Trusted Software
Repair for System
Resiliency

Westley Weimer, Stephanie Forrest,
Miryung Kim, Claire Le Goues,
Patrick Hurley

For The Next 17 Minutes

* Program Repair: Resilient but Untrusted

e Can we assess post-repair systems to gain trust?

* Assessment: Dynamic Execution Signals

* Assessment: Targeted Differential Testing

e Assessment: Invariants and Proofs

Westley Weimer

In This Talk

* Dependability measures how consistently a
system successfully completes its mission.

 Trust refers to the human belief that the
system is dependable.

« Understanding is important than correctness when
deciding what software to use (NASA)

* Aresilient system can safely recover from or
avoid errors, attacks or environmental
challenges.

e Possibly completing a variant of the mission.

Westley Weimer

Automated Program Repair

* Any of a family of techniques that generate
and validate or solve constraints to synthesize
program patches or run-time changes

» Typical Input: program (source or binary), notion
of correctness (passing and failing tests)

* Program repair provides resiliency

 Powerful enough to repair serious issues like
Heartbleed, format string, buffer overruns, etc.

» Efficient (dollars per fix via cloud computing)

Westley Weimer

EVALUATE FITNESS

INPUT

Westley Weimer

* GenProg ‘09

Westley Weimer

Program Repair Quality

Automatically Finding Patches Using Genetic Programming

Westley Weimer ThanhVu Nguy
University of New Mexico

tnguyen@

Automatic program repair has been a longstanding goal
ftware engineering, yet debugging remains a largely

s We introduce a fully automated method
ating and repairing bugs in software. The approach

egacy applications and does not re-
quire formal specifications, program annotations or special
coding practices. Once a program fault is discovered, an
‘nded form of genetic programming is used to evolve pro-
gram variants until one is found that both retains required
functionality and also avoids the defect in question. Stan-
dard test cases are used to exercise the fault and to encode
program requirements. After a successful repair has been
overed, it is minimized using structural differencir
gorithms and delia debugging. We describe the proposed
method and report experimental results demonstrating that
it can successfully repair ten different C programs totaling
63,000 lines in under 200 seconds, on average.

Claire Le Goue Stephanie Forrest
University of Virgini: Uni ity of New Mexico

To alleviate this burden, we propose an automat
nique for re ng program de
not require difficult formal 0
tations or special codin : s. Instead, it works on
off-the-shelf legacy applications a adily-available test-
cases. We use genetic programming to evolve program vari-
ants until one is found that both retains required function-
ality and also avoids the defect in question. Our technique
takes as input a program, a set of successful positive test-
cases that encode required program behavior, and a failing
negative testcase that demonstrates a defect.

Genetic programming (GP) is a computational method
inspired by biological evolution, which discovers computer
programs tailored to a particular task [19]. GP maintains a
population of individual programs. Computational analogs
of biological mutation and crossover produce program vari-
ants. Each variant’s suitability is evaluated using a user-
defined fitness function, and successful variants are selected
for continued evolution. GP has solved an impressive range

hlame (a o _caa T11V bt o o Lnowladoa it hao nat

Program Repair Quality

* GenProg ‘09 - minimize

 Remove spurious
insertions

Westley Weimer

Automatically Finding Patches Using Genetic Programming *

Westley Weimer ThanhVu Nguyen Claire Le Goues Stephanie Forrest

University of New Mexico University of Virginia University of New Mexico

tnguyen es@virginia.

ract

Our approach does
Automatic program repair has been a longstanding goal] tions, program anno-
ware engineering, debugging remains a la Instead, it works on

manual proce We oduce a fully automated methc she pplications and readi lable
for locating and repairing bugs in software. The approach > programming to evolve program vari-
iction-
que

cessful variant 1s minimized (see Section 3.5), to eliminate
unneeded changes, and return the resulting program.

Est-

functionality and also avoids the dej in question. Stan- Genetic programming (GP) is a computational method

dard test cases are used to cise the fault and to encode inspired by biological evolution, which discovers computer
program requirements. After a successful repair has been programs tailored to a particular task [19]. GP maintains a
discovered, ir is minimized using structural differencing al- population of individual programs. Computational analogs
gorithms and delia debugging. We describe the proposed of biological mutation and crossover produce pr i
method and report experimental results demonstrating that I ant’s suitabi is evaluat

it can suc: ully repair ten different C programs totaling defined fitness function, and succe

63,000 lines in under 200 seconds, on average. for continued evolution. GP has sol

hlame (a o _caa 110 _hut o o doa it hac nat

Program Repair Quality

Automatically Finding Patches Using Genetic Programming

I Ld L L
 GenProg ‘09 - minimize
Westley Weimer ThanhVu Nguyen Claire Le Goues Stephanie Forrest

rsity of Virginia University of New Mexico

tnguye lego

* PAR 13 - human Changes | Autbma.tic Patch Generation Learned from
Human-Written Patches

 Mutation operations based &
on historical human edits | |

Abstract—Patch gener:
codnance task be
xtethat need to be

. a N) n Array Index Out of Bound exception when
fienibeen pr!)pﬂsud. Il'll particular, a gene -programmi based patch (s+ 1) is equal to than string " length
-generation technique, GenProg, proposed by Weimer et al., has
shown promising results. However, these technigues can generate
| patches due to the randomness of their mutation

INC {
((Scriptable) 1hs) .getDefaultValue (null) ;

more than 60,000 hum
| common fix patte Qur approach lever-
nerate program patches auto ically.
ed PAR on 119 real bugs. In addition,

1 if (lhs

1 if (lhs

1 i = getShort (iCode, pc + 1);

1 if (1 1= -1)

16 lhs = strings[i];

generated by our approach are more acceptable than

nerated by GenProg. PAR successfully generated patches 1
out of 119 bugs, while GenProg v uccessful for only (c) Human-wrilten palch

16 bugs.

Westley Weimer

Program Repair Quality

Automatically Finding Patches Using Genetic Programming *

I Ld L L
 GenProg ‘09 - minimize
Westley Weimer ThanhVu Nguyer Claire Le Goues Stephanie Forrest

University of Virginia Iniversity of New Me Uni

* PAR 13 - human changes | Automatlic Patch Generanoﬁ Leérned flom
Human-Written Patches

i MO N pe 'rus ' 1 4 - PAR iS wron g = gsun Kim, Jacchang Nam, Jaewoo Song, and Sunghun Kim

The Hong Kong Univer of Science and Technology, China
{darkrsw,jcnam

. e A Critical Review of “A tomatlc Patch Generatlon Learned
¢ EXpe I mental methOdOlOgy e from Human-Written Patches”: Essay on the Problem

Statement and the Evaluation of Automatic Software

has several issues s Repair

gen
sho

non Martin Monperrus
University of Lille & INRIA, France

« Patch prettiness is not
patch quality

dar:
pro,

kmd uf bu
null pc

Westley Weimer

Program Repair Quality

 GenProg ‘09 - minimize
 PAR 13 - human changes

* Monperrus 14 - PAR is wrong
 SPR 15 - condition synthesis

 Solve constraints to
synthesize expressions for
conditionals

e Not just deletions

Westley Weimer

Automatically Finding Patches Using Genetic Programming *

Westley Weimer ThanhVu Nguye Claire Le Goues Stephanie Forrest

y of Virginia University of New Mexico University of Virgini: Univ y of New Mexico

ginia.edu tnguyen nm.edu

Automatic Patch Generat1on Learned h om
Human-Written Patches

he Hong Kunw U
cnam, Nmuh hullkllﬂ}("‘L\L ust.

A Critical Review of “Automatlc Patch Generation Learned
- from Human-Written Patches”: Essay on the Problem
Statement and the Evaluation of Automatic Software
Repair

Martin Monperrus
University of Lille & INRIA, France
martin.monperrus@univ-lille1.fr

Staged Program Repair with Condition Synthesis

Fan Long and Martin Rinard
MIT EECS & CSAIL, USA
{fanl, rinard}@csail.mit.edu

Thre
nable SPR

10

Program Repair Quality

Automatically Finding Patches Using Genetic Programming *

I L] L] L]
 GenProg ‘09 - minimize
\’\ul]u. Wumu Ih thu N“ll\-L.l'l Claire Le Goues Stephanie Forrest
i i ity of Virginia Uni ity of New Mexico
I weimer@virginia.edu tnguyer L eq rginia.edu £ unm. edu
° -
PAR "13 hu man changes Automatic Patch Generat1on Learned h om
Human-Written Patches
l L]
o Monperrus 1 4 - PAR]S Wrong ‘. gsun Kim, Jaech:
a he Hong Kong
' P . i A Critical Review of “Ahtohatlc Patclh Generation Learned
¢ S P R 1 5 - COndltl on Synth651 S .. from Human-Written Patches”: Essay on the Problem
-« Gtatement and the Evaluation of Automatic Software
Repair
°

Angelix 16 - SPR is wrong

Martin Monperrus
University of Lille & INRIA, France
martin.monperrus@univ-lille1.fr

e SPR still deletes : Staged Program Repair with Condition Synthesis

Fan Long and Martin Rinard
MIT EECS & CSAIL, USA

o U Se Se m a n ti CS a n d | {fanl, rinard}@csail.mit.edu
Angelix: Scalable Multiline Program Patch Synthesis

SyntheS]S via Symbolic Analysis

terest. A recent study revealed that the majority of Gen-g Joovona¥i Abhik Roychoudhury
. . " . .) - . w . _ mputing, National ER;K?g;goorfn Slnrgjgcgcej,uSg\gapore

Prog repairs avoid bugs simply by deleting functionality. We freeoene pusectso

found that SPR, a state-of-the-art repair tool proposed in

)l]l"'? S tlll deletes lllnttlnlmllhr in [lll—‘ll many “plausible” re-

Westley Weimer 11

Resilient but Untrusted

* Program repair does provide resiliency
* But the “quality” of repairs is unclear

e So they are not trusted

* Thus far: algorithmic changes (e.g., mutation
operators, condition synthesis, etc.)

 We propose a post hoc, repair-agnostic
approach to increasing operator trust

* Provide multiple modalities of evidence

* Approximate solutions to the oracle problem

Westley Weimer

12

Proposed Framework

* Augment repairs with three assessments that
allow the human operator to trust in the post-
repair dependable operation of the system

* These assessments are aspects of the oracle
problem for legacy systems

» Each features a training or analysis phase in which
a model of correct behavior (oracle) is constructed

Westley Weimer

13

Dynamic Execution Signals

 Insight: a program that produces unintended
behavior for a given input often produces
other observable inconsistent behavior

» cf. printf debugging
* Measure binary execution signals

 Number of instructions, number of branches, etc.

* |n supervised learning, our models predict
whether new program runs correspond to
intended behavior 74-100% of the time (nsh)

Westley Weimer

14

Example: Zune Bug

void zunebug(int days) A

* Microsoft Zune Player int year - 1980;

while (days > 365) {

if (isLeapYear (year)){

* Infinite loop on last day P b
of leap year (line ~8) -)

year += 1]1;
} else {

' days =-= 365;
* Branch counts, § g
instruction counts, etc., e
. ear):
all differ e 3 °

Input Signal collection Model construction

f{_'Unsu;c;érv.-'S ed)

ol |. -
: L3
w s (to be evaluated)
YFFY] ’

—_ e Wi : I
(Program variants, test suites) " [ﬂ

1
(Supervised)

)

Westley Weimer

Targeted Differential Testing

* Code clones (intentional or not) are prevalent
* Repairs are often under-tested
 They may insert new code, etc.

* Insight: We can adapt tests designed for code
clones to become tests targeted at repairs

 |dentify variants, transplant code, propagate data
* Adapted tests in 17/17 Apache examples (nsh)

o TarFileSet — ZipFileSet, ContainsSelector —
FilenameSelector, etc.

Westley Weimer

16

Invariants and Proofs

 |Insight: The post-repair system is not
equivalent to the pre-repair system, but it
may maintain the same invariants (or more).

* |dentify invariants, prove them correct
* No spurious or incorrect invariants remain

 We can infer 60% of the documented invariants
necessary to prove functional correctness of

AES (nsh)

* Linear, nonlinear, disjunctive, and array invariants

Westley Weimer

17

Example: Zune Bug

e EX. Invariants in Buggy
Program

e days_top > 365
e Ex. Correct Invariants
e days_top > 365
» days_bot < days_top
e year_bot = year_top + 1

Westley Weimer

void zunebug(int days) A
int year = 1980;
while (days > 365) {
if (isLeapYear (year)){
if (days > 366) {
days -= 366;

year += 1;
¥
} else {
days =-= 365;
year += 1;
}
L

printf(”i:urrnra. vear is ¥%d\n"

year) ;

}

9

18

Evidence and Assessments

* Approximations to the Oracle Problem
* A post-repair system is correct when ...

|t produces similar binary execution signals to
previous known-good runs

|t passes tests adapted from similar known-good
methods

* |t provably maintains non-spurious known-good
invariants

* These can be assessed regardless of how the
repair is produced

Westley Weimer

19

Summary

e Significant interest in trusted resilient systems
* Repair provides resilience but not trust
 We propose three modalities of evidence

* Models of Execution Signals
» Targeted Differential Testing

* Proven Inferred Invariants

* These can provide an expanded assessment of
trust in a resilient repaired system

Westley Weimer

20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

