
Trusted Software
Repair for System

Resiliency

Westley Weimer, Stephanie Forrest,
Miryung Kim, Claire Le Goues,

Patrick Hurley

 Westley Weimer 2

For The Next 17 Minutes

● Program Repair: Resilient but Untrusted
● Can we assess post-repair systems to gain trust?

● Assessment: Dynamic Execution Signals

● Assessment: Targeted Differential Testing

● Assessment: Invariants and Proofs

 Westley Weimer 3

In This Talk

● Dependability measures how consistently a
system successfully completes its mission.

● Trust refers to the human belief that the
system is dependable.
● Understanding is important than correctness when

deciding what software to use (NASA)

● A resilient system can safely recover from or
avoid errors, attacks or environmental
challenges.
● Possibly completing a variant of the mission.

 Westley Weimer 4

Automated Program Repair

● Any of a family of techniques that generate
and validate or solve constraints to synthesize
program patches or run-time changes
● Typical Input: program (source or binary), notion

of correctness (passing and failing tests)

● Program repair provides resiliency
● Powerful enough to repair serious issues like

Heartbleed, format string, buffer overruns, etc.

● Efficient (dollars per fix via cloud computing)

 Westley Weimer 5

INPUT

OUTPUT

EVALUATE FITNESS

DISCARD

ACCEPT

MUTATE

 X

GenProg

 Westley Weimer 6

Program Repair Quality

● GenProg '09

 Westley Weimer 7

Program Repair Quality

● GenProg '09 – minimize

● Remove spurious
insertions

 Westley Weimer 8

Program Repair Quality

● GenProg '09 - minimize

● PAR '13 – human changes

● Mutation operations based
on historical human edits

 Westley Weimer 9

Program Repair Quality

● GenProg '09 - minimize

● PAR '13 – human changes

● Monperrus '14 – PAR is wrong

● Experimental methodology
has several issues

● Patch prettiness is not
patch quality

 Westley Weimer 10

Program Repair Quality

● GenProg '09 - minimize

● PAR '13 – human changes

● Monperrus '14 – PAR is wrong

● SPR '15 – condition synthesis

● Solve constraints to
synthesize expressions for
conditionals

● Not just deletions

 Westley Weimer 11

Program Repair Quality

● GenProg '09 - minimize

● PAR '13 – human changes

● Monperrus '14 – PAR is wrong

● SPR '15 – condition synthesis

● Angelix '16 – SPR is wrong

● SPR still deletes

● Use semantics and
synthesis

 Westley Weimer 12

Resilient but Untrusted

● Program repair does provide resiliency
● But the “quality” of repairs is unclear

● So they are not trusted
● Thus far: algorithmic changes (e.g., mutation

operators, condition synthesis, etc.)

● We propose a post hoc, repair-agnostic
approach to increasing operator trust
● Provide multiple modalities of evidence
● Approximate solutions to the oracle problem

 Westley Weimer 13

Proposed Framework

● Augment repairs with three assessments that
allow the human operator to trust in the post-
repair dependable operation of the system
● These assessments are aspects of the oracle

problem for legacy systems
● Each features a training or analysis phase in which

a model of correct behavior (oracle) is constructed

 Westley Weimer 14

Dynamic Execution Signals

● Insight: a program that produces unintended
behavior for a given input often produces
other observable inconsistent behavior
● cf. printf debugging

● Measure binary execution signals
● Number of instructions, number of branches, etc.

● In supervised learning, our models predict
whether new program runs correspond to
intended behavior 74-100% of the time (nsh)

 Westley Weimer 15

Example: Zune Bug

● Microsoft Zune Player
● Infinite loop on last day

of leap year (line ~8)
● Branch counts,

instruction counts, etc.,
all differ

 Westley Weimer 16

Targeted Differential Testing

● Code clones (intentional or not) are prevalent
● Repairs are often under-tested

● They may insert new code, etc.

● Insight: We can adapt tests designed for code
clones to become tests targeted at repairs
● Identify variants, transplant code, propagate data

● Adapted tests in 17/17 Apache examples (nsh)
● TarFileSet ZipFileSet, ContainsSelector → →

FilenameSelector, etc.

 Westley Weimer 17

Invariants and Proofs

● Insight: The post-repair system is not
equivalent to the pre-repair system, but it
may maintain the same invariants (or more).

● Identify invariants, prove them correct
● No spurious or incorrect invariants remain

● We can infer 60% of the documented invariants
necessary to prove functional correctness of
AES (nsh)
● Linear, nonlinear, disjunctive, and array invariants

 Westley Weimer 18

Example: Zune Bug

● Ex. Invariants in Buggy
Program
● days_top > 365

● Ex. Correct Invariants
● days_top > 365
● days_bot < days_top
● year_bot = year_top + 1

“top”

“bot”

 Westley Weimer 19

Evidence and Assessments

● Approximations to the Oracle Problem
● A post-repair system is correct when …

● It produces similar binary execution signals to
previous known-good runs

● It passes tests adapted from similar known-good
methods

● It provably maintains non-spurious known-good
invariants

● These can be assessed regardless of how the
repair is produced

 Westley Weimer 20

Summary

● Significant interest in trusted resilient systems
● Repair provides resilience but not trust
● We propose three modalities of evidence

● Models of Execution Signals
● Targeted Differential Testing
● Proven Inferred Invariants

● These can provide an expanded assessment of
trust in a resilient repaired system

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

