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Abstract—We describe ongoing work to increase trust in
resilient software systems. Automated software repair techniques
promise to increase system resiliency, allowing missions to con-
tinue in the face of software defects. While a number of program
repair approaches have been proposed, the most scalable and
applicable of those techniques can be the most difficult to trust.
Using approximate solutions to the oracle problem, we consider
three approaches by which trust can be re-established in a post-
repair system. Each approach learns or infers a different form of
partial model of correct behavior from pre-repair observations;
post-repair systems are evaluated with respect to those models.
We focus on partial oracles modeled from external execution sig-
nals, derived from similar code fragment behavior, and inferred
from invariant relations over local variables. We believe these
three approaches can provide an expanded assessment of trust
in a repaired, resilient system.

I. INTRODUCTION

There is increasing demand for systems that are both trusted
(e.g., [13]) and resilient (e.g., [22]). For this paper, the term
dependability measures how consistently a system successfully
completes its assigned mission [1]. We use trust to refer to
the human belief that the system is dependable; the ultimate
decision to deploy a system or not is usually made by human
operators. A resilient system is capable of safely recovering
from or avoiding errors, attacks or environmental challenges
to complete its original mission or a variation thereof [9]. We
desire systems that can be both resilient and trusted in the
face of unanticipated challenges, and that can be applied to
off-the-shelf components.

As software systems have become more multi-functional,
autonomous, and tightly coupled with actions in the physical
world, resiliency has been widely recognized as a desirable
property. One approach to achieving resiliency is to anticipate
all possible problems or states that the system could encounter
and devise pre-programmed responses. The DARPA High
Assurance Cyber Military Systems (HACMS) [13] program,
which uses automated tools to partially or fully formally
synthesize control software for various uncrewed platforms,
exemplifies this approach. This approach admits significant
trust, as synthesized code provides correctness, safety, and
security guarantees with respect to the given specification.
However, the HACMS approach does not provide resiliency
in the face of unanticipated challenges and it may be difficult
to apply such formal approaches to existing systems.
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We focus on a second approach to providing system re-
siliency: automated program repair. This approach synthesizes
repair actions or software patches that can be applied to a
system, allowing it to overcome errors or attacks. The repair
action avoids the buggy or incorrect behavior while retaining
required functionality. An example of the second approach is
the family of program repair methods that have been developed
recently. Program repair approaches have the advantage that
they have demonstrated resiliency in the face of unknown
attacks [15] and defects [14] and can apply to off-the-shelf
legacy systems. However, a repair synthesized by a black-box
technique (e.g., a search- or constraint-based system) can be
difficult to trust.

We argue that operator trust in a resilient system, including
trust in the dependable operation of the system after a repair
action, is critical for real-world deployment [13], [22]. A
recent NASA survey, for example, ranked understanding and
readability as more important than functional correctness when
making use of software [8]. We thus propose to augment
resilient program repair with three assessments that allow the
human operator to trust in the dependable post-repair behavior
of the system. The operator may trust the post-repair system by
observing that it behaves correctly on expected and unexpected
inputs. Our high-level insight is thus that these assessments are
just aspects of the more general oracle problem in software
engineering (e.g., [19]) applied to unannotated legacy systems.
In the oracle-comparator formal model of testing, the oracle
provides the expected correct output for a given input. If we
can partially determine the correct response to a given input,
we can trust the post-repair system to the extent that it displays
that response.

We focus on three partial oracles, each of which applies
to off-the-shelf systems by assuming that previous behavior
is largely correct even though formal oracle annotations are
unavailable. Each of these three approaches thus features a
training or analysis phase in which a model of correct behavior
(i.e., an oracle) is constructed.

We believe these three assessments, based on three partial
solutions to the oracle problem for legacy software, can
support human trust in post-repair resilient systems.

II. SYSTEM DESIGN

We envision a system that provides resiliency to unan-
notated software systems via program repair and augments
that resiliency with three assessments to support operator
trust in post-repair system dependability. This short paper



outlines a research project with that explicit goal, involving the
University of Virginia, University of New Mexico, Carnegie
Mellon University, and the University of California at Los An-
geles. We first describe an existing adaptive repair framework,
GENPROG. We then describe three assessments that can be
made to post-repair systems. We use two guiding principles:
each assessment derives from a partial solution to the oracle
problem and each assessment trains or models correct behavior
from existing trusted, but unannotated, systems.

First, we consider oracles based on external execution
signals observed at run-time. We hypothesize that lightweight
metrics of running programs (e.g., instruction execution
counts, branch taken counts, etc.) can be combined to partially
characterize correct program behavior [16]. Conceptually akin
to anomaly detection, this approach involves training a model
from metrics collected during trusted runs. Metrics collected
during post-repair runs can then be compared to that model.
While not comprehensive, this partial oracle has the advantage
of being quantitative and easy to gather.

Second, we consider oracles based on behavior in similar
code fragments. Defects and vulnerabilities often deviate from
standard behavior [5] (e.g., a program with a buffer overrun
in one program location often correctly bounds-checks arrays
used in other program locations). This problem is exacerbated
by the prevalence of code clones (e.g., copy-paste code) in
existing systems [24]. Given a repair to a particular piece
of code, we can adapt trusted test inputs and test oracles
from similar code locations to the post-patch location. This
adaptation analysis corresponds to training a partial model.
The new code is correct if its behavior on the transformed old
inputs matches the transformed old outputs. This partial oracle
has the advantage of leveraging existing developer expertise
by reusing extant tests.

Third, we consider oracles based on inferred and validated
program invariants. Informally, once a defect or vulnerability
has been repair, the post-repair system is correct if its behavior
is similar to the pre-repair system except when faced with the
defect or attack. We capture this notion more formally via
invariant inference, learning a model of invariant relationships
between program variables on trusted inputs. The post-repair
code is correct if it also satisfies those invariants. While more
expensive to apply, this more partial oracle has the advantage
of providing more formal guarantees.

A. Resiliency — Automated Program Repair

GENPROG is a popular automated program repair ap-
proach [15]. Given a program, a test suite that encodes desired
behavior, and evidence of a defect, GENPROG samples the
space of possible repairs until one is found that retains required
functionality while repairing the bug. GENPROG has been
evaluated on real-world, high-priority defects from programs
totaling over five million lines of code and guarded by over
ten thousand tests, and is typically able to repair about half of
such defects [14].

Although effective in practice, GENPROG’s search-based
technique offers fewer guarantees about synthesized patches

than repair approaches based on constraint solving (e.g., [18]).
Thus, while GENPROG repairs have been validated against
existing regression test suites and have been evaluated post-
facto for maintainability [7], acceptability [11] and security
concerns [15], the system itself does not provide assessments
to support human trust [23].

B. Assessment — Dynamic Execution Signals

We have developed a set of quantitative metrics to assess a
candidate repair, based on a partial-correctness oracle modeled
on dynamic execution signals observed on trusted inputs. We
have previously found that it is possible to combine multiple
comparatively simple, static metrics to usefully approximate
source code quality [16]. With respect to trusted software
repairs, and taking inspiration from anomaly detection, we
have extended this idea to signals taken from dynamic runtime
information.

Our key insight is that a program that produces unintended
behavior on one input often exhibits observable, inconsistent
behavior on other inputs. Moreover, we can observe behavioral
inconsistencies in the values of measurable binary-level exe-
cution signals (e.g., number of instructions executed, number
of branches taken, etc.), which are language-independent.
Because no single execution signal fully characterizes correct
program behavior, we apply machine learning techniques to
train predictive models from numerous runtime signals. This
process takes as input collections of dynamic signals from
the program running on trusted test cases to produce a model
that, given a new execution (e.g., a new test input on the
same program, a regression test run on a changed program,
a test input on a different program for which no other testing
information is available), predicts whether the program appears
to have executed correctly on the corresponding test input. We
have had success using both supervised learning and also an
unsupervised approach based on custom clustering [10].

We anticipate extending this approach to include both
source-level and static information, such as similarity between
a changed region of code and previous changes to that same
code base, continuing to combine a variety of (possibly noisy)
similarity metrics. This will enable the model to more directly
relate the new source code and behavior to previous models
of “known good” source code and behavior.

While not as formal as a proof, such statistical reasoning is
easier to apply to off-the-shelf programs (e.g., it applies to bi-
naries) and may be easier for users to understand. We can cast
this statistical evidence technique as a problem in the domain
of information retrieval, measuring the precision and recall
(i.e., effectively measuring false positives and false negatives)
between the ground truth set of high-quality program or repairs
and the set of repairs endorsed by our statistics, as a function
of the threshold of evidence chosen. This formulation produces
a standard receiver operating characteristic curve evaluation.

C. Assessment — Targeted Differential Testing

We are developing techniques to adapt existing tests to target
repaired code, based on partial-correctness oracles transformed



from similar program locations. These adapted tests assess pre-
and post-repair behavior differences in relevant corner cases.
There are many existing constraint-based test input generation
techniques (e.g., [2], [6]); however, these techniques focus
on input generation only, not the generation of expected test
oracles, and are therefore insufficient for our task.

We are currently investigating a technique that can trans-
plant existing tests to a new similar location in order to reuse
the test inputs and corresponding oracle to perform differential
testing. This approach is based on the insight that reusing
code fragments via copying and pasting with minor edits is
a common activity in software development [12] and that a
significant fraction (between 7% to 23%) of code in large
software systems consists of clones [24] (i.e., highly similar
source code, as in copy-paste code).

We can analyze pre-repair behavior on code locations that
are similar to the repaired location. Test inputs and their cor-
responding expected outputs are carved out and transplanted
from one program location to another. In this model, the
post-repair behavior is correct if it produces the transformed
expected output when applied to the transformed input (this is
called differential testing). In addition, this approach can also
be used to compare the post-repair behavior of two similar
code fragments. To do so, our test carving and transplantation
technique exercises counterpart clones using the same test and
compares the corresponding runtime behaviors.

This problem of reusing and adapting tests is challenging
due to variations in program source structure (e.g., vari-
able names, types, etc.). Such variations must be handled
to construct well-typed tests and avoid incompatibilities in
referenced objects. For example, if two clones use different
types of objects, developers must currently manually construct
coercions from one type to another. This approach of adapting
existing tests may thus not always apply to unannotated code
(e.g., if no clones are available for a given patch or if manual
coercions must be provided). However, when it applies it has
the advantage of leveraging existing developed expertise (from
the input trusted tests) and directly highlighting post-repair
system behavior in relevant expected and corner cases.

D. Assessment — Invariants and Proofs

We are developing techniques to formally prove certain
aspects of post-repair system behavior, based on partial-
correctness oracles that take the form of invariants over
program variables from trusted runs. These invariants formally
capture the intuitive notion that the post-repair system should
behave similarly to the trusted pre-repair system (except with
respect to the defect or vulnerability) by specifying which
aspects of behavior must be maintained for correctness.

Our first step is to infer relevant invariants automatically; we
do this by analyzing dynamic variable values from trusted runs
of the pre-repair system. We have developed techniques for
learning polynomial, non-linear, array-based, and disjunctive
invariants [20], [21]. Although not sufficient for all software,
this rich language of invariants can describe a number of
partial specifications. Our technique, called DIG, provides a

novel method for discovering these relations. In one test,
it discovered 60% of the documented invariants necessary
to fully formally verify the functional correctness of AES
encryption [20] — i.e., it removes 60% of the manual
annotation burden. Dynamic invariant detection techniques
sometimes produce false positives (e.g., spurious conditions
that only appear invariant because of limited testing); we retain
only those invariants that can be formally proved to hold in
the program (e.g., via k-induction) [20]. To summarize, our
approach analyzes sample program traces to infer a set of
candidate invariants that hold for the traces. It then uses a
theorem prover to retain invariants that hold statically. Those
invariants become the partial correctness oracle: the post-repair
system must provably satisfy those invariants.

For each discovered invariant, we use verification condition
generation from axiomatic semantics to generate a formula
encoding the post-repair system’s maintenance of the invariant.
For example, if the pre-repair system is modeled as a method
f and the post-repair system is g, full formal equivalence
corresponds to ∀x. f(x) = g(x). Full formal equivalence
is both difficult to prove and undesirable because we want
the repaired system to behave differently on at least the
bug-inducing input. Instead, given an invariant I , we prove
(∀x. I(f(x))) =⇒ (∀x. I(g(x))). That is, given that the
invariant holds for the original program, we seek to prove that
it holds for the post-repair system. Machine-checkable proofs
of such formulas can be constructed via automated theorem
proving [3] or interactive proof assistants. In practice, repair
actions change only small portions of an entire system [15];
the closer f is to g the more likely that the invariant held
pre-repair will provably hold post-repair. Thus, even though
such formal methods are relatively difficult to apply to off-
the-shelf systems, we remain optimistic. When applicable,
this assessment includes formal static reasoning about the
correctness of the post-repair system.

III. CURRENT STATUS AND RESULTS

a) Dynamic execution signals: The partial oracles de-
rived from execution signals can characterize and predict cor-
rectness in a variety of scenarios, depending on the data used to
construct the models. A model trained on a single program and
existing test suite can predict whether the program performs
correctly on new, generated test inputs (augmenting generated
inputs with predicted oracles, and improving testing coverage).
A model trained on multiple previous versions of a program
with test cases can predict whether a modified version of
the program (such as one that has been repaired in response
to a vulnerability) is continuing to function correctly. A
model trained on multiple existing programs can leverage data
from existing projects to estimate correctness of a previously
unseen, undertested program.

Our prototypes [10], which use Pin [17] to collect signals,
provided promising results on a range of Unix utilities and
embedded programs. The unsupervised models showed high
precision and recall when evaluated on programs and test
executions, with F-measure above 0.80 on 14/17 programs.



Augmenting an existing test suite by predicting oracles for
generated inputs using a supervised learning technique showed
comparable results; cross-program models predicted correctly
more than half the time.

b) Targeted differential testing: We have developed
GRAFTER, an implementation of our partial oracle approach
based on differential testing. It takes similar program locations
(clones) as input and automatically adapts and reuses the
test(s) of one clone on its counterpart clone in three phases.
GRAFTER first identifies the scope and extent of the code to
be adapted, including the definition of referenced variables
and methods. It then ports this code to the target location by
leveraging multiple transformations to handle code variations.
Finally, it synthesizes and inserts stub code to propagate input
data to ported variables and then transfers intermediate output
of grafted code back for examination. By implanting one
clone in the place of another, GRAFTER enables assessment
by reusing the same test on both clones without adapting the
test code itself. In addition, compared with existing differential
testing frameworks (e.g., [4]) which often check only whether
the program behavior is the same for the pre-repair and post-
repair versions, GRAFTER does not require the type, function,
or object names to be the same across clones.

c) Invariants and proofs: We have already evaluated
DIG, our tool for inferring polynomial, non-linear, array-based,
and disjunctive invariants, on nonlinear arithmetic benchmarks
and AES encryption [20], [21]. More recently, we have made
a preliminary investigation of the use of invariants as an
assessment for program repair. We considered an implemen-
tation of the extended GCD algorithm with a seeded defect.
DIG inferred three relevant nonlinear invariants from correct
execution on trusted input (kx− iy +B = 0, jk− im+1 = 0
and mx − jy − A = 0). We then considered ten candidate
repairs synthesized by GENPROG, eight of which were correct
and two of which contained or introduced latent defects. We
were able to prove, using Z3 [3], that all three invariants
are maintained by the eight correct post-repair system. By
contrast, the two incorrect repairs and the version with the
seeded defect all failed to maintain two of the three invariants.
While an evaluate on a single program is very preliminary, it
does give confidence that we can infer invariants from trusted
input and prove that they are maintained by a post-repair
system, providing a relative assessment of candidate repairs.

IV. CONCLUSIONS

There is increasing demand for systems that are trusted,
resilient, and apply to legacy systems. We propose to address
this problem via automated program repair (for resiliency)
augmented with assessments (for trust). We observe that
determining correct behavior relates to the oracle problem,
and propose three assessments based on partial oracles, each
based on training or analyzing trusted data. We believe these
approaches can provide an expanded assessment of trust in a
repaired, resilient system.
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