
KShot: Live Kernel Patching with SMM and SGX

Lei Zhou∗†, Fengwei Zhang∗, Jinghui Liao‡, Zhengyu Ning∗, Jidong Xiao§
Kevin Leach¶, Westley Weimer¶ and Guojun Wang‖

∗Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China,
{zhoul2019,zhangfw,ningzy2019}@sustech.edu.cn

†School of Computer Science and Engineering, Central South University, Changsha, China
‡Department of Computer Science, Wayne State University, Detroit, USA, jinghui@wayne.edu

§Department of Computer Science, Boise State University, Boise, USA, jidongxiao@boisestate.edu
¶Department of Computer Science and Engineering, University of Michigan, Ann Arbor, USA, {kjleach,weimerw}@umich.edu
‖School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, China, csgjwang@gzhu.edu.cn

Abstract—Live kernel patching is an increasingly common
trend in operating system distributions, enabling dynamic up-
dates to include new features or to fix vulnerabilities without
having to reboot the system. Patching the kernel at runtime
lowers downtime and reduces the loss of useful state from running
applications. However, existing kernel live patching techniques
(1) rely on specific support from the target operating system,
and (2) admit patch failures resulting from kernel faults. We
present KSHOT, a kernel live patching mechanism based on
x86 SMM and Intel SGX that focuses on patching Linux kernel
security vulnerabilities. Our patching processes are protected by
hardware-assisted Trusted Execution Environments. We demon-
strate that our technique can successfully patch vulnerable kernel
functions at the binary-level without support from the underlying
OS and regardless of whether the kernel patching mechanism is
compromised. We demonstrate the applicability of KSHOT by
successfully patching 30 critical indicative kernel vulnerabilities.

I. INTRODUCTION

The growing complexity and heterogeneity of software has
led to a concomitant increase in the pressure to apply patches
and updates, including to the operating system itself [1].
Frequently, users that choose to patch their kernels may incur
downtime when the patch requires restarting the system. This
unavoidable disruption impacts both enterprise and end users.
For example, in systems that are performing complex scien-
tific computations or financial transactions, users are unlikely
to reboot a system [2], [3]. According to Gartner [4], the
average cost of IT downtime is $5, 600 per minute. Busi-
nesses downtime can reach $300, 000 per hour, on average.
Even for general end users, unplanned downtime interrupts
running applications risks the loss of unsaved data. As a
result, enterprises and users often delay applying patches to
their operating systems, leading to increased risks to their
computing resources [1].

Since patches are important to fixing vulnerabilities and
adding software features, many prior approaches propose live
patching mechanisms that reduce or avoid system reboots
or the loss of application or OS state. Early mechanisms
focused on live updating applications (e.g., POLUS [5]), but

The work was done while Lei Zhou visiting at COMPASS lab.
Fengwei Zhang is the corresponding author.

kernel vulnerabilities also merit patching. Organizations often
use rolling upgrades [3], [6], in which patches are designed
to affect small subsystems that minimize unplanned whole-
system downtime, to update and patch whole server systems.
However, rolling upgrades do not altogether obviate the need
to restart software or reboot systems; instead, dynamic hot
patching (live patching) approaches [7]–[9] aim to apply
patches to running software without having to restart it.

Several kernel-level live patching tools have been designed
previously, including kpatch [10], kGraft [11], Ksplice [12],
and the Canonical Livepatch Service [13]. For example, kpatch
leverages OS-provided infrastructures such as ftrace to
trace a target function, clone and fork to hook the entry
instruction in that target function, and then trampolines to
a patched version of that target function. Moreover, it can
use procfs and ptrace system calls to checkpoint and
restore the state of running applications. In addition, all those
approaches need to modify the existing kernel code and trust
the operating system. In a similar vein, KUP [8] replaces the
whole kernel at runtime while retaining state from running
applications. However, KUP incurs significant runtime and
resource overhead (e.g., more than 30GB of memory space)
to support application checkpointing [14], even for very small
kernel patches.

Existing patching techniques must trust the OS kernel or
cooperative patching applications to deploy patches. However,
patching implementations can suffer from numerous bugs [15],
which may cause patching failures or interruptions. Moreover,
a patch may become compromised if the OS or patching
mechanism becomes compromised. For example, an internal
OS update can be hijacked [16]–[18] to download and install
malicious patches. Such attacks download additional malicious
applications while retaining kernel functionality. Further, even
after live patching applies kernel patches, kernel attacks may
be able to revert the software to a vulnerable version [19].
Such situations are more likely to happen in remote or cloud
computing environments [20], [21], where users have less
control over a remote computer’s patching operations.

Thus, there is a need to improve the dependability of live
patching techniques.

1

To summarize, live kernel patching faces three challenges:
1) Downtime. Traditional kernel patching methods require

downtime, either from unplanned reboots or from stop-
ping applications to checkpoint states.

2) Overhead. Live kernel patching techniques often incur
non-trivial CPU and memory overhead to apply patches
and restore previously-checkpointed state.

3) Trust. Live patching software depends on the correctness
of the underlying OS, which may suffer from bugs [22] or
security vulnerabilities. If the OS-level patching mecha-
nism becomes compromised, then patches applied by that
mechanism cannot be trusted.

In this paper, we present KSHOT, a live kernel patching
technique that uses Intel Software Guard eXtensions (SGX)
and System Management Mode (SMM) to effectively, ef-
ficiently, and reliably patch running, untrusted kernels. We
summarize our contributions as follows:

• We develop a reliable architecture for live kernel patch-
ing. We leverage Trusted Execution Environments (TEEs)
implemented with SGX and SMM to prepare and deploy
kernel patches that do not require trusting the kernel
patching mechanism.

• We use SMM (i.e., hardware support) to naturally store
the runtime state of the target host, which reduces
external storage overhead and improves live patching
performance. Employing this hardware-assisted mecha-
nism supports faster restoration without requiring external
checkpoint and restore solutions (e.g., Criu [14]). More-
over, we adopt an SMM-based kernel protection approach
for secure live patching.

• We use SGX as a trusted environment for patch prepa-
ration to provide adequate runtime patch performance.
Furthermore, patching in an SGX enclave precludes ad-
versarial tampering, improving patching reliability.

• We evaluate the effectiveness and efficiency of KSHOT
by providing an in-depth analysis on a suite of indicative
kernel vulnerabilities. We demonstrate that our approach
incurs little overhead while providing trustworthy live
kernel patches that mitigate known kernel exploits.

II. BACKGROUND

In this section, we first introduce existing live patching
techniques. We then provide an overview of x86 System
Management Mode and Intel Secure Guard eXtensions, which
we use as a trusted base to implement our approach.

A. Kernel Live Patching

Live patching (also known as hot patching) is a method
for dynamically updating software, effectively reducing the
downtime and inconvenience often associated with software
upgrades [7], [10], [23]–[26]. We focus on the particular
domain of Kernel Live Patching (KLP), which updates the
operating system to address vulnerabilities or bugs without
having to restart. Figure 1 illustrates common KLP methods,
which can update kernel software at three levels of abstraction:
function replacement, instruction hooking and jumping, and

Kernel

old kernel
function

new kernel
function

re
pl
ac
e

Kernel

vulnerable
function

buggy
instructions

patch
instructions

h
oo
k
&

ju
m
p

Kernel

old kernel

new kernel

sw
ap

addressing

Fig. 1: Overview of live patching approaches—function-,
instruction-, and kernel-level. In function-level, entire kernel
functions are replaced with new ones by copying bytes into
memory. In instruction-level, single buggy instructions are
replaced with trampolines to new instructions. In kernel-
level, the entire kernel image is replaced with a new binary
image by switching page table entries so that kernel addresses
correspond to a new location in physical memory that contain
the revised image.

kernel switching. In general, these methods can replace single
instructions, vulnerable functions, or even the whole kernel
with a patched one to repair bugs or eliminate vulnerabilities.
Solutions in this area include industry-deployed mechanisms
like Ksplice [12] and kpatch [10] as well as academia-
proposed solutions like KUP [8] and KARMA [9].

However, current KLP techniques extend trust to the kernel
itself to correctly deploy patches. If the kernel becomes
compromised, then any subsequent patches deployed by that
kernel are not trustworthy, potentially leading to additional ma-
licious activities [1]. In our work, we implement a trustworthy
KLP mechanism by leveraging TEEs that enable live kernel
patching even when the underlying kernel patching mechanism
is compromised.

B. System Management Mode

System Management Mode (SMM) is a highly-privileged
CPU execution mode present in all current x86 machines since
the 80386. It is used to handle system-wide functionality such
as power management, system hardware control, or OEM-
specific code. SMM is used by the system firmware but not
by applications or normal system software. The code and data
used in SMM are stored in a hardware-protected memory
region named System Management RAM (SMRAM), which
is inaccessible from the normal OS (i.e., can only be accessed
by SMM). SMM code is executed by the CPU upon receiving
a System Management Interrupt (SMI), causing the CPU to
switch modes from (typically) Protected Mode to SMM. The
hardware automatically saves the CPU state in a dedicated
region in SMRAM. Upon completing the execution of SMM
code by the RSM instruction, the CPU’s state is restored,
resuming execution in Protected Mode. Moreover, SMM is
able to access physical memory with a higher privilege,
allowing it to read or modify kernel code and data structures
in kernel memory segments.

C. Software Guard eXtensions

Software Guard eXtensions (SGX) [27] is a TEE technology
proposed by Intel which allows a trusted application to run in

2

userspace, even if the OS kernel is compromised. SGX protects
selected code and data from disclosure or modification by
the OS. Developers can partition applications into processor-
hardened enclaves, or protected areas of execution in memory,
which increase security without having to extend trust beyond
those enclaves. Enclaves are trusted execution environments
provided by SGX. The enclave code and data reside in a region
of protected physical memory called the Enclave Page Cache
(EPC). The EPC is guarded by CPU access controls: non-
enclave code cannot access enclave memory.

III. THREAT MODEL AND ASSUMPTIONS

We propose an approach to provide reliable live patches to
kernels with untrusted patching mechanisms.

We assume that kernel-based patching mechanisms can
become compromised by internal weaknesses [15], [22] or
external attacks [18]. For example, the vulnerability CVE-
2016-5195, which exploits a race condition for privilege
escalation within the kernel, can be used by attackers to install
rootkits. Attackers can design such rootkits to interfere with
the patching process and prevent memory-level bug repairs
(e.g., by undoing changes to memory introduced by a live-
patching system). Thus, we instead assume that the target
OS supports SGX [28], [29] hardware. We further assume
that the system is trusted during the boot process, and that
System Management RAM (Section II-B) is locked by the
system firmware so that an attacker cannot modify it (i.e.,
that the hardware is trusted to enforce access control). While
SGX and SMM are potentially vulnerable to side-channel at-
tacks like Spectre [30], Meltdown [31], Foreshadow-NG [32],
SMBR [33], and SMM Reload [34], such vulnerabilities can
be addressed by hardware vendors, and are not the subject of
this paper. In brief, we trust the hardware and firmware, but
not the software or operating system’s patching mechanism.
In addition, we assume that the source code of the patch is
trusted.

Our proposed approach focuses on live patching vulner-
abilities in existing kernel code, but we note that this ca-
pability is independent of the new kernel’s correct handling
of previously-tainted data. The detection and handling of
tainted data left behind in memory or on the disk by an
OS-compromising attacker is an orthogonal issue that may
be handled by other techniques, such as cross-host taint
tracking [35], remote witness servers that validate update
effects [36], or SGX-based solutions to the state continuity
problem [37], among others. Alternatively, the OS patch or
update system might employ a mechanism such as type
wrapping or transformation [38] to clean or migrate critical
data. KSHOT is agnostic to the underlying patch being applied
(see Section V-A) and thus supports such approaches. We
also note that denial of service (DOS) attacks could prevent
live patching systems from executing. However, this is not
specific to our work (and, indeed, KSHOT can detect when
DOS attacks occur). If DOS attacks occur, we assume that
a system operator in the loop would elect to take a victim
system offline for subsequent manual patching.

Reserved Memory
for Live Patching

SMRAM

SMM
Handler

Application

SGX
Enclave

Kernel

System DRAM

Patch
Server

1© Patch transfer

2© Patch
pre-process

3© Switch

5© Resume

4© Live
patching

Fig. 2: High-level architecture of KSHOT. Our approach uses
three secure entities: the Remote Patch Server, the SGX
enclave in a helper application, and the SMM-based kernel
patching environment. The annotations 1–5 trace the life cycle
of trusted live patching. In (1), we transfer the patch; in (2),
we pre-process the binary patch; in (3), we switch to SMM;
in (4), we apply the patch at the binary level; and in (5), we
resume the updated OS.

IV. SYSTEM ARCHITECTURE

KSHOT aims to provide a reliable and low-overhead live
patching framework for untrusted kernels. KSHOT achieves
these goals by using a novel combination of an SGX enclave
within a helper application that securely downloads patched
source code which is built and written to kernel memory by a
custom SMM Handler. By construction, our approach benefits
from very low storage overhead associated with application
checkpointing, rapid deployment of patches with low latency,
and the trustworthy application of patches even when the
kernel’s patching mechanism has been compromised.

First, we assume that an operator wants to update a vulnera-
ble, buggy, or compromised kernel on a system (which we call
the Target Machine). Next, we assume that developers have
created an updated, fixed, or otherwise patched version of the
kernel that the operator wants to apply to the Target Machine.
Briefly, our approach is to leverage an SGX enclave in a helper
application to download an updated binary kernel patch, then
use the SMM Handler to pause the Target Machine’s execution
and apply the patch. This novel combination of system features
allows us to deploy patches with low runtime overhead, low
latency, and without having to trust the underlying OS to
deploy the patch.

Figure 2 summarizes our approach. First, the Target OS
information which is required for compiling compatible binary
patches is gathered and sent to the remote Patch Server.
Second, an SGX-based application fetches the binary patch
from the remote Patch Server and collects required patching
information (e.g., patch location addresses). The information
is loaded into the reserved memory region to be processed
by the SMM Handler code. Third, we remotely trigger [39] a
patching command, and forced switch current host to SMM
to execute the SMM Handler, which modifies the Target Ma-
chine’s memory. Through a combination of hooking, adding
redirection instructions in target functions, and locating the
binary patch in a reserved memory location (see Section V),

3

the patch is applied so that the updated code will be executed
on the next invocation once the SMM Handler completes.

A. KSHOT Components

There are three main components in our KSHOT architec-
ture: the remote Patch Server, system-specific patch prepro-
cessing in the SGX enclave, and SMM-based kernel patching.

Remote patch server: The remote Patch Server is an in-
dependent, trusted system that constructs and supplies trusted
binary patches. That is, we assume that developers have
already provided a fixed or updated binary kernel image
that we seek to apply to the Target Machine. The Patch
Server communicates with the target machine to obtain OS
information, which is used to build a compatible binary kernel
image, allowing for the creation of consistent binary patches.

SGX-based patch preparation: This component includes
kernel information collection and binary patch preprocessing.
These processes take place in an SGX enclave. The data
transmitted between SGX and the Patch Server, as well as
between SGX and SMM, are encrypted to protect patch code
from malicious changes. Leveraging SGX for patch prepro-
cessing provides several benefits: First, it reduces the SMM
workload and thus the time during which the OS is paused
to execute the SMM Handler. Second, it reduces the amount
of software that must be developed in SMM (e.g., bespoke
network drivers must be implemented to transfer data if all
processing is handled in SMM). Finally, because of the large
semantic gap between SMM and the host environment [40], it
is more natural to gather kernel information from the software
layer within an SGX-enabled helper application.

SMM-based kernel patching: This component includes
patch decryption, patch function integrity checking, and binary
patching. KSHOT promises consistency of kernel execution
since the hardware automatically saves and restores architec-
tural state (e.g., registers) while switching to SMM. This saves
substantial time and resource overhead compared to software-
based system state saving and restoration (i.e., checkpointing)
in previous live patching approaches. In addition, if a kernel
error occurs after patching [22], this component can undo the
patch and rollback the system. While the patch operations are
processed in SMM, the target OS is halted (which precludes
simultaneous state changes). Because this activity is carried
out with SMM support, even kernel-level attacks cannot com-
promise patching operations. In addition to a patching module,
KSHOT can leverage a kernel introspection module for kernel
protection.

B. Qualitative Analysis of KSHOT

We design a system that enables reliable and efficient patch-
ing. Current live patching systems, like kpatch and Ksplice,
depend on the correct execution of kernel functions, and thus
implicitly trust the kernel and patching mechanism. As a result,
a compromised, buggy, or vulnerable kernel may lead to failed
deployments. To address this issue, we leverage SMM to
process patches, which has two advantages. First, SMM is
an isolated execution environment which cannot be accessed

by host applications, including kernel rootkits or malware:
the SMM Handler cannot be disrupted by such activities.
Second, switching to SMM pauses the host system and restores
the architectural state once the SMM Handler completes. We
thus avoid implementing expensive checkpointing mechanisms
(as in kpatch or KUP), considerably reducing storage over-
head. This represents a tradeoff between two conflicting non-
functional quality properties (space and time); we evaluate this
tradeoff empirically in Section VI.

Since SMM effectively pauses the OS’s execution, we must
carefully choose which aspects of our system execute in
the SMM Handler. We propose to implement only required
functionalities in SMM (i.e., memory read/write capabilities)
to quickly deploy patches once they are made available to
the SMM Handler. Separately, we use an SGX enclave in
userspace to securely download the patch and marshal the
patch data into the SMM Handler. This SGX enclave allows
the patch to be downloaded securely using the system’s
existing networking stack. Together, the SGX enclave and
SMM Handler provide a low overhead, high efficiency, secure
mechanism for applying kernel patches at runtime.

V. KSHOT DESIGN AND IMPLEMENTATION

The goal for KSHOT is to live patch an OS kernel with
(1) minimal downtime, (2) minimal overhead, (3) support
for compromised kernels, and (4) support for consistency
without being kernel-specific. We implemented a prototype of
KSHOT based on Intel SGX and x86 SMM. The SGX-based
TEE supports receiving and preprocessing patches, providing
security without the full overhead of SMM. Encrypted patches
are processed in SMM and placed in an executable memory
space. Via SMM, the system stores the state of runtime
processes, restoring that state after applying the patch when
SMM completes. This allows for the deployment of a trusted
binary patch via a possibly-compromised target system.

A. Binary Patch Preparation

We leverage a trusted remote server to prepare binary kernel
patches. First, basic information about the OS, including the
kernel version, configuration, and compilation flags sufficient
to rebuild the binary image, are all transferred to the remote
server. The remote server then builds pre-patch and post-patch
versions of the kernel binary using that same compilation
information. A binary diff is sent back to the SGX enclave
on the Target Machine.

In KSHOT, kernel vulnerabilities are patched via function-
level changes. We thus patch the code for the affected func-
tions, rather than replacing either the entire kernel image or
just a few vulnerable instructions (see Section II). Replacing
an entire compromised kernel with a patched one (as in KUP)
is a powerful solution, but it incurs a significant storage
overhead. By contrast, fixing individual vulnerable instructions
is more flexible and has been demonstrated in previous work
(e.g., KARMA [9] and kGraft [11]). However, instruction-
level approaches also have significant drawbacks. First, current
instruction-level patching relies on the OS kernel to monitor

4

the state of runtime functions and to decide if the instructions
can be patched without introducing inconsistencies. Second,
challenges such as identifying instructions in target func-
tions [41] in the face of compiler optimizations are difficult,
frequently leading to patching failures [42].

Identifying Target Functions: Given the pre- and post-
patch binary kernel image, we extract all corresponding
patched functions. While this process is complicated by com-
piler optimizations [42], we do not claim any novelty in our
identification of the functions that must be updated, instead
making use of a combination of existing algorithms and tech-
niques. Our prototype builds a source-level call graph [43],
[44] of the kernel by using the codeviz tool [45]. We also
make use of IDA Pro [46] to create a binary-level call graph of
the kernel binary image. Differences between the source- and
binary-level call graphs illuminate certain compiler optimiza-
tions [42], including inlining, which is particularly common in
OS kernels. Because functions may be transitively inlined, we
employ a worklist algorithm that iteratively identifies impli-
cated functions until no new implicated functions can added.
KSHOT makes use of existing binary signature matching
methods such as iBinHunt [47] and FIBER [42] to align and
identify relevant sections of the binary kernel image.

For the purposes of discussion and evaluation, we group
implicated functions into three broad categories (of increasing
difficulty to support via kernel live patching). Type 1 functions
do not involve inlining. Type 2 functions do involve inlining.
Type 3 functions modify global or shared variables.

For Type 3 analyses, we consider global or shared variables
changed in the patch. Such a variable might be deleted,
added, or modified. If the variable’s size is not modified,
the patch code is unaffected. However, if storage space for
a variable is inserted or deleted, care must be taken to avoid
inconsistent handling of that data between pre- and post-patch
code. To handle such variable modifications, we change the
corresponding variable and type in kernel memory (i.e., in data
and text segments). In general, significant changes to storage
layouts (e.g., adding or removing a field in a widely-used data
structure) may result in patch application failures; we evaluate
this empirically in Section VI.

Patching Target Functions: After we identify and analyze
all relevant target functions, we must make the memory
containing the (binary) newly-patched instructions accessible
to the running kernel. In general, we cannot directly replace
vulnerable function instruction memory with a patched func-
tion without compromising consistency. To solve this problem,
we use trampolines (cf. [24]): We store the patched functions
in a reserved memory space and link old code to the new
functions by replacing the first instruction in the target function
with a jmp instruction. The configurations of reserved memory,
including memory size, location and page attributes, are all
saved in SMM code in advance via the patch server. A basic
trampoline approach addresses calls to the beginning of a
function but does not address internal jumps and branches to
intermediate labels. This is because the offset for each jump
and branch in the post-patch binary may have changed. Thus,

we must change these offsets to retain required functionality
via the standard approach of calculating label differences.

KSHOT is a system for kernel-space patches that need
not trust the operating system: our focus is on deploying a
compiled binary patch in a compromised system (e.g., via
hardware support) and we are agnostic to the underlying
standard binary patching mechanism.

Supporting Kernel Tracing: Recent versions of the Linux
kernel include a special form of tracing support [48] that
is relevant to kernel live patching. When the trace attribute
is enabled, more than half of functions (23, 000 of 32, 000
in Linux 3.14) are compiled with a special 5-byte trace
instruction sequence which can be dynamically changed at
runtime by the kernel itself (not by our live patching). KSHOT
must be aware of such tracing instructions to avoid conflicts.
Naively patching an entire function containing such a tracing
sequence will result in incorrect execution or other memory
errors at runtime. Since the tracing instructions are located at
a fixed offset from the entry of the function, our solution is to
identify such 5-byte trace instruction signatures and patch the
instructions after them, leaving the tracing itself untouched.

B. SGX-based Patch Preparation

KSHOT uses Intel SGX hardware support to safeguard
trusted live patch preprocessing. The preparation of executable
binary patches proceeds in a trusted environment before the
processed patch is made available to the SMM-based live
patching module. In this subsection, we describe our SGX
enclave behavior. We assume that collecting information about
the current OS kernel can be done safely at boot time, and that
such information can be passed to the remote patch server that
produces the binary patch. In addition, we encrypt communi-
cation when obtaining the binary patch from the remote server.
This is also particularly relevant when passing data between
the SMM handler and SGX enclave. Both communications
are handled by untrusted applications or network drivers—we
encrypt data while in transit.

Due to the isolation properties of Intel SGX enclaves and
SMRAM, there is no direct channel for data transmission
between them. To exchange data between these two entities,
we use shared memory for encrypted data transmission. In
general, unless care is taken, there may not be a spare kernel
memory region available. In addition, if we live patch an
existing kernel function, it may change the function size and
cause a kernel consistency issue. We address these issues by
reserving a physical memory space for KSHOT at boot time.

Memory Protection and Isolation: We first configure the
boot loader (e.g., grub) to reserve a suitable kernel memory
allocation space (18MB for our prototype implementation).
We also add page attribute operation code to the paging init
function to provide the appropriate access limitations for that
memory. The reserved memory includes three logical parts:
mem RW, mem W, and mem X. The small mem RW is a
read/write area used for key exchange. Our prototype uses
the Diffie-Hellman key exchange algorithm [49]. The larger
mem W region is write-only and is used for storing the

5

0 1 2 3 4 5 6 7

sequence operation patch version patch type

The hash value of the function name

base memory address of vulnerable function base memory address of patch function

hash value

· · ·
length of data length of text package size

Patch
Attributes

no. physical address in target memory value/type

· · ·

}
Global
Data

payload

· · ·

}
Patch
Text

Fig. 3: The structure of patch package transmitted from SGX
enclave to SMM.

encrypted patch text. The untrusted application writes data
from the SGX enclave into mem W. However, the untrusted
application cannot decrypt this output data. Finally, the much
larger mem X region is executable-only and is used to store de-
crypted patched instructions as the kernel text. Read and write
access to those instructions is prohibited (as is standard with
kernel function memory) to maintain integrity. Moreover, we
can use existing SMM-based runtime checking systems [39],
[50] to further ensure the integrity of this region.

These access control mechanisms only limit the OS kernel.
By contrast, the hardware-supported SMM handler can read
and write any reserved memory. The SGX enclave receives the
post-compilation binary patch. KSHOT formats the instruction
text, adds external message fields to ensure that the SMM
handler can process the text correctly, and places the text in
right memory position and alignment.

Patch Preprocessing: The SGX enclave receives a patch
set from the remote patch server P = {p1, . . . , pn}, with
edits to n functions. An individual patch pi has the form
{sequence, opt, type, . . . , payload}. The details are shown in
Figure 3. The patch preparation workflow follows a standard
sequence of steps. First, we verify the integrity of the received
patch to guard against network transmission errors. Next, the
modified binary patch will be written out as an executable
memory block. We package this memory block with external
header information (Figure 3). We encrypt this data in the
SGX enclave. The outside untrusted application then passes
the encrypted data to the mem W segment. After that, an
SMI is triggered to transfer control to the SMM-based live
patching component.

C. SMM-based Live Patching

The CPU changes to System Management Mode when it
receives a triggering instruction. The SMM hardware ensures
that the latest runtime state and register values are saved to
the protected SMRAM region of memory. Before the patching,
a Diffie-Hellman (DH) key generation module is executed in
SMM to create the private key, which is used to encrypt/de-
crypt the patch related data in SMM. This cryptographic key
is dynamically changed before each kernel patch to guard
against replay attacks between data transmissions. While a
Man-in-The-Middle (MITM) attack could still intercept the
communication between the SGX enclave and SMM, KSHOT
can verify the enclave’s identity via the trusted patch server
and thus mitigate the MITM attack. We implement the live

patching process in the SMM handler, including integrity
checking and the patching module itself. The following is the
workflow of patching operations performed in SMM.

First, the data fetching function in SMM obtains the binary
patch packages from the mem W segment. We compare a
cryptographic hash of the payload to the hash stored in the
package header to ensure patch integrity.

Second, we check if any global variable needs to be changed
in the kernel data or bss segment. To ensure data consistency,
we locate the addresses of global data in either segment using
the kernel symbol table and change the value/type of each.

Third, we check the operation field in the package. If the
value is patch, then we add a jump instruction as the redi-
rection at the entry of that vulnerable function. We define the
location address of the patch function paddr at mem X. The
location address of the first patching function p1.paddr is the
base address of mem X. Then, the location address of the ith
patching function is pi.paddr = p(i−1).paddr + p(i−1).size,
where size denotes the size of a binary patch. The binary
patch pi is then placed between the memory of pi.paddr and
pi.paddr + pi.size. The trampoline instruction at pi.taddr,
where taddr is the physical memory base address of the
vulnerable function, is replaced with a jmp instruction with
the offset value of pi.paddr − pi.taddr + 5, which ensures
that process will be redirected to the patch function once the
vulnerable function is called (and respects the 5-byte kernel
tracing setup).

Once the redirection instruction is set up, the system
switches back to Protected Mode and resumes the OS.

Patch Rollback/Update. After patching the kernel, the sys-
tem or its applications may not run correctly for many different
reasons [8]. For example, the patch may introduce a new bug
or cause a new vulnerability. Indeed, a software engineering
study of commercial and open source operating systems by
Yin et al. found that 15–24% of human-written OS patches
were incorrect and resulted in end-user-visible impacts such
as crashes or security problems [22]. Supporting rollback is
thus critical for a realistic deployment. In such situations, we
can send a rollback instruction from remote sever. The SMM
handler rolls back the patch function to the original function.
We keep the patch information in SMM and store the original
instruction in mem W . As a result, if a rollback operation is
triggered, we can fetch out the original instruction and replace
the jump instruction in the vulnerable function. In KSHOT,
the last patching operation can always be rolled back in this
manner.

D. Patching Protection

In this subsection, we discuss several techniques we em-
ploy to address potential malicious interference with our live
patching process.

Malicious Patch Reversion. Some latent attacks in a com-
promised OS might revert the patch with an original (i.e., vul-
nerable) version of the kernel or function. However, KSHOT
can mitigate such attacks by leveraging SMM-based intro-
spection. Specifically, we use SMM-based kernel protection

6

mechanisms [39], [50] to prevent the Target OS from reversion
or modification by rootkits after applying the patching.

We can similarly use the SMM handler to introspect regions
of memory overwritten with trampoline instructions to ensure
that the patched version of code persists after deploying a
patch with our approach. Because SMM has higher privilege
than the kernel, and because it can transparently introspect the
Target OS, it can detect changes to the kernel text and data.

Denial-of-service attacks. DOS attacks may preclude the
patch preparation operation from running, leading to a live
patching failure. DOS attacks are generally difficult to de-
fend [51], [52], however we can detect DOS attacks using
SMM-based introspection techniques. After the Remote Server
sends the Patch source to the SGX Enclave in the Target OS,
the Enclave and the Remote Server can communicate the state
of the Patch Preparation. Once the patch binary is written in to
the Reserved Memory, the Remote Server can verify with the
SMM Handler that the patch binary was written to memory
(i.e., via introspection in the SMM Handler). This approach
cannot prevent DOS attacks but can detect them.

VI. EVALUATION

We evaluate the applicability, performance, and security
of KSHOT when live patching Linux kernels. Our prototype
machine uses an Intel Core i7 CPU (supporting SGX and
SMM) with 16GB memory. We use a combination of Core-
boot [53] with a SeaBIOS [54] payload as the system BIOS.
We experiment with Ubuntu 14.04 and 16.04 using kernel
versions 3.14 and 4.4.

We consider three research questions:

• RQ1. Can KSHOT correctly apply kernel patches?
• RQ2. What is KSHOT’s performance overhead?
• RQ3. How does KSHOT compare to existing approaches?

A. Benchmark Selection

We evaluate KSHOT’s ability to patch critical kernel vul-
nerabilities by using a suite of real-world patches from the
Common Vulnerabilities and Exposures (CVE) database [55].
We analyzed 267 such vulnerabilities for Linux kernels 3.14
and 4.4. Of these 267, we found that 214 of them were
reproducible and applicable for our x86 architecture. The
remaining cases were excluded for one of two reasons: either
the vulnerability applied to a non-x86 platform (e.g., Android
or embedded devices), or the patch involved complex data
structure changes beyond the scope of our patching framework
(discussed further in Section VIII).

We randomly selected 30 of those 214 patches to construct
a benchmark suite similar in scale to existing work [9], [56].
The selected patches are listed in Table I. The “CVE Number”
field identifies the associated kernel defect. The “Affected
Functions” field lists the kernel functions changed by the
patch. The “Patch Size” field lists total size, in lines of code, of
all changed functions in post-patch version (this corresponds
to the size of the patch that KSHOT must deploy).

TABLE I: Benchmark suite of 30 critical kernel patches.

CVE Number Affected Functions Size Type?
CVE-2014-01961 n tty write 86 1

CVE-2014-36871 sctp chunk pending,
ctp assoc lookup asconf ack 16 1,2

CVE-2014-36901
vmx vcpu run,
vmcs host cr4,
vmx set constant host state

247 3

CVE-2014-41571 current thread info 5 2
CVE-2014-50771 sctp assoc update 98 1
CVE-2014-52061 do remount 34 2
CVE-2014-78421 handle emulation failure 16 1

CVE-2014-81331 set tls desc,
regset tls set 81 1,2

CVE-2015-13331 key link end 21 1
CVE-2015-14211 sctp assoc update 96 1
CVE-2015-57071 sg start req 117 1

CVE-2015-78721 key gc unused keys,
request key and link 20 1

CVE-2015-88121 iwch l2t send,
iwch cxgb3 ofld send 26 1

CVE-2015-89631
perf swevent add,
swevent hlist get cpu,
perf event exit cpu context

72 3

CVE-2015-89642 tty set termios ldisc 10 2

CVE-2016-21432 init new context,
pgd alloc, pgd free 53 2

CVE-2016-25432 snd seq ioctl remove events 25 1
CVE-2016-45781,2 snd timer user ccallback 24 1
CVE-2016-45802 x25 negotiate facilities 67 1

CVE-2016-51952 follow page pte,
faulti page 229 1,3

CVE-2016-58292 hiddev ioctl usage 119 1

CVE-2016-79142 assoc array insert-
into terminal node 330 1

CVE-2016-79162 environ read 63 1
CVE-2017-63471,2 ip cmsg recv checksum 15 2
CVE-2017-89251,2 omninet open 9 2
CVE-2017-169942 walk page range 27 1
CVE-2017-170532 init new context 13 2

CVE-2017-178061,2
shash no setkey,
hmac create,
crypto shash alg has setkey

91 1,2

CVE-2017-182701,2
key alloc,
install user keyrings,
join session keyring

273 1,2

CVE-2018-101241.2 kill something info, sys kill 51 1,2
1 affects Linux 3.14. 2 affects Linux 4.4. ? indicates patch type

(Section V-A).

B. RQ1 — Correct Kernel Patching

We evaluated KSHOT on Linux kernels running on live
hardware. We determined that the system was in a stable state
with the default Ubuntu 14.04 or 16.04 background processes
running. We then instructed KSHOT to apply the appropriate
patch and manually verified its correct deployment (e.g., no
kernel panics, no crashed processes, no system log errors or
warnings, etc.). We also conducted experiments with heavier
active workloads during live patching (see Section VI-C3). Our
primary result is that KSHOT correctly applied live patches

7

in all 30 cases considered, demonstrating that our system is
applicable across multiple OS versions and defect types.

To provide additional insight into our successful applica-
bility results, we detail a few patches as case studies. Recall
from Section V-A that we can classify each kernel patch into
one of three categories. Type 1 patches involve no inlining
and thus have their own independent instruction memory (a
default, simple case). Type 2 patches involve inlining. Type
3 patches require changes to kernel data structures or global
variables. We discuss an example patch from each category
that we considered.

Example Type 1 Patch: We consider CVE-2017-17806.
This vulnerability admits a kernel stack buffer overflow when
a local attacker executes a crafted sequence of system calls
that encounter a missing SHA-3 initialization and eventually
a stack-out-of-bounds bug. The official fix, partially shown in
Listing 1, is to add the cryptographic check to the relevant
kernel function (see Line 7). This is our most direct case.

Listing 1 Type 1 example: CVE-2017-17806 patch
1 static int hmac_create(struct crypto_template *tmpl,

struct rtattr **tb)
2 salg = shash_attr_alg(tb[1], 0, 0);
3 if (IS_ERR(salg))
4 return PTR_ERR(salg);
5 + alg = &salg->base;
6 err = -EINVAL;
7 + if (crypto_shash_alg_has_setkey(salg))
8 + goto out_put_alg;
9 +

10 ds = salg->digestsize;
11 ss = salg->statesize;
12 - alg = &salg->base;

Listing 2 Type 2 example: CVE-2017-17053 patch
1 static inline int init_new_context(struct task_struct

*tsk,
2 ...
3 #endif
4 - init_new_context_ldt(tsk, mm);
5 - return 0;
6 + return init_new_context_ldt(tsk, mm);

Example Type 2 Patch: Consider the use-after-free vul-
nerability CVE-2017-17053. In this bug, the Linux kernel does
not correctly handle errors from certain table allocations when
forking a new process, allowing a local attacker to achieve a
use-after-free via a specially-crafted program. In the official
fix for this bug, the return value in function init new context
is changed (see Listing 2, Line 6). Critically for KSHOT,
this patch involves inlining, so more than one function is
implicated and must be updated (as listed in Table I).

Listing 3 Type 3 example: CVE-2014-3690 patch
1 struct vcpu_vmx {
2 int gs_ldt_reload_needed;
3 int fs_reload_needed;
4 u64 msr_host_bndcfgs;
5 + unsigned long vmcs_host_cr4
6 } host_state;

Example Type 3 Patch: We consider CVE-2014-3690
as an example Type 3 patch involving updates to local data

structures. The official patch, partially shown in Listing 3, adds
a new field to local struct vcpu vmx. In addition, function
vmx set constant host state assigns a value to the new field,
and function vmx vcpu run reads the field’s value. Thus, both
functions must be patched. KSHOT successfully applies this
patch, but Type 3 cases remain difficult in general; we return
to this issue in Section VIII.

C. RQ2 — Performance Evaluation

To evaluate the performance of KSHOT, we measured each
stage of the live patching process. We consider overhead from
two sources: SGX-based binary patch preparation and SMM-
based patching. Since the SMM patching process essentially
pauses the target OS but the SGX-based enclave does not, we
evaluate the performance of two parts separately, including
a comparison with existing methods. In our experiments, the
total size of the binary patch generally ranged from 40 bytes
to 4KB.

1) SGX-Based Patch Preparation Performance: The SGX
enclave must (1) fetch the patch from the remote server, (2)
preprocess the patch through integrity checking and branch
instruction replacing, (3) pass the patch with encrypting and
writing to shared memory region for consumption by the SMM
side. We evaluate the time consumption in each step.

Table II shows a breakdown of the time consumed by this
SGX-based patch preparation for various patch sizes, averaged
over 100 trials. Consider the 4KB case as an example. The
time to fetch a binary patch from our remote server is 200µs,
and the time to prepare the patch is 8,034µs. In addition,
51µs is required to store the encrypted binary patch into the
shared memory region. All told, we use 8,285µs to complete
the preprocessing of a 4KB patch.

2) SMM-Based Patching Performance: The SMM handler
pauses the target OS while carrying out key generation, data
reading and decryption, patch verification, and binary patch
activities. In addition, there are overheads associated with
switching to and from SMM and protected mode. We evaluate
these times empirically using the rdtsc instruction to count the
number of CPU cycles elapsed during each operation.

For our experimental platform, the average times for switch-
ing to, and resuming from, SMM are 12.9µs and 21.7µs,
respectively. These values depend on specific hardware con-
figuration, but are typically on the same order of magnitude
in our experience. Once we switch to SMM, we spend 5.2µs
to generate encryption keys. The switching operation and key
generation are fixed-cost operations, regardless of patch size.

TABLE II: Breakdown of SGX operations (µs; n = 100).

Patch Size Fetching Pre-processing Passing Total

40B 54 150 9 213
400B 68 850 29 947
4KB 200 8,034 51 8,285

40KB 2,266 82,611 498 85,375
400KB 16,707 785,616 4,985 807,308
10MB 415,944 19,991,979 124,565 20,532,488

8

TABLE III: Breakdown of SMM operations (µs; n = 100).

Patch
Size

Data
Decryption

Patch
Verification

Patch
Application Total1

40B 0.04 2.93 0.06 42.83
400B 0.31 6.32 0.72 47.15
4KB 1.27 8.52 6.92 56.51

40KB 13.84 33.85 17.22 104.71
400KB 133.30 311.15 396.45 880.70
10MB 2,832.00 5,973.00 2,619.00 11,464.00
1 includes key generation and SMM switching time.

The SMM handler reads the encrypted patch provided by
the SGX enclave, then applies it to the kernel memory. The
time taken to read, decrypt, and apply the patch depends on
the patch size. We tested patch sizes ranging from 40 bytes
to 10MB. Table III shows the time breakdown of patching
operations for various patch sizes. For example, a 4KB patch
takes 1.27µs to read and decrypt, 8.52µs to verify, and 6.92µs
to apply to kernel memory (e.g., to actually write the new patch
to memory). Note that the majority of the patch time comes
from the patch verification process, which involves computing
a SHA-2 hash. We could reduce this time by employing a
simpler hashing algorithm such as SDBM [57].

The overhead grows approximately linearly with the patch
size. Even in the case of a large 40MB patch, the total required
time is under 1 second. On average, the patches from our
CVE dataset are less than 1KB. Note that we did not count
the overhead imposed by communication between the Patch
Server and Target Machine’s untrusted helper application,
which has minimal effect on the SGX enclave. Extrapolating
from Table III, the average patch thus requires roughly 74µs.
We view this as a small and acceptable time interval to pause
the system, especially given the rarity of live patching events.

3) Whole-System Performance Evaluation: We randomly
selected 6 of our benchmarks for a detailed analysis of
whole-system performance.1 In addition to the patched code
itself, each function requires 42 bytes of header data in the
transmitted patch package (following the packaging process
from Figure 3). Figure 4 shows that the time breakdown in
the SGX preprocessing stage, which indicates the majority
of time is spent preprocessing the patch according. Similarly,
Figure 5 shows the time breakdown in SMM for each patch.

1patches for CVE-2014-4608, CVE-2015-7872, CVE-2016-2143, CVE-
2016-5696, CVE-2017-16994, CVE-2017-18270; corresponding patch sizes:
198, 171, 257, 79, 174, 322 bytes.

0 0.25 0.5 0.75 1

·104

CVE-2014-4608

CVE-2015-7872

CVE-2016-2143

CVE-2016-5696

CVE-2017-16994

CVE-2017-18270

Time (µs)

Fetch Preprocess Restore

Fig. 4: SGX-based patch preparation time.

Larger patches require more patching time, while the switching
and key generation times are relatively constant across all
patches. In these whole-system experiments, KSHOT required
very little time to apply each patch. For example, for CVE-
2014-4608, the total time required on the Target Machine was
about 7,941µs for a 156-byte patch. The preparation time in
SGX dominates the time cost, and the system is only paused
for a brief 47.6µs during SMM activities. This including 5.2µs
for key generation and 34.6µs for SMM switching. The patch
completed successfully, without changing application state.

We also used Sysbench [58] to measure overall system
overhead. We live patched the kernel while Sysbench executed
in userspace and measured end-user-visible system overhead.
Over 1, 000 live patches of each of the 6 aforementioned CVE
patches, we incur under 3% overhead from the combined SGX
and SMM patch preparation and deployment times.

D. RQ3 — Patching System Comparison

KSHOT provides a live and reliable mechanism for kernel
patching with the help of Intel SMM and SGX. We compare
KSHOT with existing general-purpose live patching systems
and also with live kernel patching systems.

1) General Patching Comparison: Table IV presents a
comparison of KSHOT to indicative non-kernel and kernel
binary patching approaches used in more general software
engineering contexts. To the best of our knowledge, only
KSHOT does not require trusting or depending on the OS
kernel. The Dyninst [24] and EEL [10] systems can be
applied to patch executable binary files. However, they do not
handle runtime memory. Kernel live patching systems must
traditionally handle application state in some manner — either
through checkpointing and recovery (as with many previous
approaches) or through hardware assistance and pausing (as in
KSHOT). The Libcare [25] system uses system calls and hooks
to replace buggy functions in a userspace process’s memory.
In a typical use, the replaced function is only used by one
process; by contrast, kernel live patching faces more significant
consistency issues. The Kitsune [59] and PROTEOS [26]
systems are dynamic software updating approaches. They take
advantage of developer annotations of safe update points.
Developer-marked software locations are assumed to admit
correct patching. By contrast, KSHOT infers target functions
automatically and uses hardware support to create safe pauses
for updates.

0 5 10 15 20 25 30 35 40 45 50

CVE-2014-4608

CVE-2015-7872

CVE-2016-2143

CVE-2016-5696

CVE-2017-16994

CVE-2017-18270

Time (µs)

Keygen Patch Switch

Fig. 5: SMM-based live patching time.

9

TABLE IV: Comparison with non-kernel binary patching.

Kernel Dependency Untrusted OS Applicability

Dyninst [24] X 7 userspace
EEL [10] X 7 userspace
Libcare [25] X 7 userspace
Kitsune [59] X 7 userspace
PROTEOS [26] X 7 kernel
KSHOT 7 X kernel

2) Kernel Patching Comparison: Existing kernel live patch-
ing systems assume that patches are trusted when they are
stored in the target OS. However, the integrity of patches can
be easily compromised by attacks which have the kernel access
privilege (e.g., syscall hijacking [19]). By contrast, KSHOT
leverages the SGX enclave to preprocess binary patches with-
out having to trust the underlying OS. Additionally, data
blocks transmitted between SGX and SMM through the shared
memory are encrypted to protect the patch’s integrity from
malicious modification during preprocessing.

In addition, existing solutions rely on kernel-specific func-
tions to implement the patching operations (e.g., ptrace,
stop machine, kexec). However, existing vulnerabilities [55],
such as CVE-2015-7837, CVE-2014-4699, or CVE-2012-
4508, can affect those particular kernel functions. For example,
the CVE-2015-7837 vulnerability allows the attacker to load
an unsigned kernel via kexec, which would compromise KUP’s
patching mechanism. In KSHOT, live patching operations
execute in the SMM handler, which cannot be modified even if
the underlying Target OS is compromised. Our use of SMM as
a trusted execution environment for deploying patches prevents
a compromised OS from interfering with KSHOT.

We compare KSHOT with representative kernel live patch-
ing methods (including KUP, KARMA, kpatch) in Table V
in terms of patch granularity, patching time, trusted code
base, and memory consumption. KUP replaces an entire
vulnerable kernel in around 3 seconds. Additionally, KUP
can handle patches with complex data structure changes.
KARMA requires less than 5µs for small patches and uses
very little memory. kpatch takes longer, but it can be deployed
and integrated in the Linux kernel. However, these existing
methods all rely on the OS kernel (and thus their TCB includes
the whole kernel). By contrast, in KSHOT, the TCB extends
only to SMM and the SGX enclave. Moreover, KSHOT needs
no checkpointing of running applications, and uses only 18MB
extra memory space for patch analysis and management.
Moreover, KSHOT requires only about 50µs to deploy most
patches, which is faster than all existing non-instruction-level
methods. Our approach provides an efficient and secure live
patching mechanism.

E. Evaluation Summary

We find that KSHOT is a general, performant, secure ap-
proach to live patching vulnerable Linux kernels. Across an
indicative benchmark of 30 critical kernel security vulnerabil-
ity patches, we correctly applied all of them successfully with
our approach. Based on our combination of SGX and SMM
patch preparation and deployment, KSHOT incurs under 3%

TABLE V: Comparison with kernel patching systems.

Type Downtime Untrusted OS Memory

KUP [8] kernel 3s/kernel 7 >30G
KARMA [9] instruction 5µs/patch1 7 lua engine
kpatch [10] function 45.6ms/patch1 7 16G
KSHOT function 50µs/patch1 X 18M

1 for an averaged sized patch of less than 1KB

total system overhead over 1, 000 live patches. Finally, this
approach requires a substantially smaller TCB compared to
previous techniques.

To put these results in context, we discuss two of our
kernel patches with respect to time from vulnerability dis-
covery to patch to adoption. First, CVE-2014-8133 was first
discovered 10 October 2014, but a patch was not created
until 14 December 2014 in Linux 3.13. Moreover, this patch
did not get merged into Ubuntu 14.04 until 26 Feb 2015.
Second, CVE-2017-17806 was discovered 17 October 2017,
with a corresponding patch built 29 November 2017 for Linux
4.4, and merged into Ubuntu 16.04 on 4 April 2018. These
timelines match industry reports that critical CVEs take an
average of over a month to get patched [60]. However, even
when a patch is created, it may take additional time for
end users to adopt the new patch [61]—many successful
exploits rely on old, previously-patched vulnerabilities [62].
Live patching techniques are intended in part to reduce the
cost associated with applying an update, and techniques like
KSHOT show promise in furthering that cost reduction while
extending kernel live patching capabilities.

VII. RELATED WORK

In this section, we survey related work from the areas
of trusted execution environments, patch analysis, and live
patching methods.

A. Trusted Execution Environment

Trusted execution environments (TEE) are intended to pro-
vide a safe haven for programs to execute sensitive tasks.
Being able to run programs in a trusted execution environ-
ment is crucial to guarantee the program’s confidentiality and
integrity. Hardware-based TEEs include x86 SMM [63], Intel
SGX [64], [65], AMD memory encryption technology [66],
and ARM TrustZone [67]. HyperCheck [39] leverages SMM to
build a trusted execution environment and monitor hypervisor
integrity. VC3 [21] leverages Intel SGX to provide an isolated
region for secure big data computation. Scotch [68] combines
x86 SMM and Intel SGX to monitor cloud resource usage.
KSHOT uses a TEE for reliable kernel live patching.

B. Patch Analysis

Traditional patching mechanisms simply apply the source-
code-based patch to the kernel source, re-compile, and reboot
to install the new kernel. In live patching, we directly replace
binary-level code with a new version at runtime. However,
both approaches must identify the target code and prepare
the patch code by analyzing the source or binary code. Patch
analysis methods [42], [69]–[71] can be classified into two

10

broad types: source-to-source and binary-to-binary. Source-to-
source methods require both the original source code and the
patch code. To identify the functions in source code, methods
such as string [72], token [73], and parse tree [74] matching
can be used. Moreover, the call graph [71] and control
flow graph [75] can be constructed to identify relationships
between functions. By contrast, binary-to-binary methods do
not require source code. Both the patch and the target are
presented in a binary format, and all comparisons are based
only on binary-level features. To accurately identify relevant
function in binary code, tools such as IDA [46] can be used to
extract relevant information. Additionally, techniques such as
BinHunt [76] and iBinHunt [47] use symbolic execution and
theorem proving to formally verify basic block level semantic
equivalence. Fiber [42] employs a precise and accurate patch
code matching mechanism with the source patch code and
binary vulnerable functions. KSHOT analyzes compiled kernel
binary code as well as the source code patch to obtain rich
information (see Section V). Our prototype evaluation uses
codeviz, IDA, iBinHunt and Fiber, but our approach is agnostic
and could employ any similar tool.

C. Live Patching

Existing live patching focuses on open-source operating sys-
tems, mainly Linux. For example, Ksplice [12], kpatch [10],
and kGraft [11] can effectively patch security vulnerabilities
without causing a significant downtime. kpatch and Ksplice
both stop the running OS and ensure that none of the processes
are affected by changes induced by patched functions. Specifi-
cally, kpatch replaces the whole functions with patch ones, and
Ksplice patches individual instructions instead of functions.
kGraft patches vulnerabilities at function level, but does not
need to stop the running processes. It maintains the original
and patched function simultaneously and decides which one
to execute by monitoring the state of processes, potentially
inducing incorrect behavior or consuming additional storage.
These methods cannot address changes to data structures [8].
To address this limitation, KUP [8] replaces the whole kernel
with a patched version, but uses checkpoint-and-restore to
maintain application state consistency. However, it checkpoints
all the user processes, leading to large CPU and memory
overhead. KARMA [9] uses a kernel module to replace
vulnerable instructions that it identifies from a given patch
diff. In addition, several live updating methods have been
integrated into operating systems, like Canonical Livepatch
Service [13] in Ubuntu, and Proteos [26] on MINIX 3, which
can update new components if the patch is small. However,
these methods still rely on the trustworthy operation of the
target OS, so potential kernel-level attacks may tamper with
the live patching operation, leading to system failure. KSHOT
addresses this by leveraging a TEE to reliably patch the target
kernel with a smaller TCB and low total overhead.

VIII. LIMITATIONS AND FUTURE WORK

In this section, we discuss potential limitations of our kernel
live patching approach.

Attacks to Trusted Execution Environments: While we
treat the x86 SMM and Intel SGX as a foundation to imple-
ment KSHOT, they might be compromised through vulnera-
bilities at the hardware or firmware level. For example, the
recent Foreshadow [32] is able to leak the information from
SMM or SGX. Some other attacks like SMM rootkits [33],
[34] or Software Grand Exposure [77], can also compromise
SMM or SGX; we consider these attacks beyond our scope.

Downtime for SMM Handler operations: Although
KSHOT outperforms existing kernel patching systems, it still
introduces some downtime for patching. This is because the
SMM Handler suspends the OS while applying the patch.
Note that KSHOT minimizes this downtime by moving the
preprocessing operations from (blocking) SMM to the (non-
blocking) SGX enclave.

Consistency Issues: Some complex patches may change
the semantics of target functions, which might affect other
non-patched functions. For example, a patch might change the
order in which locks are acquired in multiple functions at the
same time, or some patches might change global data used
by multiple functions. Currently, KSHOT cannot handle those
cases. Our empirical evaluations suggest this is rare, occurring
in around 2% of kernel CVE patches. One way to address
this problem is to construct a consistency model and safely
choose patch tasks [10], [13], identify and patch all relevant
functions, which can be applied even to unstructured programs
(e.g., [78]). We leave this consideration for future work.

IX. CONCLUSIONS

In this paper, we presented KSHOT, a secure and efficient
framework for kernel patching. It leverages x86 SMM and
Intel SGX to patch the kernel without depending on the OS.
Additionally, we use SMM to naturally store the runtime state
of the target host, which reduces external overhead and im-
proves live patching performance. Employing this hardware-
assisted mechanism supports faster restoration without external
checkpoint-and-restore solutions. We evaluate the effectiveness
and efficiency of KSHOT by providing an in-depth anal-
ysis of the technique against a suite of indicative kernel
vulnerabilities. We demonstrate that our approach incurs an
average downtime of 50µs for a 1KB binary kernel patch,
but consumes only 18MB of extra state for patch analysis,
a substantial reduction over previous work. In an empirical
evaluation on 30 randomly-selected indicative, critical
kernel CVEs, KSHOT live-patched each one successfully
with low overhead and a small trusted code base.

Acknowledgments. We would like to thank our shepherd,
Miguel Correia, and the anonymous reviewers for their in-
sightful comments that improved the paper. This work is partly
supported by National Science Foundation Grant No. CCF
1763674, Air Force Grant No. FA8750-19-2-0006, National
Natural Science Foundation of China Grant No. 61632009,
and Guangdong Provincial Natural Science Foundation Grant
No. 2017A030308006. Opinions, findings, conclusions and
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the agencies.

11

REFERENCES

[1] S. Farhang, J. Weidman, M. M. Kamani, J. Grossklags, and P. Liu, “Take
It or Leave It: A Survey Study on Operating System Upgrade Practices,”
in Proceedings of the 34th Annual Computer Security Applications
Conference, 2018.

[2] F. Vitale, J. Mcgrenere, A. Tabard, M. Beaudouin-Lafon, and W. E.
Mackay, “High Costs and Small Benefits: A Field Study of How Users
Experience Operating System Upgrades,” in Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, 2017.

[3] T. Dumitraş and P. Narasimhan, “Why do upgrades fail and what can we
do about it?: toward dependable, online upgrades in enterprise system,”
in Proceedings of the 10th ACM/IFIP/USENIX International Conference
on Middleware, 2009.

[4] Gartner, “Ensure Cost Balances With Risk in High-Availability Data
Centers,” https://www.gartner.com/en/documents/3906266/ensure-cost-
balances-with-risk-in-high-availability-data, 2019.

[5] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew, “Polus: A powerful
live updating system,” in 29th International Conference on Software
Engineering (ICSE’07). IEEE, 2007, pp. 271–281.

[6] M. Nabi, M. Toeroe, and F. Khendek, “Rolling upgrade with dynamic
batch size for iaas cloud,” in Cloud Computing (CLOUD), 2016 IEEE
9th International Conference on. IEEE, 2016.

[7] A. Ramaswamy, S. Bratus, S. W. Smith, and M. E. Locasto, “Katana:
A hot patching framework for elf executables,” in 2010 International
Conference on Availability, Reliability and Security. IEEE, 2010, pp.
507–512.

[8] S. Kashyap, C. Min, B. Lee, T. Kim, and P. Emelyanov, “Instant
OS updates via userspace checkpoint-and-restart.” in USENIX Annual
Technical Conference, 2016.

[9] Y. Chen, Y. Zhang, Z. Wang, L. Xia, C. Bao, and T. Wei, “Adaptive
Android kernel live patching,” in Proceedings of the 26th USENIX
Security Symposium, 2017.

[10] J. Poimboeuf and S. Jennings, “Introducing kpatch: dynamic kernel
patching,” Red Hat Enterprise Linux Blog, vol. 26, 2014.

[11] SUSE, “Live Patching the Linux Kernel Using kGraft,”
https://www.suse.com/documentation/sles-15/book sle admin/data/
cha kgraft.html, 2018.

[12] ORACLE, “Ksplice,” http://www.ksplice.com/, 2018.
[13] Ubuntu, “Canonical Livepatch Service,” https://www.ubuntu.com/

livepatch, 2018.
[14] Checkpoint, “Restore in Userspace,” https://criu.org/Main Page, 2018.
[15] Github, “Kpatch bugs,” https://github.com/dynup/kpatch/issues, 2019.
[16] Windows Defender ATP, “Software supply chain cyberattack,”

https://www.microsoft.com/security/blog/2017/05/04/windows-
defender-atp-thwarts-operation-wilysupply-software-supply-chain-
cyberattack/?source=mmpc, 2017.

[17] GitHub, “APT/APT-GET RCE vulnerability,” https://github.com/
freedomofpress/securedrop/issues/4058, 2019.

[18] Kaspersky, “Operation ShadowHammer,” https://securelist.com/
operation-shadowhammer/89992/, 2019.

[19] GitHub, “Syscall Hijacking on Linux Kernel,” https://github.com/
crudbug/simple-rootkit/, 2014.

[20] I. Khalil, A. Khreishah, and M. Azeem, “Cloud computing security: A
survey,” Computers, vol. 3, no. 1, pp. 1–35, 2014.

[21] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “VC3: Trustworthy data analytics in the cloud
using SGX,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 38–54.

[22] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. N.
Bairavasundaram, “How do fixes become bugs?” in Foundations
of Software Engineering, 2011, pp. 26–36. [Online]. Available:
https://doi.org/10.1145/2025113.2025121

[23] C. M. Hayden, K. Saur, E. K. Smith, M. Hicks, and J. S. Foster,
“Kitsune: Efficient, general-purpose dynamic software updating for C,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 36, no. 4, p. 13, 2014.

[24] W. R. Williams, X. Meng, B. Welton, and B. P. Miller, “Dyninst and
mrnet: Foundational infrastructure for parallel tools,” in Tools for High
Performance Computing 2015. Springer, 2016, pp. 1–16.

[25] Github, “Libcare – patch userspace code on live processes,” https:
//github.com/cloudlinux/libcare, 2019.

[26] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Safe and automatic live
update for operating systems,” in ACM SIGARCH Computer Architecture
News, vol. 41, no. 1. ACM, 2013, pp. 279–292.

[27] V. Costan and S. Devadas, “Intel SGX Explained.” IACR Cryptology
ePrint Archive, 2016.

[28] J. Seo, B. Lee, S. M. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim,
“Sgx-shield: Enabling address space layout randomization for sgx pro-
grams.” in NDSS, 2017.

[29] H. Liang, M. Li, Y. Chen, L. Jiang, Z. Xie, and T. Yang, “Establishing
trusted i/o paths for sgx client systems with aurora,” IEEE Transactions
on Information Forensics and Security, 2019.

[30] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
Proceedings of the 12th USENIX Workshop on Offensive Technologies
(WOOT 18), 2018.

[31] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: Reading kernel
memory from user space,” in Proceedings of the 27th USENIX Security
Symposium, 2018.

[32] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom, “Foreshadow-
NG: Breaking the virtual memory abstraction with transient out-of-order
execution,” Technical report, Tech. Rep., 2018.

[33] S. Embleton, S. Sparks, and C. C. Zou, “SMM rootkit: a new breed
of OS independent malware,” Security and Communication Networks,
2013.

[34] L. Duflot, O. Levillain, B. Morin, and O. Grumelard, “Getting into the
SMRAM: SMM Reloaded,” CanSecWest, Vancouver, Canada, 2009.

[35] A. Zavou, G. Portokalidis, and A. D. Keromytis, “Taint-exchange:
A generic system for cross-process and cross-host taint tracking,” in
Advances in Information and Computer Security - 6th International
Workshop, IWSEC 2011, Tokyo, Japan, November 8-10, 2011.
Proceedings, 2011, pp. 113–128. [Online]. Available: https://doi.org/
10.1007/978-3-642-25141-2\ 8

[36] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser,
I. Khoffi, J. Cappos, and B. Ford, “CHAINIAC: proactive software-
update transparency via collectively signed skipchains and verified
builds,” in 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017., 2017, pp.
1271–1287. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/nikitin

[37] R. Strackx and F. Piessens, “Ariadne: A minimal approach to
state continuity,” in 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016., 2016,
pp. 875–892. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/strackx

[38] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol, “Practical dynamic
software updating for c,” in Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’06. New York, NY, USA: ACM, 2006, pp. 72–83. [Online].
Available: http://doi.acm.org/10.1145/1133981.1133991

[39] F. Zhang, J. Wang, K. Sun, and A. Stavrou, “Hypercheck: A hardware-
assistedintegrity monitor,” 2014.

[40] F. Zhang, K. Leach, K. Sun, and A. Stavrou, “SPECTRE: A De-
pendable Introspection Framework via System Management Mode,” in
Proceedings of the 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’13), 2013.

[41] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “BYTEWEIGHT:
Learning to Recognize Functions in Binary Code,” in Proceedings of the
23th USENIX Security Symposium, 2014.

[42] H. Zhang and Z. Qian, “Precise and accurate patch presence test for
binaries,” in Proceedings of the 27th USENIX Security Symposium, 2017.

[43] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph
execution profiler,” in ACM Sigplan Notices, 1982.

[44] S. Poznyakoff, “GNU cflow,” http://www.gnu.org/software/cflow/, 2005.
[45] K. Mgebrova, “CodeViz: a callgraph visualizer,” http://www.csn.ul.ie/

-mel/projects/codeviz, 2012.
[46] H. Rays, “IDA Tools,” https://www.hex-rays.com, 2018.
[47] J. Ming, M. Pan, and D. Gao, “iBinHunt: Binary hunting with inter-

procedural control flow,” in International Conference on Information
Security and Cryptology. Springer, 2012, pp. 92–109.

[48] S. Rostedt, “Ftrace Linux Kernel Tracing,” in Linux Conference Japan,
2010.

[49] E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater, “Prov-
ably authenticated group Diffie-Hellman key exchange,” in Proceedings
of the 8th ACM conference on Computer and Communications Security,
2001.

12

[50] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky,
“HyperSentry: Enabling Stealthy In-Context Measurement of Hypervisor
Integrity,” in Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS’10), 2010.

[51] A. Ghosn, J. R. Larus, and E. Bugnion, “Secured routines: Language-
based construction of trusted execution environments,” in 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19), 2019,
pp. 571–586.

[52] S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng, “Sectee: A
software-based approach to secure enclave architecture using tee,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2019, pp. 1723–1740.

[53] Coreboot, “Open-Source BIOS,” http://www.coreboot.org/, 2018.
[54] SeaBIOS, http://www.coreboot.org/SeaBIOS, 2018.
[55] MITRE CVE Team, “CVE Details: The ultimate security vulnerability

datasource,” https://www.cvedetails.com/, 2019.
[56] Z. Huang, D. Lie, G. Tan, and T. Jaeger, “Using safety properties

to generate vulnerability patches,” in Proceedings of the 40th IEEE
Symposium on Security and Privacy, 2019.

[57] A. Partow, “General Purpose Hash Function Algorithms,” http://
www.partow.net/programming/hashfunctions, 2018.

[58] GitHub, “Sysbench,” https://github.com/akopytov/sysbench, 2016.
[59] C. M. Hayden, S. Magill, M. Hicks, N. Foster, and J. S. Foster,

“Specifying and verifying the correctness of dynamic software updates,”
in International Conference on Verified Software: Tools, Theories, Ex-
periments. Springer, 2012, pp. 278–293.

[60] Rapid7, https://blog.rapid7.com/2018/08/22/whats-going-on-in-
production-application-security-2018/, August 2018.

[61] P. Kotzias, L. Bilge, P.-A. Vervier, and J. Caballero, “Mind your
own business: A longitudinal study of threats and vulnerabilities in
enterprises.” in NDSS, 2019.

[62] R. A. Grimes, “Zero-days aren’t the problem – patches are,”
https://www.csoonline.com/article/3075830/zero-days-arent-the-
problem-patches-are.html, June 2016.

[63] Intel, “64 and IA-32 Architectures Software Devel-
oper’s Manual,” http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html, 2018. [Online]. Avail-
able: http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html

[64] F. Mckeen, I. Alexandrovich, A. Berenzon, C. Rozas, H. Shafi,
V. Shanbhogue, and U. Savagaonkar, “Innovative Instructions and
Software Model for Isolated Execution,” in Proceedings of the 2nd
Workshop on Hardware and Architectural Support for Security and
Privacy (HASP’13), 2013.

[65] Y. Wang, Y. Shen, C. Su, K. Cheng, Y. Yang, A. Faree, and Y. Liu,

“Cfhider: Control flow obfuscation with intel sgx,” in IEEE INFOCOM
2019-IEEE Conference on Computer Communications, 2019.

[66] D. Kaplan, J. Powell, and T. Woller, “AMD Memory Encryption, White
Paper,” http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/
2013/12/AMD Memory Encryption Whitepaper v7-Public.pdf, April
2016.

[67] ARM Ltd., “ARM Security Technology - Building a Secure
System using TrustZone Technology,” http://infocenter.arm.com/help/
topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C\
trustzone\ security\ whitepaper.pdf, 2009.

[68] K. Leach, F. Zhang, and W. Weimer, “Scotch: Combining Software
Guard Extensions and system management mode to monitor cloud
resource usage,” in International Symposium on Research in Attacks,
Intrusions, and Defenses, 2017.

[69] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
38th international conference on software engineering. ACM, 2016,
pp. 691–701.

[70] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song, “Spain:
security patch analysis for binaries towards understanding the pain and
pills,” in Proceedings of the 39th International Conference on Software
Engineering. IEEE Press, 2017, pp. 462–472.

[71] P. W. McBurney and C. McMillan, “Automatic source code summa-
rization of context for Java methods,” IEEE Transactions on Software
Engineering, vol. 42, no. 2, pp. 103–119, 2016.

[72] B. S. Baker, “Parameterized duplication in strings: Algorithms and an
application to software maintenance,” in SIAM Journal on Computing,
1997.

[73] S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach for
vulnerable code clone discovery,” in 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 2017, pp. 595–614.

[74] B. A. Galitsky, “Generalization of parse trees for iterative taxonomy
learning,” Information Sciences, vol. 329, pp. 125–143, 2016.

[75] N. L. Petroni Jr and M. Hicks, “Automated detection of persistent kernel
control-flow attacks,” in Proceedings of the 14th ACM conference on
Computer and communications security. ACM, 2007, pp. 103–115.

[76] D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically finding
semantic differences in binary programs,” in International Conference
on Information and Communications Security. Springer, 2008, pp.
238–255.

[77] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi, “Software grand exposure:{SGX} cache attacks are
practical,” 2017.

[78] M. Harman, A. Lakhotia, and D. W. Binkley, “Theory and algorithms
for slicing unstructured programs,” Information & Software Technology,
vol. 48, no. 7, pp. 549–565, 2006.

13

