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For The Next 17 Minutes

* Program Repair: Resilient but Untrusted

e Can we assess post-repair systems to gain trust?

* Assessment: Dynamic Execution Signals

* Assessment: Targeted Differential Testing

e Assessment: Invariants and Proofs

Westley Weimer



In This Talk

* Dependability measures how consistently a
system successfully completes its mission.

 Trust refers to the human belief that the
system is dependable.

« Understanding is important than correctness when
deciding what software to use (NASA)

* Aresilient system can safely recover from or
avoid errors, attacks or environmental
challenges.

e Possibly completing a variant of the mission.

Westley Weimer



Automated Program Repair

* Any of a family of techniques that generate
and validate or solve constraints to synthesize
program patches or run-time changes

» Typical Input: program (source or binary), notion
of correctness (passing and failing tests)

* Program repair provides resiliency

 Powerful enough to repair serious issues like
Heartbleed, format string, buffer overruns, etc.

» Efficient (dollars per fix via cloud computing)

Westley Weimer
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* GenProg ‘09
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Program Repair Quality

Automatically Finding Patches Using Genetic Programming
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Automatic program repair has been a longstanding goal
ftware engineering, yet debugging remains a largely

s We introduce a fully automated method
ating and repairing bugs in software. The approach

egacy applications and does not re-
quire formal specifications, program annotations or special
coding practices. Once a program fault is discovered, an
‘nded form of genetic programming is used to evolve pro-
gram variants until one is found that both retains required
functionality and also avoids the defect in question. Stan-
dard test cases are used to exercise the fault and to encode
program requirements. After a successful repair has been
overed, it is minimized using structural differencir
gorithms and delia debugging. We describe the proposed
method and report experimental results demonstrating that
it can successfully repair ten different C programs totaling
63,000 lines in under 200 seconds, on average.

Claire Le Goue Stephanie Forrest
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To alleviate this burden, we propose an automat
nique for re ng program de
not require difficult formal 0
tations or special codin : s. Instead, it works on
off-the-shelf legacy applications a adily-available test-
cases. We use genetic programming to evolve program vari-
ants until one is found that both retains required function-
ality and also avoids the defect in question. Our technique
takes as input a program, a set of successful positive test-
cases that encode required program behavior, and a failing
negative testcase that demonstrates a defect.

Genetic programming (GP) is a computational method
inspired by biological evolution, which discovers computer
programs tailored to a particular task [19]. GP maintains a
population of individual programs. Computational analogs
of biological mutation and crossover produce program vari-
ants. Each variant’s suitability is evaluated using a user-
defined fitness function, and successful variants are selected
for continued evolution. GP has solved an impressive range
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Program Repair Quality

* GenProg ‘09 - minimize

 Remove spurious
insertions

Westley Weimer

Automatically Finding Patches Using Genetic Programming *
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Automatic program repair has been a longstanding goal ] tions, program anno-
ware engineering, debugging remains a la Instead, it works on

manual proce We oduce a fully automated methc she pplications and readi lable
for locating and repairing bugs in software. The approach > programming to evolve program vari-
iction-
que
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Program Repair Quality

Automatically Finding Patches Using Genetic Programming
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 GenProg ‘09 - minimize
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* PAR 13 - human Changes | Autbma.tic Patch Generation Learned from
Human-Written Patches

 Mutation operations based &
on historical human edits | |

Abstract—Patch gener:
codnance task be
xtethat need to be

. a N ) n Array Index Out of Bound exception when
fienibeen pr!)pﬂsud. Il'll particular, a gene -programmi based patch ( s+ 1) is equal to than string " length
-generation technique, GenProg, proposed by Weimer et al., has
shown promising results. However, these technigues can generate
| patches due to the randomness of their mutation

INC {
((Scriptable) 1hs) .getDefaultValue (null) ;

more than 60,000 hum
| common fix patte Qur approach lever-
nerate program patches auto ically.
ed PAR on 119 real bugs. In addition,

1 if (lhs

1 if (lhs

1 i = getShort (iCode, pc + 1);

1 if (1 1= -1)

16 lhs = strings[i];

generated by our approach are more acceptable than

nerated by GenProg. PAR successfully generated patches 1
out of 119 bugs, while GenProg v uccessful for only (c) Human-wrilten palch

16 bugs.
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Program Repair Quality

 GenProg ‘09 - minimize
 PAR 13 - human changes

* Monperrus 14 - PAR is wrong
 SPR 15 - condition synthesis

 Solve constraints to
synthesize expressions for
conditionals

e Not just deletions

Westley Weimer
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Resilient but Untrusted

* Program repair does provide resiliency
* But the “quality” of repairs is unclear

e So they are not trusted

* Thus far: algorithmic changes (e.g., mutation
operators, condition synthesis, etc.)

 We propose a post hoc, repair-agnostic
approach to increasing operator trust

* Provide multiple modalities of evidence

* Approximate solutions to the oracle problem

Westley Weimer
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Proposed Framework

* Augment repairs with three assessments that
allow the human operator to trust in the post-
repair dependable operation of the system

* These assessments are aspects of the oracle
problem for legacy systems

» Each features a training or analysis phase in which
a model of correct behavior (oracle) is constructed

Westley Weimer
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Dynamic Execution Signals

 Insight: a program that produces unintended
behavior for a given input often produces
other observable inconsistent behavior

» cf. printf debugging
* Measure binary execution signals

 Number of instructions, number of branches, etc.

* |n supervised learning, our models predict
whether new program runs correspond to
intended behavior 74-100% of the time (nsh)

Westley Weimer
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Example: Zune Bug

void zunebug(int days) A

* Microsoft Zune Player int year - 1980;

while (days > 365) {

if (isLeapYear (year)){

* Infinite loop on last day P b
of leap year (line ~8) - )

year += 1]1;
} else {

' days =-= 365;
* Branch counts, § g
instruction counts, etc., e
. ear):
all differ e 3 °

Input Signal collection Model construction

f{_'Unsu;c;érv.-'S ed)

ol |. -
: L3
w s (to be evaluated)
YFFY] ’

—_ e Wi : I
(Program variants, test suites) " [ﬂ

1
(Supervised)

)
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Targeted Differential Testing

* Code clones (intentional or not) are prevalent
* Repairs are often under-tested
 They may insert new code, etc.

* Insight: We can adapt tests designed for code
clones to become tests targeted at repairs

 |dentify variants, transplant code, propagate data
* Adapted tests in 17/17 Apache examples (nsh)

o TarFileSet — ZipFileSet, ContainsSelector —
FilenameSelector, etc.

Westley Weimer

16



Invariants and Proofs

 |Insight: The post-repair system is not
equivalent to the pre-repair system, but it
may maintain the same invariants (or more).

* |dentify invariants, prove them correct
* No spurious or incorrect invariants remain

 We can infer 60% of the documented invariants
necessary to prove functional correctness of

AES (nsh)

* Linear, nonlinear, disjunctive, and array invariants

Westley Weimer
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Example: Zune Bug

e EX. Invariants in Buggy
Program

e days_top > 365
e Ex. Correct Invariants
e days_top > 365
» days_bot < days_top
e year_bot = year_top + 1

Westley Weimer

void zunebug(int days) A
int year = 1980;
while (days > 365) {
if (isLeapYear (year)){
if (days > 366) {
days -= 366;

year += 1;
¥
} else {
days =-= 365;
year += 1;
}
L

printf(”i:urrnra. vear is ¥%d\n"

year) ;

}

9

18



Evidence and Assessments

* Approximations to the Oracle Problem
* A post-repair system is correct when ...

|t produces similar binary execution signals to
previous known-good runs

|t passes tests adapted from similar known-good
methods

* |t provably maintains non-spurious known-good
invariants

* These can be assessed regardless of how the
repair is produced

Westley Weimer
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Summary

e Significant interest in trusted resilient systems
* Repair provides resilience but not trust
 We propose three modalities of evidence

* Models of Execution Signals
» Targeted Differential Testing

* Proven Inferred Invariants

* These can provide an expanded assessment of
trust in a resilient repaired system

Westley Weimer
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