
Double Helix and RAVEN: A System for Cyber Fault
Tolerance and Recovery

Michele Co, Jack W. Davidson,
Jason D. Hiser, John C. Knight,

Anh Nguyen-Tuong, Westley Weimer
Department of Computer Science

University of Virginia, Charlottesville, VA 22904
{mc2zk,jwd,hiser,jck,an7s,wrw6y}@virginia.edu

Jonathan Burket, Gregory L. Frazier,
Tiffany M. Frazier

Apogee Research
4075 Wilson, Blvd, Arlington, VA 22203

{jonathan.burket,glfrazier,tiff}@apogee-
research.com

Bruno Dutertre, Ian Mason,
Natarajan Shankar

SRI International, Computer Science Laboratory
333 Ravenswood Avenue, Menlo Park, CA

94025
{bruno,iam,shankar}@sri.com

Stephanie Forrest
Department of Computer Science

University of New Mexico, Albuquerque, NM
87131

forrest@cs.unm.edu

ABSTRACT
Cyber security research has produced numerous artificial
diversity techniques such as address space layout random-
ization, heap randomization, instruction-set randomization,
and instruction location randomization. To be most effec-
tive, these techniques must be high entropy and secure from
information leakage which, in practice, is often difficult to
achieve. Indeed, it has been demonstrated that well-funded,
determined adversaries can often circumvent these defenses.
To allow use of low-entropy diversity, prevent information
leakage, and provide provable security against attacks, previ-
ous research proposed using low-entropy but carefully struc-
tured artificial diversity to create variants of an applica-
tion and then run these constructed variants within a fault-
tolerant environment that runs each variant in parallel and
cross check results to detect and mitigate faults. If the
variants are carefully constructed, it is possible to prove
that certain classes of attack are not possible. This paper
presents an overview and status of a cyber fault tolerant
system that uses a low overhead multi-variant execution en-
vironment and precise static binary analysis and efficient
rewriting technology to produce structured variants which
allow automated verification techniques to prove security
properties of the system. Preliminary results are presented
which demonstrate that the system is capable of detecting
unknown faults and mitigating attacks.

CCS Concepts
•Security and privacy→Operating systems security;
Software and application security; Intrusion detection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CISRC ’16, April 05-07, 2016, Oak Ridge, TN, USA
c© 2016 ACM. ISBN 978-1-4503-3752-6/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2897795.2897805

systems; Vulnerability management; Software security engi-
neering; •Software and its engineering → Compilers;

1. INTRODUCTION
One of the most widely deployed approaches to cyber se-

curity is artificial diversity [1, 4, 17, 18]. Unfortunately, cur-
rently deployed diversity approaches suffer from a number
of deficiencies and limitations. First, these approaches are
probabilistic. Depending on the granularity and associated
entropy of the diversity approach, a persistent attacker can
compromise the system [9]. If the compromised system is
within a trusted enclave, then the attacker might be able to
perform other attacks to compromise additional machines.
Moreover, current diversity techniques rely on keeping se-
crets such as randomization keys and code or data location.
Derandomizing attacks, probing or side-channel information
leakage attacks have time and again broken through diver-
sity defenses. With enough time and determination, a skilled
adversary can bootstrap even a small piece of leaked or in-
ferred knowledge into a working exploit [2, 13,14].

To address these concerns and others, in 2006 some of us
proposed an architectural framework, called N -variant sys-
tems, for the systematic use of artificial diversity to provide
high assurance detection of large classes of attacks [5]. The
framework executes a set of automatically diversified vari-
ants on the same inputs, and monitors their behavior to
detect divergences. See Figure 1.

The diversity is structured so that the exploitation sets
of the variants are disjoint. The advantage of this approach
is that it requires an attacker to compromise all variants
simultaneously with the same input. Because the variants
are structured to have disjoint exploitation sets, conduct of
large classes of important attacks is impossible. As a sim-
ple but powerful example, consider two variants whose text
address spaces are disjoint (we call this structured diversity
non-overlapping code or NOC). Any attack that depends on
a code location (for example an ROP-attack [12]) cannot
succeed in both NOC variants simultaneously.

This paper presents the status of a collaboration between
Apogee Research and the University of Virginia to build

Figure 1: N-Variant Framework (from original
USENIX paper [5])

a production-quality cyber-fault-tolerant system based on
the N -variant concept as part of DARPA’s Cyber Fault-
tolerant Attack Recovery (CFAR) program. The program’s
goal is to apply the power of structured diversity as a defense
to protect vulnerable COTS software, achieve low-overhead
N -variant execution by exploiting the power of current and
future multi-core architectures, and provide the ability to
withstand sustained and persistent attacks by supporting
the ability to hot-swap new variants to replace potentially
compromised variants.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly describes the design of our CFAR system. The
following section gives the current status of the project. Sec-
tion 4 provides a very brief overview of related work.

2. CFAR DESIGN
The Double Helix and RAVEN CFAR architectures are

illustrated in Figure 2. Double Helix processes an applica-
tion to defend (ATD) and produces a package of variants
to be run in the RAVEN multi-variant execution environ-
ment. The N -variant bundle includes all the information
necessary to run the variants (e.g., program paths, libraries
required, etc.), information about the security argument as
to which classes of attack are covered, and the policies to
apply when an attack is detected (e.g., recovery policies,
which new variants to instantiate, etc.). The following sec-
tions provide more details about Double Helix and RAVEN.

2.1 Structured Variant Generation
Double Helix processes and diversifies binaries, including

libraries, i.e., no source code or debugging information is re-
quired and the system can operate on stripped binaries. The
ability to operate on binaries provides broad applicability, in
particular the ability to process legacy software for which ei-
ther source code is not available or the translation toolchain
is not available because of changing compilers, libraries, or
other development assets.

Variants are generated via the process illustrated in Fig-
ure 2. Double Helix takes as input an application-to-defend
(ATD) that is composed of one or more binary code units
(BCU), i.e., an executable file and its dependent shared li-
braries.

High-precision static binary analysis is performed to gather
control-flow and data-flow information that will be used to
guide the N -Variant Instantiators. The information gath-
ered during static analysis is stored in the intermediate rep-
resentation database (IRDB).

Binary	 Code	 Unit	
(executable,	 libraries)	

V0	

Recovery	 Manager	 Monitor	

V1	 Vn	

Kernel	

Syscalls	

LKM	

RAVEN	 MVEE	

Double	 Helix	

StaFc	 Binary	
Analysis	 N-‐Variant	 InstanFators	

(staFc/dynamic	
binary	 rewriters)	

Zipr Strata

Equivalence	 &	
Security	 Proof	
Generator	

IRDB	

N-‐variant	 ApplicaFon	
Designer	

Diversity	 TransformaFon	 Library	
(temporal,	 data,	 code,	 architecture,	 algorithms,	 ABI,	 API,	 …)	

SLRn ABIn

Fine-‐grained	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Medium-‐Grained	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Coarse-‐grained	

Algon ILR

Figure 2: The architecture of the Double Helix-
RAVEN CFAR system.

The IRDB is the information store for the N -variant Ap-
plication Designer and the N -variant instantiators. It con-
tains information about the instructions that make up the
program, their addresses, and their control and data flow.
It also contains data about each function (e.g., stack layout,
entry and exit points), the global data layout of the pro-
gram, and other important information such as the targets
of the indirect branches.

The Diversity Transform Library contains various fine-
grained (machine level), medium-grained (programming lan-
guage/ application level), and coarse-grained (algorithmic
level) transformations that can be applied to create variants.
Making use of APIs to access and manipulate information
stored in the IRDB, these transformations can be applied
either using a probabilistic or structured approach. Fine-
grained transformations that are planned include instruction
location randomization (ILR), block-level instruction loca-
tion randomization (BILR), inter- and intra-frame stack lay-
out randomization (SLR), heap randomization, probabilistic
control-flow integrity, and structured non-overlapping code
(NOC). Details of these transformations can be found else-
where [5, 6, 8]. Examples of medium-grained diversity in-
clude transforms such as calling-sequence diversity, basic-
block diversity and promoting stack variables to the heap,
while coarse-grained diversity includes the use of different
algorithms (e.g., different memory allocation libraries, dif-
ferent implementations, etc.) and generation of variants us-
ing a popular automated program repair approach called

GenProg [7].
For each variant, the N -variant Application Designer se-

lects, composes, and applies diversity transformations from
the various levels of abstraction in the Diversity Transform
Library.

Double Helix provides two variant instantiators—a dy-
namic binary rewriter (Strata) [11] and a static binary rewriter
(Zipr). The choice of which to use depends on the applica-
tion, the diversity transformation(s) that will be applied,
and overhead requirements. Static rewriting incurs little or
no run-time space and time overhead, while dynamic rewrit-
ing does incur modest amounts. However, dynamic rewrit-
ing allows the ATD to be transformed at runtime thereby
producing a moving target.

The Equivalence and Security Proof Generator provides
assurance that any variant derived by the Diversity Trans-
form Library behaves like the original binary on non-malicious
input. The equivalence proof generator combines formal
proofs and empirical evidence based on testing to provide
proof of functional equivalence. The security proof gener-
ator compares the behavior of variants after each has been
affected by the same attack input and demonstrates that the
variants behave in a detectably different fashion, i.e., they
diverge.

2.2 Multi-variant Execution Environment
RAVEN is a cyber-fault-tolerant runtime infrastructure

that leverages the parallelism of multi-core CPUs to realize
an efficient multi-variant execution environment (MVEE).
The MVEE executes multiple variants of an ATD in paral-
lel, ensures containment of a corrupted variant until diver-
gence is detected, and performs divergence detection across
the variants. RAVEN’s MVEE includes a loadable kernel
module (LKM), a user-level monitor process, and a recovery
manager.

The LKM intercepts system calls to distribute the inputs
to the variants, unifies the variants’ outputs, synchronizes
the variants, and detects divergence of the variants. Input
distribution to the variants and output merging allow the
n variants to behave like a single process. If divergence is
detected, the Monitor is informed so the appropriate actions
can be taken.

The Monitor process launches an ATD by requesting in-
stantiation of n variants of the ATD as child processes, in-
forms the kernel via the LKM which processes comprise the
ATD, communicates with the LKM regarding divergence de-
tection, and informs the recovery manager if any of the vari-
ants crash or if system call divergence between the variants is
detected. RAVEN provides a system call cross-checking API
to allow N -variant bundle producers to select the manner in
which divergence checking is performed. The bundle pro-
ducer can use the default system call cross-checking mecha-
nism which performs the check on entry to the system call
or specify custom state-similarity cross-checking functions.

The Recovery Manager implements the recovery protocol
when a variant crashes or divergence is reported. The recov-
ery protocol includes instructing the Monitor to terminate
the designated variant and pause the other variants in the
set, selecting a new variant, synthesizing state for it, adding
it to the variant set, and then re-activating the variant set.
The basic functionality of checkpoint and recovery is pro-
vided by Checkpoint/Restore in Userspace (CRIU) [16].

3. CURRENT STATUS AND RESULTS
This project has been underway for eight months, and,

at this point, Double Helix can analyze and diversify single-
threaded ATDs, and run them in RAVEN. As we approach
the end of Phase 1, the focus of the project is: (a) to di-
versify and execute Apache (including the Apache Portable
Runtime library, the Apache Portable Runtime Utility Li-
brary, and the Perl 5 Compatible Regular Expression Li-
brary (libpcre3-dev)) running in its prefork configuration,
and (b) to diversify and execute the thtppd web server. In
Phase 2, we will tackle multi-threaded ATDs. The rest of
this section provides details of the implementation status
and an unexpected result.

The following diversity transformations are implemented
in Double Helix: structured non-overlapping code, inter-
frame stack layout randomization, structured stack canaries,
and block-level instruction location randomization. These
transformations can be composed and applied to a single bi-
nary. Currently only Zipr-produced N -variant bundles run
in RAVEN. The use of Strata to apply diversity transforms
dynamically uncovered an important design issue that is
currently being addressed. Recall that the RAVEN Mon-
itor synchronizes system calls among variants and checks
them for divergence. Because the diversifications applied
by Strata are applied at runtime, the diversifications can
be different. By design, Strata in each variant behaves dif-
ferently (i.e., executes a different sequence of system calls).
Consequently, the RAVEN monitor reports divergence. The
solution, now being implemented, is to allow Strata, which is
considered part of the trusted base, to turn off cross checking
of its system calls.

Checkpoint and recovery is implemented and the RAVEN
system is able to checkpoint an ATD and use the ATD to
restart. The ability to hot-swap two variants by checkpoint-
ing and transferring state to a new variant is planned for
Phase 2.

We are building a PVS model of the x86 instruction set
to prove functional equivalence of variants. The model cur-
rently consists of 2600 lines and 482 proofs. We are currently
able to prove equivalence of simple programs.

In terms of the ability of Double Helix and RAVEN to
detect attacks, a third party is developing a corpus of ATDs
that include vulnerabilities. They also provide “proofs of
vulnerability” in the form of inputs that exploit the vulnera-
bility. Our system is able to detect attacks against vulnera-
bilities that are covered by our diversity transforms. For ex-
ample, NOC transform detects exploits that rely on absolute
addresses. An important aspect of the project is continuous
testing using a range of vulnerabilities.

As an interesting demonstration of the power of N -variant
systems, we report on an example in which Double Helix un-
covered an unknown bug in an ATD. During testing of an
ATD that had been diversified using structured canaries, the
system reported divergence on a benign input. Our immedi-
ate assumption was that the diversity transform had altered
the functionality of the ATD. However, analysis of the diver-
gence revealed a subtle bug in the ATD that, when presented
with the provided set of benign inputs, did not demonstrate
any failures. Fortunately, the diversity transform acted as
an “error amplification” mechanism and quickly exposed the
bug which was an off-by-4 error combined with a buffer over-
read and a buffer overwrite vulnerability.

4. RELATED WORK
The N -variant system concept was first proposed by Cox

et al. [5]. Subsequent research proposed additional struc-
tured diversity transforms and built similar systems [3, 10,
15].

5. ACKNOWLEDGEMENTS
This research was developed with funding from the De-

fense Advanced Research Projects Agency (DARPA). The
views, opinions, and/or findings expressed are those of the
author(s) and should not be interpreted as representing the
official views or policies of the Department of Defense or the
U.S. Government.

6. REFERENCES
[1] E. G. Barrantes, D. H. Ackley, S. Forrest, and

D. Stefanović. Randomized instruction set emulation.
ACM Transactions on Information and System
Security, 8(1):3–40, Feb. 2005.

[2] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and
D. Boneh. Hacking blind. In Proceedings of the 2014
IEEE Symposium on Security and Privacy, SP ’14,
pages 227–242, Washington, DC, USA, 2014. IEEE
Computer Society.

[3] D. Bruschi, L. Cavallaro, and A. Lanzi. Diversified
process replicae for defeating memory error exploits.
In IEEE International Conference on Performance,
Computing, and Communications Conference,
IPCCC’07, pages 434–441, April 2007.

[4] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang. StackGuard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In
Proceedings of the 7th Conference on USENIX
Security Symposium - Volume 7, SSYM’98, pages 5–5,
Berkeley, CA, USA, 1998. USENIX Association.

[5] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu,
J. Davidson, J. Knight, A. Nguyen-Tuong, and
J. Hiser. N-variant systems: A secretless framework
for security through diversity. In Proceedings of the
15th Conference on USENIX Security Symposium -
Volume 15, USENIX-SS’06, Berkeley, CA, USA, 2006.
USENIX Association.

[6] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W.
Davidson. ILR: Where’d my gadgets go? In
Proceedings of the 2012 IEEE Symposium on Security
and Privacy, SP ’12, pages 571–585, Washington, DC,
USA, 2012. IEEE Computer Society.

[7] C. Le Goues, T. V. Nguyen, S. Forrest, and
W. Weimer. GenProg: A generic method for
automatic software repair. IEEE Trans. Softw. Eng.,
38(1):54–72, Jan. 2012.

[8] B. Rodes, A. Nguyen-Tuong, J. D. Hiser, J. C. Knight,
M. Co, and J. W. Davidson. Defense against
stack-based attacks using speculative stack layout
transformation. In S. Qadeer and S. Tasiran, editors,
Runtime Verification, volume 7687 of Lecture Notes in
Computer Science, pages 308–313. Springer Berlin
Heidelberg, 2013.

[9] G. F. Roglia, L. Martignoni, R. Paleari, and
D. Bruschi. Surgically returning to randomized libC.

In Proceedings of the 2009 Annual Computer Security
Applications Conference, ACSAC ’09, pages 60–69,
Washington, DC, USA, 2009. IEEE Computer Society.

[10] B. Salamat, T. Jackson, A. Gal, and M. Franz.
Orchestra: Intrusion detection using parallel execution
and monitoring of program variants in user-space. In
Proceedings of the 4th ACM European Conference on
Computer Systems, EuroSys ’09, pages 33–46, New
York, NY, USA, 2009. ACM.

[11] K. Scott and J. Davidson. Strata: A software dynamic
translation infrastructure. In IEEE Workshop on
Binary Translation, September 2001.

[12] H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In Proceedings of the 14th ACM Conference on
Computer and Communications Security, CCS ’07,
pages 552–561, New York, NY, USA, 2007. ACM.

[13] H. Shacham, M. Page, B. Pfaff, E.-J. Goh,
N. Modadugu, and D. Boneh. On the effectiveness of
address-space randomization. In Proceedings of the
11th ACM Conference on Computer and
Communications Security, CCS ’04, pages 298–307,
New York, NY, USA, 2004. ACM.

[14] A. N. Sovarel, D. Evans, and N. Paul. Where’s the
FEEB? the effectiveness of instruction set
randomization. In Proceedings of the 14th Conference
on USENIX Security Symposium - Volume 14,
SSYM’05, pages 10–10, Berkeley, CA, USA, 2005.
USENIX Association.

[15] S. Volckaert, B. De Sutter, T. De Baets, and
K. De Bosschere. GHUMVEE: Efficient, effective, and
flexible replication. In Proceedings of the 5th
International Conference on Foundations and Practice
of Security, FPS’12, pages 261–277, Berlin,
Heidelberg, 2013. Springer-Verlag.

[16] Checkpoint/restore in userspace. http://criu.org.

[17] D. Williams, W. Hu, J. W. Davidson, J. D. Hiser,
J. C. Knight, and A. Nguyen-Tuong. Security through
diversity: Leveraging virtual machine technology.
IEEE Security & Privacy, 7(1):26–33, Jan.-Feb. 2009.

[18] J. Xu, Z. Kalbarczyk, and R. Iyer. Transparent
runtime randomization for security. In Proceedings of
the 22nd International Symposium on Reliable
Distributed Systems, pages 260–269, oct. 2003.

