described their programming activities as spatial tasks. As a par-
ticularly demonstrative example, one subject explained that they
“really like to visualize how the computer processes the informa-
tion. This often requires imagining data traveling in space from
one place to another and learning more about spatial thinking, I
thought, really helped me in doing so.” Students who did not find
the Spatial Treatment helpful generally reported that they saw no
clear connection between the topics.

While less common, several Reading Treatment participants also
found the training helpful for CS1. For instance, one participant
thought that the Reading Treatment “helped me to become more
logical” while another participant commented that “it gave me an
insight to computer science that I have been looking for.” For those
students who found the Reading Treatment less helpful, a common
theme was that they wanted more hands-on programming practice
directly related to CS1 (≈ 70%). For instance, one student found
that “it wasn’t really helpful for [CS1] because we didn’t practice
coding concepts.” Other students wanted more in-depth coverage
of topics such as API documentation and less focus on vocabulary.

We find this difference between student perception of training
helpfulness and observed quantitative helpfulness intriguing. We
encourage future studies to investigate this effect further using
a methodology, such as interviews, that enables the collection of
more robust qualitative data.

Although not statistically significant, students perceived the
Spatial Treatment to be more helpful than the Reading Treat-
ment, a discrepancy between student perception and quanti-
tative effect. Treatments had no significant negative effect on
students’ intentions to continue CS.

8 DISCUSSION AND IMPLICATIONS
We now consider the implications of our results and directions for
future research. We first discuss our primary, perhaps surprising,
result that first-year computer science students may benefit more
from our CS-focused technical Reading Treatment than a standard-
ized Spatial Treatment. A diverse, and sometimes contradictory,
array of models have been proposed as cognitive theories for learn-
ing programming. Some focus primarily on math or visuospatial
processes [40], while others build on models explaining compre-
hension of natural language texts [62]. In their survey of proposed
program comprehension models through the lens of CS-education,
Schulte et al. posit that reading strategies may be a distinct and
important element of the knowledge base required to learn program-
ming [57]. Our finding supports this supposition, lending support to
program comprehension models that emphasize reading strategies.

Our work also motivates additional research on the relationship
between technical reading strategies and programming.

We do not claim, however, that spatial ability is unhelpful for
software engineering. In fact, we observe a positive correlation be-
tween spatial ability and programming scores. Rather, we claim that
technical reading may in some cases be a more transferable skill,
especially when a population already has high incoming spatial
ability. We also note that while both spatial ability and reading abil-
ity correlate with programming, they are at most weakly correlated
with each other. Therefore, spatial ability and technical reading
may be distinct skills that are both critical for software engineering.

One potential direction, therefore, involves teasing out which
features of software engineering are more spatial in nature and
which are more aligned with technical reading. For instance, Huang
et al.’s finding that tree-based data structures activate visiospatial
brain areas while array-based data structures do not [32] may in-
dicate that spatial ability becomes more important for software
engineers later in their development; tree-based data structures are
more often taught in CS2, not CS1. Subsequent neuroimaging stud-
ies found that code reading was less associated with spatial ability
than was code writing [37]. Furthermore, there is evidence that
more experienced programmers have stronger spatial ability [47].

In contrast, an alternate hypothesis is that technical reading
may become even more important for experienced software engi-
neers. For novices, the ability to trace through code and describe its
function in natural language is highly predictive of programming
ability [39, 44]. While useful for novices, code tracing also remains
essential for experienced developers; software engineers are fre-
quently required to read and understand other programmers’ code
to both contribute to large multi-programmer projects [24] and
also for code reviews [3]. Interestingly, our Reading Treatment’s
effect was largest for questions that required code tracing, a result
that underscores the connection between code tracing and natu-
ral language facility. Therefore, exploring technical reading-based
training for more expert programmers is one future direction.

In this context, our results may appear less surprising given
that the CS1 testing primarily focused on code comprehension and
tracing (see Section 5) rather than code writing (cf. [37]), and that
others have found links between CS performance and comprehen-
sion (e.g., [39, 41, 44]).

As discussed in Section 6, one reason our Spatial participants did
not see significant spatial gains compared to those in the Reading
Treatment may be that our participants started CS1 with relatively
high spatial ability compared to other spatial ability training studies.
Another future research direction, therefore, involves investigating
these treatments on students with weaker incoming cognitive skills,
both spatial- and reading-related. It is possible that low-spatial stu-
dents will benefit more from the Spatial Treatment than the Reading
Treatment; our participants may already have “enough” spatial abil-
ity for the programming tasks at hand. However, it is also possible
that novice programmers with low spatial ability may use different,
more Reading Treatment amenable, program comprehension strate-
gies than their highly spatial-skilled counterparts. If, as posited by
SpES, spatial ability helps students develop general strategies for
mentally encoding programming problems [40], then it is possi-
ble that low-spatial programmers compensate by using alternate
problem-solving strategies better supported by technical reading.
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Better understanding programming strategies used by software
engineers is critical for providing better programming support. Our
finding that CS-focused technical reading training may improve
programming skill has implications for future CS1 instruction and
for training more experienced software engineers. We hope future
replication will investigate more directly which aspects of the read-
ing intervention are the most helpful, and we also hope to adapt
the transfer training curriculum for experts instead of novices; it
is an open question how technical reading training can be best
adapted to aid more expert programmers. Ultimately, we hope our
results motivate the rigorous investigation of the relationships be-
tween technical reading ability, spatial ability, and programming
for novice and experienced software engineers alike.

9 LIMITATIONS AND THREATS TO VALIDITY
In this section, we address various limitations and threats to the va-
lidity. In particular, we address threats to our experimental control,
generalizability concerns, threats concerning our training valida-
tion step, and limitations imposed by COVID-19. We also discuss
our efforts to mitigate these threats.

One threat to validity is that despite random assignment of par-
ticipants to Treatments, our populations were not homogeneous in
incoming spatial ability. Reading Treatment participants’ average
incoming spatial ability was higher than that of Spatial Treatment
participants (see Section 4). We mitigate this by using linear regres-
sion models that account for pre-existing individual differences.

Furthermore, as noted in Section 6, we did not observe significant
differences between treatment groups for gains on the spatial and
reading assessments. This raises the concern that our interventions
could be ineffective at teaching spatial ability and technical reading.
However, also as indicated in Section 6, the lack of difference in
spatial ability between groups is likely due to a ceiling effect as our
population already had high incoming spatial ability scores. As for
the lack of difference of reading scores between treatments, we note
the limitations in using a generic reading assessment, the GRE, as
a proxy for CS-focused technical reading ability. We note that this
threat does not lesson the core result that our Reading Treatment
benefited students more than the Spatial Treatment. However, we
acknowledge it is possible that our choice of test may affect our
within-domain Reading Treatment assessment.

Our work also faces generalizability limitations. While our over-
all results were statistically significant, our population of 57 stu-
dents is only a small portion of all students taking a single CS1
course at a single American university. As a result, our results may
not generalize to other CS1 curricula. Also, all students in the study
had time to attend multiple two-hour training sessions. It is possible
our results will not generalize to CS1 students who would not elect
to participate in such a study. Furthermore, our participants also
started CS1 with comparatively high spatial ability. Therefore, our
results may not generalize to low-spatial populations.

Additionally, our study was conducted during the COVID-19
pandemic. COVID-19 did not directly impact our praxis until the
fifth week, when we transferred training sessions from in-person to
virtual. We mitigated the effects of transitioning online by requir-
ing all training material be completed while in a video chat with
a proctor, sending participants physical training materials when

possible, and having participants email proctors scans of their work.
Even so, COVID-19 impacted the generalizability and power of our
results. For instance, the online sessions contained fewer active
learning activities, potentially lowering student engagement and
learning [50]. Furthermore, participant dropout may have skewed
our population. That is, students with the means and time to con-
tinue after the start of COVID-19 may be different than the initial
study population. While any such difference is likely to affect both
treatment groups equally, it may affect the generalizability of our
findings to all CS1 students.

Finally, we note that while our results are intriguing, our effect
sizes are small. We encourage future researchers to attempt to
replicate our findings given these small effects and the limitations
of our research

10 CONCLUSION
In this paper, we propose a CS-focused technical reading inter-
vention for novice software engineers. We evaluate our inter-
vention using a controlled 11-week longitudinal study with 57
participants where we compare CS1 programming outcomes be-
tween our Reading Treatment and a standardized Spatial Treat-
ment. We find evidence that Reading Treatment participants
exhibit larger programming gains than Spatial Treatment
participants (𝑝 = 0.02), and that training type has a small size
effect on final programming score (𝑓 2 = 0.10). We also observe
that ourReadingTreatment ismost helpful for programming
problems that require code tracing (𝑝 = 0.03); the difference be-
tween the Spatial and Reading Treatment scores on definitional
and code-completion problems is more modest. Finally, we find
that while both spatial ability and reading ability correlate with
CS1 programming ability, they are not strongly correlated with
each other, indicating that both may be discrete cognitive skills
important for software engineering success.

While not without limitations, our work remains a positive step
toward combining insights from the cognitive study of software
engineering with insights from computer science pedagogy. This
interdisciplinary research has the potential to help create software
tools that better support all programmers regardless of their in-
coming skills and strengths. It also may help improve software
engineering curricula, including improving curricula for retraining
an adults into more software-focused careers. We therefore hope
our work spurs future research on the multifaceted connections
between technical reading, spatial ability, and software engineering.
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