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Abstract. It is difficult to write programs that behave correctly in the
presence of exceptions. We describe a dataflow analysis for finding a cer-
tain class of mistakes made while programs handle exceptions. These
mistakes involve resource leaks and failures to restore program-specific
invariants. Using this analysis we have found over 1,200 bugs in 4 million
lines of Java. We give some evidence of the importance of the bugs we
found and use them to highlight some limitations of destructors and final-
izers. We propose and evaluate a new language feature, the compensation
stack, to make it easier to write solid code in the presence of exceptions.
These compensation stacks track obligations and invariants at run-time.
Two case studies demonstrate that they can yield more natural source
code and more consistent behavior in long-running programs.

1 Introduction

It is easier to fix software defects if they are found before the software is deployed.
It is difficult to use testing to evaluate program behavior in exceptional situa-
tions, and thus difficult to use it to find exception-handling bugs. This chapter
presents an analysis for finding a class of program mistakes related to such ex-
ceptional situations. It also describes a new language feature, the compensation
stack, to make it easier to fix such mistakes.

In this context an exceptional situation is one in which something external to
the program behaves in an uncommon but legitimate manner. For example, a
request to write a file may fail because the disk is full or the underlying operating
system is out of file handles. Similarly, a request to send a packet reliably may fail
because of a network breakdown. Such examples represent actions that typically
succeed but may fail through no fault of the main program.

Testing a program’s behavior in exceptional situations is difficult because such
situations, often called faults or run-time errors, must be artificially introduced
while the program is executing. Since a program cannot perform correctly if
all of its actions fail, a special fault model governs which faults may occur and
when they may occur. Once the fault model has been established the faults
must still be injected during testing. Both physical techniques [1] and special
program analyses and compiler instrumentation approaches [2] have been used
to inject faults. These approaches are still based on testing, however, and require
indicative workloads and test cases.
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Languages like Java, C++ and C# use language-level exceptions to signal and
handle exceptional situations. The most common semantic framework for excep-
tions is the replacement model [3]. Complicated exception handling is difficult to
reason about and to code correctly. It can become a source of software defects
related to reliability. In particular, our experiments show that programs make
mistakes when attempting to handle multiple cascading exceptions or multiple
resources in the presence of a single exception.

In this chapter we use a fault model linking some run-time errors with certain
language-level exceptions [1,4]. The model requires programs to behave correctly
in the presence of common environmental conditions, like network congestion or
database contention. It does not require that we consider memory-safety faults
(e.g., array bounds-check failures). The model allows multiple “back-to-back”
faults and is good at finding error-handling bugs. Our notion of correct behav-
ior in the presence of exceptions is restricted to a few simple specifications for
proper resource and API usage. We believe that programs should adhere to these
specifications even in the presence of run-time errors.

We present a static dataflow analysis to find bugs in a program with respect to
a given specification and a given fault model. An error report from the analysis
includes a program path, one or more run-time errors and one or more resources
governed by the specification. Such an error report claims that if the run-time
errors occur at the given points along the program path, the program will misuse
the given resources. The analysis is path-sensitive, intraprocedural and context-
insensitive. It precisely models control flow, especially that related to exceptions.
It abstracts away data values and only tracks the resources mentioned in the
specification. Given a few simple filtering rules, the analysis reported no false
positives in our experiments, but it can miss real errors. The analysis is quite
successful at finding a certain class of mistakes: it found over 1,200 bugs in
four million lines of code. In the few cases where we were able to make such
measurements, 44-45% of the reported bugs were fixed by developers.

Based on that work finding bugs we propose the compensation stack, a lan-
guage feature for ensuring that simple resources and API rules are handled
correctly even in the presence of run-time errors. We draw on the concepts of
compensating transactions, linear sagas, and linear types to create a model in
which important obligations are recorded at run-time and are guaranteed to be
executed along all paths. By enforcing a certain ordering and moving some book-
keeping from compile-time to run-time we provide more flexibility and ease-of-
use than standard language approaches to adding linear types or transactions.
We provide a static semantics for compensation stacks to highlight their dif-
ferences from pure linear type systems and we present case studies using our
implementation to show that they can be used to improve software reliability.

The rest of this chapter is organized as follows. We describe of the state of
the art in handling exceptional situations at the language level in Section 2.
We present a static data-flow analysis that finds exception-handling mistakes in
Section 3. In Section 4 we present the results of our analysis, including experi-
ments in Section 4.1 to measure the importance of the bugs found. We discuss
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finalizers and destructors in Section 5 and highlight some of their weaknesses
in this context. In Section 6 we propose the compensation stack as a language
feature. We describe our implementation in Section 7 and our type system in
Section 8. In Section 9 we report on experiments in which we apply compensa-
tion stacks to error-handling in real programs in order to improve reliability.

2 Handling Exceptional Situations in Practice

The goal of an exception handler is program- and situation-specific. For example,
a networked program may handle a transmission exception by attempting to
resend a packet. A file-writing program may handle a storage exception by asking
the user to specify an alternate destination for the data. We will not consider
such high-level policy notions, instead focusing on generic, low-level notions of
correctness related to resource handling and correct API usage.

01: Connection cn; PreparedStatement ps; ResultSet rs;
02: try {
03: cn = ConnectionFactory.getConnection(/* ... */);
04: StringBuffer qry = ...; // do some work
05: ps = cn.prepareStatement(qry.toString());
06: rs = ps.executeQuery();
07: ... // do I/O-related work with rs
08: rs.close();
09: ps.close();
10: } finally {
11: try { cn.close(); } catch (Exception e1) { }
12: }

Fig. 1. Ohioedge CRM Exception Handling Code (with bug)

We begin with an example showing how error-handling mistakes can occur
in practice. The code in Figure 1 was taken from Ohioedge CRM, the largest
open-source customer relations management project. It uses language features to
facilitate exception handling (i.e., nested try blocks and finally clauses), but
many problems remain. Connections, PreparedStatements and ResultSets are
important global resources associated with an external database. Our specifica-
tion of correct behavior requires that the program eventually close each one.

In some situations the exception handling in Figure 1 works correctly. If a
run-time error occurs on line 4, the runtime system will signal an exception, and
the program will close the open Connection on line 11. However, if a run-time
error occurs on line 6 (or 7 or 8), the resources of ps and rs may not be freed.

One common solution is to move the close calls from lines 8 and 9 into the
finally block (e.g., before cn.close on line 11). This approach is insufficient
for at least two reasons. First, the close method itself can raise exceptions
(as indicated by the fact that it is surrounded by a try-catch and by its type
signature), so a failure while closing the first resource might leave the last one
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dangling. Second, such code may also attempt to close an object that has never
been created. If an error occurs on line 4 after cn has been created but before
rs has been created, control will jump to line 10 and then invoke rs.close on
line 11. Since rs has not yet been allocated, this will signal an error and control
will jump to line 13 without invoking close on cn.

Using standard language features there are two common ways to address the
situation. The first involves using nested try-finally blocks. One block is re-
quired for each resource handled simultaneously. This approach is rarely used
correctly in practice, as methods commonly use three to five resources simulta-
neously. The second approach is to use special sentinel values or run-time checks
to ensure proper resource handling. This approach has the advantage that one
try-finally statement can handle any number of simultaneous resources. Un-
fortunately, it is difficult for humans to write such bookkeeping code correctly. If
the guarded code contains any control-flow (e.g., allocating a list of ResultSets),
that flow must be duplicated in the finally clause.

The Ohioedge CRM code highlights a number of observations. First, program-
mers are aware of the safety policies: close is common. Second, programmers are
aware of possibility of run-time errors: language-level exception handling (e.g.
try and finally) is used prominently. Third, there are many paths where ex-
ception handling is poor and resources may not be dealt with correctly. Finally,
fixing the problem typically has software engineering disadvantages: the distance
between any resource acquisition and its associated release increases, and extra
control flow used only for exception-handling must be included. In addition, if
another procedure wishes to make use of Connections, it must duplicate all of
this exception handling code. Duplication is frequent in practice: the Ohioedge
source file containing our example also contains two similar procedures with the
same mistakes. Developers have cited this required repetition to explain why
exception handling is sometimes ignored [5]. In general, correctly dealing with
N resources requires N nested try-finally statements or a number of run-time
checks. Such problems are error-prone in practice.

3 Bug-Finding Dataflow Analysis

We now present an analysis to find error-handling bugs. The analysis yields
paths through methods on which mistakes may occur and can be used to direct
changes to the source code to improve exception handling. The analysis may
mistakenly report correct code as buggy and may fail to report real errors. We
chose to take a fully static approach to avoid the problem of test case generation.

The analysis uses standard finite state machine specifications [6,7,8,9] to de-
scribe proper resource and API usage. We use a Java-specific fault model [4]
to construct a control-flow graph where method invocations can raise declared
checked exceptions. We chose Java because experiments show that its exceptions
and run-time errors are correlated [1] and because method signatures include
exception information. The analysis itself is language-independent. It is path-
sensitive because we want to consider control flow and because the abstract
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state of a resource (e.g., “opened” or “closed”) depends on control flow. It is in-
traprocedural for scalability. This leads to false positives, which we eliminate via
heuristics that may mask real errors. The analysis abstracts data values, keeping
sets of outstanding resource states as per-path dataflow facts. This abstraction
can lead to false positives and false negatives, but stylized usage patterns allow
us to eliminate the false positives in practice. At join points we keep dataflow
facts separate if they have distinct sets of resources. We report a violation when
a path leaves a method with a resource that is not in an accepting policy state.

3.1 Analysis Details

Our analysis sybmolically executes all code paths in each method body, abstract-
ing data values but tracking control flow, exceptions and the specification.

Given the control-flow graph, our flow-sensitive, intraprocedural dataflow
analysis [6,7,10] finds paths where programs violate the specification (typically
by forgetting to discharge obligations) in the presence of run-time errors. We
retain as dataflow facts paths through the program and a multiset of resource
safety policy states for each path. That is, rather than tracking which variables
hold resources we track a set of acquired resource states. We begin the analysis
of each method body with an empty path and no obligations.

The analysis is given with respect to a safety policy specification 〈Σ, S, s0, δ, F 〉.
Given such a policy we must determine what state information to propagate on the
CFG by giving flow and grouping functions. Each path-sensitive dataflow fact f is
a pair 〈T , L〉. The first component T is a multiset of specification states. So for
each s ∈ T we have s ∈ S. We use a multiset because it is possible to have many
obligations for a single resource type (e.g., to have two open Sockets). The second
component L is a path, used when reporting violations, that lists program points
between the start of the method and the current CFG edge.

3.2 Flow Functions

The analysis is defined in terms of the flow functions given in Figure 2. The four
types of control flow nodes are branches, method invocations, other statements
and join points. Because our analysis is path-sensitive and does not always merge
dataflow facts at join points, each flow function formally takes a single incoming
dataflow fact and yields a set of outgoing facts.

We handle normal and conditional control flow by abstracting away data
values: control can flow from an if to both the then and the else branch
(assuming that the guard does not raise an exception) and our dataflow fact
propagates from the incoming edge to both outgoing edges. We write extend(f, L)
to mean the singleton set containing fact f with location L appended to its path.

A method invocation may terminate normally, represented by the fn edge in
Figure 2. If the method is not covered by the policy (i.e., meth /∈ Σ) then we
propagate the symbolic state f directly. If the method is in the policy and the
incoming dataflow fact f contains a state s that could transition on that method
we apply that transition δ and then append the path label L. This is similar to
the way tracked resources are handled in the Vault type system [11].
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extend(f, L) if meth /∈ Σ
extend(〈{s′} ∪ T , L′〉, L) if f = 〈T ∪ {s}, L′〉 and δ(〈s, meth〉) = s′

extend(〈{s} ∪ T , L′〉, L) else if f = 〈T , L′〉 and δ(〈s0, meth〉) = s
∅ otherwise (indicates a policy violation)

fe =
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extend(〈{s′} ∪ T , L′〉, L) if f = 〈T ∪ {s}, L′〉 and δ(〈s, meth〉) = s′

and s′ ∈ F
extend(f, L) otherwise

fother = extend(f, L)

fjoin =
�

extend(shorter(f, f ′), L) if f = 〈T , L〉 and f ′ = 〈T , L′〉
extend(f, L) ∪ extend(f ′, L) otherwise

extend(〈T , L′〉, L) = {〈T , L′ • L〉}

shorter(〈T , L〉, 〈T , L′〉) =
�

〈T , L〉 if |L| ≤ |L′|
〈T , L′〉 otherwise

Fig. 2. Analysis flow functions

A method may also create a new policy resource. For example, the first time
new Socket occurs in a path we create a new instance of the policy state machine
to model the use of that Socket object.

The final case for a successful method invocation indicates a potential program
error. In this case we have an event covered by the specification but the analysis
is not tracking any resource that is in a state for which that event is valid.
For the common two-state, two-event, open-close safety policies these violations
correspond to “double closes”. With more complicated policies they can also
represent invoking important methods at the wrong time (e.g., trying to write
to a closed File or trying to accept on an un-bound Socket). We report such
potential violations and stop processing along that path (i.e., the outgoing fact
is the empty set) to avoid cascading error reports.

A method invocation may also raise a declared exception, represented by the
fe edge in Figure 2. Our fault model is any method can either terminate normally
or raise any of its declared checked exceptions. It is this assumption that allows
us to simulate faults and find error-handling mistakes. Unlike the successful in-
vocation case, we do not update the specification state in the outgoing dataflow
fact. This is because the method did not terminate successfully and thus presum-
ably did not perform the operation to transform the resource’s state. However,
as a special case we allow an attempt to “discharge an obligation” or move a
resource into an accepting state to succeed even if the method invocation fails.
Thus we do not require that programs loop around close functions and invoke
them until they succeed — that would create unnecessary spurious error reports.
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The check s′ ∈ F requires that the result of applying this method would put the
object in an accepting state.

The grouping (or join) function tracks separate paths through the same pro-
gram point provided that they have distinct multisets of specification states.
Our join function uses the property simulation approach [7] to grouping sets of
symbolic states. We merge facts with identical obligations by retaining only the
shorter path for error reporting purposes (modeled here as shorter(s1, s2)). We
may visit the same location many times to analyze paths with different sets T .

To ensure termination we stop the analysis and flag an error when a program
point occurs twice in a single path with different obligation sets (e.g., if a pro-
gram acquires obligations inside a loop). In our experiments that never occurred.
We did encounter multiple programs that allocated and freed resources inside
loops, but the (lack of) error handling was always such that an exception would
escape the loop. The analysis is exponential in the worst case but quite efficient
in practice. Analyzing the 57,000-line hibernate program, including parsing,
typechecking and printing out the resulting violations, took 104 seconds and 46
MB of memory on a 1.6 GHz machine.

The analysis goal is to find a path to the end of a method where a safety
policy resource does not end in an accepting state. That is, for each f = 〈T , L〉
that enters the end node of the CFG, if ∃s ∈ T . s /∈ F the analysis reports a
candidate violation along path L.

It is desirable to use heuristics in a post-processing step to filter candidate
violations [4,12]. In this case three simple filters eliminate all false positives we
encountered but could cause this analysis to miss real errors. Based on a random
sample of two of our benchmarks, applying these three filters causes our analysis
to miss 10 real bugs for every 100 real bugs it reports. We discuss the analysis
results in the next section.

4 Poor Handling Abounds

In this section we apply the analysis from Section 3 and common specifications
to show that many programs make mistakes in handling exceptional situations.
We consider a diverse body of twenty-seven Java programs totaling four million
lines of code. The programs include databases, business software, networking
applications and software development tools.

Figure 3 shows results from this analysis. The “Bugs” columns show the num-
ber of methods that violate at least one policy. We applied four library-resource
policies (i.e., Sockets, Streams, file handles and JDBC database connections)
to all programs. In addition, a total of 69 program-specific policies (found via
specification mining [13]) were also used where applicable.

All of the reported methods were then manually inspected to verify that they
contained at least one error along a reported path. Simple heuristics eliminated
all false positive reports for these programs.

All paths in Figure 3 arose in the presence of exceptions the program did
not handle correctly. More than half of these paths featured some exception



Exception-Handling Bugs in Java 29

Program Lines of Code Bugs Program Lines of Code Bugs
javad 2000 4k 1 hibernate 2.0b4 57k 106
javacc 3.0 13k 4 jaxme 1.54 58k 6
jtar 1.21 17k 5 axion 1.0m2 65k 60
jatlite 3.5.97 18k 6 hsqldb 1.7.1 71k 53
toba 1.1c 19k 6 cayenne 1.0b4 86k 25
osage 1.0p10 20k 3 sablecc 2.17.4 99k 3
jcc 0.02 26k 0 jboss 3.0.6 107k 134
quartz 1.0.6 27k 17 mckoi-sql 1.0.2 118k 106
infinity 1.28 28k 21 portal 1.8.0 162k 39
ejbca 2.0b2 33k 31 pcgen 4.3.5 178k 17
ohioedge 1.3.1 40k 15 compiere 2.4.4 230k 322
jogg 1.1.3 47k 7 aspectj 1.1 319k 27
staf 2.4.5 55k 12 ptolemy2 3.0.2 362k 99

eclipse 5.25.03 1.6M 126

Fig. 3. 1251 Error handling mistakes in 3.9 million lines of code. The “Bugs” columns
indicate the number of distinct methods that contain violations of various policies.

handling (i.e., the exception was caught), but the resource was still leaked. This
result demonstrates that existing exception handlers contain mistakes.

4.1 The Importance of the Detected Bugs

Beyond raw numbers, the utility of the bugs found also matters. Even if a bug
represents a violation of the policy, it may not be worth the developer’s time
to fix. Commercial software ships with known bugs. Bugs that are viewed as
unlikely to affect real users go unfixed at many points in the development cycle.

Our analysis finds bugs that show up in the presence of exceptional situations
by reporting resource leaks along paths that contain one or more run-time errors.
We must show that these bugs are a serious problem “in the real world”. A
thorough evaluation of the importance of a bug is situation-specific and beyond
the scope of this chapter. Aspects such as the performance or security impact of
a bug or the cost of fixing it are difficult to measure quantitatively. We present
some evidence to suggest that the bugs we report are important.

One of the authors of ptolemy2 was willing to rank bugs we found on his own
five point scale. For that program, 11% of the bugs we reported were in tutorials
or third-party, and thus unimportant, code, 44% of them rated a 3 out of 5 for
taking place in “little used, experimental code”, 19% of them rated a 4 out of 5
and were “definitely a bug in code that is used more often”, and 26% of them
rated a 5 out of 5 and were “definitely a bug in code that is used often.” The
45% of the bugs that rated a 4 or 5 were fixed immediately. The author claimed
that for his long-running servers resource leaks were a problem that forced them
to reboot every day as a last-ditch effort to reclaim resources. We cannot claim
that this breakdown generalizes, but it does provide one concrete example.

The direct experiment of finding bugs, reporting them to developers and then
counting how many are fixed is difficult to perform, especially in the open-source



30 W. Weimer

community. We thus performed a time travel experiment to determine whether
the bugs found by our analysis were important enough to fix.

We used version control systems to obtain a snapshot of eclipse 2.0.0 from
July 2002 as well as one of eclipse 3.0.1 from September 2004. We analyzed
eclipse 2.0.0 and noted the first 100 bugs reported. Without reporting any
bugs to developers we looked for those bugs in eclipse 3.0.1 to see if they
had been fixed by the natural course of eclipse development. In our case 43%
of the bugs found by our analysis in eclipse 2.0.0 had been fixed by eclipse
3.0.1. Given our stated goal of improving software quality by finding and fixing
bugs before a product is released, this number is important and helps to validate
our analysis. Combined with our zero effective false positive rate it suggests that
using our analysis is worthwhile because almost half of the bugs it reports would
have to be fixed later anyway.

This section presents a static dataflow analysis that can locate software er-
rors in a program’s exception handling with respect to specification of correct
behavior. The analysis examines each method in turn and tracks resources gov-
erned by the specification along all paths. Implementation details of the analysis
presented here were previously discussed in earlier works [4,13].

5 An Attempt to Use Existing Language Features

Based on the mistakes found by our analysis, we claim that try-finally blocks
are ill-suited for handling certain classes of resources during run-time errors. In
essence, exceptions create hidden control-flow paths that are difficult for pro-
grammers to reason about. Before proposing a new language feature to simplify
resource reclamation in exceptional situations, we must consider the advantages
of two existing features: destructors and finalizers.

A destructor is a special method associated with a class. Destructors are used
in C++ as well as other languages like C#. When a stack-allocated instance
of that class goes out of scope, either because of normal control flow or because
an exception was raised, the destructor is invoked automatically. Destructors
are tied to the dynamic call stack of a program in the same way that local
variables are. Destructors provide guaranteed cleanup actions for stack-allocated
objects, even in the presence of exceptions. However, for heap-allocated objects
the programmer must remember to explicitly delete the object along all paths.
We would like to generalize the notion of destructors: rather than one implicit
stack tied to the call stack, programmers should be allowed to manipulate first-
class collections of obligations.

In addition, we believe that programmers should have guarantees about man-
aging objects and actions that do not have their lifetimes bound to the call stack
(such objects are common in practice — see e.g., Gay and Aiken [14]). In many
domains, multiple stacks are a more natural fit with the application. For exam-
ple, a web server might store one such stack for each concurrent request. If the
normal request encounters an error and must abort and release its resources,
there is generally no reason that another request cannot continue. A destructor
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can be invoked early, but would typically have to use a flag to ensure that ac-
tions are not redone when it is called again. We want such bookkeeping to be
automatic. Destructors are tied to objects and there are many cases where a
program would want to change the state of the object, rather than destroying
it. We shall return to that consideration in Section 7.

A finalizer is another special method associated with a class. Finalizers are
available in Java as well as other languages like C#. A finalizer is invoked on
an instance of a class when that instance is reclaimed by the garbage collec-
tor. The collector is not guaranteed to find any particular object and need not
find garbage in any order or time-frame. Compared to pure finalizers, most
programmer-specified error handling must be more immediate and more deter-
ministic. Finalizers are arguably well-suited to resources like file descriptors that
must be collected but need not be collected right away. Even that apparently-
innocuous use of finalizers is often discouraged because programs have a limited
number of file descriptors and can “race” with the collector to exhaust them [15].
In contrast, resources like JDBC database connections should be released as
quickly as possible, making finalizers an awkward fit for performance reasons.
For example, the Oracle9i documentation specifically states that finalizers are
not used and that cleanup must be done explicitly. We want a mechanism that
is well-suited to being invoked early. Like destructors, finalizers can be invoked
early but doing so typically requires additional bookkeeping.

More importantly, finalizers in Java come with no order guarantees. For ex-
ample, a Stream built on (and referencing) a Socket might be finalized after
that Socket if they are reclaimed in the same collection pass. We desire an
error handling mechanism that can strictly enforce dependencies and provide
a more intuitive ordering for cleanup actions. In addition, finalizers must be
asynchronous, which complicates how they can be written.

Finally, it is worth noting that Java programmers do not make even a sparing
use of finalizers to address these problems. Some Java implementations do not
implement finalizers correctly [16], finalizers are often viewed as unpredictable
or dangerous, and the delay between finishing with the resource and having the
finalizer called may be too great. In all of the code surveyed in Section 4, there
were only 13 user-defined finalizers. Standard libraries might make good use of
finalizers, but this is not always the case. The GNU Classpath 0.05 implementa-
tion of the Java standard library does not use finalizers for any of the resources
we considered in Section 4. Sun’s JDK 1.3.1 07 does use them, but only in some
situations (e.g., for database connections but not for sockets). While other or
newer standard libraries may well use finalizers for all such important resources,
one cannot currently portably rely on the library to do so. We want to make
something like a finalizer more useful to Java programmers by making it easier
to use and giving it destructor-like properties.

The results in Section 4 argue that language support is necessary: merely
making a better Socket library will not help if Sockets, databases, and user-
defined resources must be dealt with together. Using exception handling to deal
with important resources is difficult. In the next section, we describe a language
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mechanism that makes it easy to do the right thing: all of the bugs presented
here could have been avoided using our proposed language extension.

6 Compensation Stacks

Based on existing mistakes and coding practices, we propose a language exten-
sion where program actions and interfaces are annotated with compensations,
which are closures containing arbitrary code. At run-time, these compensations
are stored in first-class stacks. Compensation stacks can be thought of as gener-
alized destructors, but we emphasize that they can be used to execute arbitrary
code and not just call functions upon object destruction.

Our compensation stacks are an adaptation of the database notions of com-
pensating transactions [17] and linear sagas [18]. A compensating transaction
semantically undoes the effect of another transaction after that transaction has
committed. A saga is a long-lived transaction seen as a sequence of atomic ac-
tions a1...an with compensating transactions c1...cn. This system guarantees that
either a1...an executes or a1...akck...c1 executes. The compensations are applied
in reverse order. This model is a good fit for run-time resource error handling.
Many program actions require that multiple resources be handled in sequence.

Our system allows programmers to link actions with compensations, and guar-
antees that if an action is taken, the associated compensation will be also exe-
cuted.1 Compensation stacks are first-class objects that store closures. They may
be passed to methods or stored in object fields. The Java language syntax is ex-
tended to allow arbitrary closures to be pushed onto compensation stacks. These
closures are later executed in a last-in, first-out order. Closures may be run “early”
by the programmer, but are usually runwhena stack-allocated compensation stack
goes out of scope or when a heap-allocated compensation stack is finalized. If a
compensating action raises an exception while executing, the exception is logged
but compensation execution continues.2 When a compensation terminates (either
normally or exceptionally), it is removed from the compensation stack.

Compensation stacks normally behave like generalized destructors, deallocat-
ing resources based on lexical scoping, but they are also first-class collections
that can be put in the heap and that make use of finalizers to ensure that their

1 We do not model abnormal program termination. Whether functions like exit(1)
cause pending compensations to be executed or not is implementation-specific.

2 Neither Java finalizers nor POSIX cleanup handlers propagate such exceptions. Lisp’s
unwind-protect may not execute all cleanup actions if one raises an exception. In
analogous situations, C++ aborts the program. Since our goal is to keep the pro-
gram running and restore invariants, we log such exceptions. Ideally, error-prone
compensations would contain their own internal compensation stacks for error han-
dling. A second option would be to have the type system verify that a compensation
cannot raise an exception. This option is not desirable for Java programs. First, it
would require checking unchecked exceptions, which is non-intuitive to most Java
programmers. Second, most compensations can, in fact, raise exceptions (e.g., close
can raise an IOException).
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contents are eventually executed. They are as convenient as destructors when
lexical and lifetime scoping coincide and are flexible enough to handle resources
when they do not. The ability to execute some compensations early is impor-
tant and allows the common programming idiom where critical shared resources
are freed as early as possible along each path. In addition, the program can
explicitly discharge an obligation without executing its code (based on outside
knowledge not directly encoded in the safety policy). This flexibility allows com-
pensations that truly undo effects to be avoided on successful executions, and it
requires that the programmer annotate a small number of success paths rather
than every possible error path. Additional compensation stacks may be declared
to create a “nested transaction” effect. Finally, the analysis in Section 3 can be
easily modified (based on the type system described later in Section 8) to show
that programs that make use of compensation stacks do not forget obligations.

7 Compensation Stack Pragmatics

We implemented compensation stacks via a source-level transformation for
Java programs. We defined a CompensationStack class, added support for clo-
sures [19], and added syntactic sugar for lexically-scoped compensation stacks.

Consider again the client code from Figure 1. Our first step is to annotate the
interfaces of methods that acquire important resources. For example, we asso-
ciate with the action getConnection the compensation close at the interface
level so that all uses of Connections are affected. Consider this definition:

public Connection getConnection() throws SQLException {
/* ... do work ... */

}

We would change it so that a CompensationStack argument is required. The
new syntax compensate { a } with { c } using (S) corresponds to execut-
ing the action a and then pushing the compensation code c on the stack S if a
completed normally. The modified definition follows:

public Connection getConnection(CompensationStack S) throws SQLException{
compensate {

/* ... do work ... */
} with {

this.close();
} using (S);

}

As in Section 5, this mechanism has the advantages of early release and
proper ordering over just using finalizers. Not all actions and compensations
must be associated at the function-call level; arbitrary code can be placed in
compensations. After annotating the database interface with compensation
information, the client code might look like this:
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01: Connection cn; PreparedStatement ps; ResultSet rs;
03: CompensationStack S = new CompensationStack();
04: try {
05: cn = ConnectionFactory.getConnection(S, /* ... */);
06: StringBuffer qry = ...; // do some work
07: ps = cn.prepareStatement(S, qry.toString());
08: rs = ps.executeQuery(S);
09: ... // do I/O-related work with rs
10: } finally {
11: S.run(); // execute all accrued compensations
12: }

As the program executes, closures containing compensation code are pushed
onto the CompensationStack S. Compensations are recorded at run-time, so
resources can be acquired in loops or other procedures. Before a compensation
stack becomes inaccessible, all of its associated compensations must be executed.
A particularly common use involves lexically scoped compensation stacks that
essentially mimic the behavior of destructors. We add syntactic sugar allowing
a keyword (e.g., methodScopedStack) to stand for a compensation stack that
is allocated at the beginning of the enclosing scope and finally executed at
the end of it. In addition, we optionally allow that special stack to be used for
omitted compensation stack parameters. We thus arrive at a simple version of
the original client code:

01: Connection cn; PreparedStatement ps; ResultSet rs;
02: cn = ConnectionFactory.getConnection(/* ... */);
03: StringBuffer qry = ...; // do some work
04: ps = cn.prepareStatement(qry.toString());
05: rs = ps.executeQuery();
06: ... // do I/O-related work with rs

All of the release actions are handled automatically, even in the presence of
run-time errors. An implicit CompensationStack based on the method scope
is being used and the resource-acquiring methods have been annotated to use
such stacks. Note that annotating interfaces with compensating actions does not
force a choice between lexically-scoped and heap-oriented resource management:
when an object is first created using an interface its associated obligations can
be put on any compensation stack.

Compensations can contain arbitrary code, not just method calls. For exam-
ple, consider this code fragment adapted from [5]:

01: try {
02: StartDate = new Date();
03: try {
04: StartLSN = log.getLastLSN();
05: ... // do work 1
06: try {
07: DB.getWriteLock();
08: ... // do work 2
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09: } finally {
10: DB.releaseWriteLock();
11: ... // do work 3
12: }
13: } finally { StartLSN = -1; }
14: } finally { StartDate = null; }

We might rewrite it as follows, using explicit CompensationStacks:

01: CompensationStack S = new CompensationStack();
02: try {
03: compensate { StartDate = new Date(); }
04: with { StartDate = null; } using (S);
05: compensate { StartLSN = log.getLastLSN(); }
06: with { StartLSN = -1; } using (S);
07: ... // do work 1
08: compensate { DB.getWriteLock(); }
09: with { DB.releaseWriteLock();
10: ... /* do work 3 */ }
11: ... // do work 2
12: } finally { S.run(); }

Resource finalization and state changes are handled by the same mechanism
and benefit from the same ordering. Assignments to StartLSN and StartDate
as well as “work 3” are examples of state changes that are not simply method
invocations. This rewrite also has the advantage that “undo” code is close to its
“do” counterpart.

Traditional destructors are tied to objects, and there are many cases where
a program would want to change the state of the object rather than destroying
it. Destructors could be used here by creating “artificial objects” that are stack-
allocated and perform the appropriate state changes on the enclosing object.
However, such a solution would not be natural. For example, the program from
which the last example was taken had 17 unique compensations (i.e., error-
handling code that was site-specific and never duplicated) with an average length
of 8 lines and a maximum length of 34 lines. Creating a new object for each
unique bit of error-handling logic would be burdensome, especially since many
of the compensations had more than one free variable (which would generally
have to become extra arguments to a helper constructor). Nested try-finally
blocks could also be used but are error-prone (see Section 2 and Section 4).

Previous approaches to similar problems can be vast and restrictive departures
from standard semantics (e.g., linear types [11] or transactions [20]) or lack
support for common idioms (e.g., running or discharging obligations early). We
designed this mechanism to integrate easily with new and existing programs, and
we needed all of its features for our case studies. With this feature, we found it
easy to avoid the mistakes that were reported hundreds of times in Section 4. In
the common case of a lexically-scoped linear saga of resources, the error handling
logic needs to be written only once with an interface, rather than every time a
resource is acquired. In more complicated cases (e.g., storing compensations in
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heap variables and associating them with long-lived objects) extra flexibility is
available when it is needed.

8 Compensation Stack Static Semantics

We provide a simple static type system for the correct use of explicitly-declared
compensation stacks. This allows us to highlight the differences between our
system and a full linear type system for tracking resources. It also provides a
framework in which to describe the ordering guarantees provided by our system.

e ::= skip no-op
| e1 ; e2 sequencing
| if ∗ then e1 else e2 non-deterministic choice
| while ∗ do e non-deterministic looping
| let ci = new CompStack() in e compensation stack creation
| compensate aj with bj using ci compensation stack use
| store ci store a stack in memory (address not modeled)
| let ci = load in e load a stack from memory (address not modeled)
| run ci discharge all of a stack’s obligations
| runEarly aj from ci discharge one obligation early

Fig. 4. A simple expression language with compensation stacks

Figure 4 shows a simple expression language involving compensation stacks.
Normal program variables (e.g., integers) and objects (e.g., Sockets) are ab-
stracted away. The join points after the non-deterministic conditional and loop
model arbitrary control flow. This draconian simplification is sufficient for mod-
eling compensating actions along all paths: gotos, while loops and exceptions
merely provide additional control-flow branches and join points. Exceptions are
tricky for programmers to deal with because they introduct control-flow that is
invisible to human eyes. Such control flow paths are examined by our analysis
(see Section 3); the type system presented here works similarly.

The compensation expressions are as described in Section 7. Each static
let ci = new CompStack() in e in the program is annotated with a fresh i for
bookkeeping purposes. The store ci expression represents storing a compensa-
tion stack in a global variable and setting a finalizer to run its compensations.
Perhaps the most important detail is that run ci and runEarly aj from ci remove
compensations from stacks after executing them at run-time. Compensations
are removed from stacks even if those stacks are stored in memory or global
variables. There is no danger of a “double-free” in calling run ci multiple times.

Each compensation stack in this system is similar to a tracked resource in a
linear type system [11]. Whenever a compensation stack is in scope, we know
statically at what location i it was allocated (or loaded). The typing rules for
compensation stacks are orthogonal to the typing rules for normal program ob-
jects. This type system rejects programs in which it cannot be guaranteed that
all compensations will be executed.

A compensation stack, which might store un-executed compensations, may
only go out of scope if it is stored in a global or if we can prove statically that
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C, D 	 skip : C, D
skip

C1, D1 	 e1 : C2, D2 C2, D2 	 e2 : C3, D3

C1, D1 	 e1 ; e2 : C3, D3
seq

C1, D1 	 e1 : C2, D2 C1, D1 	 e2 : C3, D3 C2 ∪ D2 = C3 ∪ D3

C1, D1 	 if ∗ then e1 else e2 : (C2 ∪ C3), (D2 ∩ D3)
if

C1, D1 	 e : C2, D2 C1 ∪ D1 = C2 ∪ D2

C1, D1 	 while ∗ do e : C1 ∪ C2, D1 ∩ D2
while

C1, D1 ∪ {i} 	 e : C2, D2 i ∈ D2 D3 = D2 \ {i}
C1, D1 	 let ci = new CompStack() in e : C2, D3

let

i ∈ C
C, D 	 compensate aj with bj using ci : C, D

compC

D2 = D1 \ {i} i ∈ D1

C, D1 	 compensate aj with bj using ci : C ∪ {i}, D2
compD

C2 = C1 \ {i} i ∈ C1

C1, D 	 store ci : C2, D ∪ {i} storeC i ∈ D
C, D 	 store ci : C, D

storeD

C1 ∪ {i}, D1 	 e : C2, D2 C3 = C2 \ {i} i ∈ C2 D3 = D2 \ {i} i ∈ D2

C1, D1 	 let ci = load in e : C3, D3
load

C2 = C1 \ {i} i ∈ C1

C1, D1 	 run ci : C2, D ∪ {i} runC i ∈ D
C, D 	 run ci : C, D

runD

i ∈ C ∪ D
C, D 	 runEarly aj from ci : C, D

early

Fig. 5. Expression language static semantics

all of its compensations have been executed. We approximate this by requiring
that run ci or store ci occur after the last compensate aj with bj using ci before
ci goes out of scope. Our typing judgment maintains two disjoint sets: C, a set
of “live” compensation stacks that may have un-executed compensations, and
D, a set of “dead” compensation stacks on which all compensations have been
executed or stored in memory. Adding a compensation to a dead stack makes it
live. Thus we propose an effect type system for compensation stacks.

The form of our typing judgment is C, D � e : C′, D′. This judgment says
that expression e typechecks in the context of live compensation stacks C and
unused stacks D and that after executing the expression the set of live stacks
will be C′ and the set of unused stacks will be D′.

Figure 5 shows the typing rules for the language in Figure 4. The seq rule
shows that this is a flow-sensitive type system for compensation stacks. The
conservative if rule describes the effects of a conditional. Recalling the invari-
ant C ∩ D = ∅, at the conditional join point the resulting live set C3 con-
tains all stacks that might be live after either branch and the dead set D3
contains all stacks that are dead after both branches. The C2 ∪ D2 = C3 ∪ D3
requirement prevents programs from creating a new compensation stack on one
branch of the conditional. This is impossible in our example language where
newly-created compensation stacks have local scope, but is possible in our Java
implementation.
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The while rule is also conservative. If the loop body can make a stack live, we
assume that it does. If body might make a stack dead, we assume that it does
not (a program must execute those stacks again later).

The let rule makes a new compensation stack and requires that it be dead as it
goes out of scope. The comp rules are relatively simple since stack management
happens at run-time. Adding a compensation to a dead stack makes it live and
compensations can only be added to valid, in-scope stacks.

The store rules simulate storing a compensation stack in a global variable and
consigning ultimate care of it to a finalizer. When it is finalized the run-time
system will execute any remaining compensations associated with it. There is
rarely a reason to store a stack with no outstanding obligations; the storeD is
provided for completeness. The load rule is similar to the let rule but the stack
need not be locally dead as it goes out of scope since it is still live in memory.

The run rules execute all remaining compensations in the given stack and
ensure that it is dead. The run and store rules are the only way to move a stack
from the live set C to the dead set D, so every stack must pass through a run
or store rule at least once just before going out of scope.

The early rule models our syntax for allowing the user to execute certain
compensations early. If the particular compensation has already been executed
or is otherwise no longer on the appropriate stack, nothing happens at run-time.
Regardless, the early rule cannot make a stack dead.

We say that a program e typechecks if ∅, ∅ � e : ∅, ∅. Our system can be viewed
as a linear type system for sets of resources rather than a linear type system for
individual resources. A program containing a loop that allocates resources and
puts obligations to deallocate them on a stack ci can be statically type-checked
provided that run ci occurs after any compensations are added to ci on all paths
containing ci before it goes out of scope. Similarly, programs in which only one
branch of a conditional adds an obligation to a compensation stack are handled
naturally. We also expect that it will be easier to avoid aliasing compensation
stacks than it is to avoid aliasing individual resources (e.g., in the same way
that it is easier to manually allocate and destroy regions of objects then it is to
manually use malloc and free for individual objects).

This formal model does not track whether individual elements in a compen-
sation stack have been executed. In practice, especially for lexically-scoped com-
pensation stacks that do not escape their scope, a static analysis similar to
the one in Section 3 can often determine exactly what the elements of such a
stack might be. In such cases the implementation can optimize away the dynamic
compensation stack object and insert the compensation code directly (effectively
writing correct nested finally-close blocks for the programmer). We do not
model such performance optimizations here.

We do not discuss method calls and returns here. An annotation system sim-
ilar to the one described in Vault [11] suffices: each function type also specifies
its requirements for compensation stacks and how it transforms them. The type
system is also amenable to the standard extension for handling exceptions. For
example, “try A B C catch D”, where B may raise an exception, can be
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modeled as if ∗ then A ; B ; C else A ; B ; D . Type checking can be done by
dataflow analysis (as in Section 3) without such code transformations.

9 Case Studies

We hand-annotated two programs to show that: (1) the run-time overhead is
low; (2) it is easy to modify existing programs to use compensation stacks; and
(3) it would not be difficult to write a new program from scratch using them.
Guided by the dataflow analysis in Section 3, the programs’ error handling was
modified to use compensation stacks; no truly new error handling was added and
the behavior was otherwise unchanged. This commonly amounted to removing a
close call (and its guarding finally) and using a CompensationStack instead
(possibly with a method that had been annotated to take a compensation stack
parameter). The overhead of maintaining the stack was dwarfed by the I/O
latency in our case studies. As a micro-benchmark example, a program that
creates hundreds of Sockets and connects each to a website is 0.7% slower if a
compensation stack tracks obligations to close the Sockets.

The first case study, Aaron Brown’s undo-able email store [5], is a mail proxy
that uses database-like logging. The original version was 35,412 lines of Java
code. Annotating the program took about four hours and involved updating
128 sites to use compensations as well as annotating the interfaces for some li-
brary methods (e.g., sockets and databases). The resulting program was 225
lines shorter (about 1%) because redundant error-handling code and control-flow
were removed. The program contains non-trivial error handling, including one
five-step saga of actions and compensations and one three-step saga. Compen-
sating actions ranged from simple close calls to 34-line code blocks with internal
exception handling and synchronization. The annotated program’s performance
was almost identical to the original on fifty micro-benchmarks and one example
workload (all provided by the original author). Performance was measured to be
within one standard deviation of the original, and was generally within one half
of a standard deviation; the overhead of tracking obligations at run-time was
dwarfed by I/O and other processing times. Compensations were used to handle
every request answered by the program. Finally, by injecting a run-time error in
the same cleanup code in both versions of the program, we were able to cause the
unmodified version to drop all SMTP requests. The version using compensations
handled that cleanup failure correctly and proceeded normally. While targeted
fault injection is hardly representative, it does show that the errors addressed
with compensations can have an impact on reliability.

The second case study, Sun’s Pet Store 1.3.2 [21], is a web-based, database-
backed retailing program. The original version was 34,608 lines of Java code. An-
notations to 123 sites took about two hours. The resulting program was 168 lines
smaller (about 0.5%). Most error handling annotations centered around database
Connections. Using an independent workload [1,22], the original version raises
150 exceptions from the PurchaseOrderHelper’s processInvoice method over
the course of 3,900 requests. The exceptions signal run-time errors related to
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RelationSets being held too long (e.g., because they are not cleared along with
their connections on some paths) and are caught by a middleware layer which
restarts the application.3 The annotated version of the program raises no such
exceptions: compensation stacks ensure that the database objects are handled
correctly. The average response times for the original program (over multiple
runs) is 52.06 milliseconds (ms), with a standard deviation of 100 ms. The av-
erage response time for the annotated program is 43.44 ms with a standard
deviation of 77 ms. The annotated program is both more consistent, because
less middleware intervention was necessary, and also 17% faster.

Together, these case studies suggest that compensation stacks are a natural
and efficient model for this sort of run-time error handling. The decrease in code
size argues that common idioms are captured by this formalism and that there
is a software engineering benefit to associating error handling with interfaces.
The unchanging or improved performance indicates that leaving some checks to
run time is reasonable. Finally, the checks ensure that cleanup code is invoked
correctly along all paths through the program.

10 Conclusion

Software reliability remains an important and expensive issue. This chapter
presents an approach for addressing a certain class of software reliability prob-
lems. We focus on exceptional situations, an aspect of software reliability that
remains under-investigated.

First, we presented a static dataflow analysis for finding bugs in how programs
deal with important resources in the presence of exceptional situations. The flow-
sensitive, context-insensitive analysis scales well to large programs. The analysis
found over 1,200 methods with mistakes in almost 4 million lines of Java code.

Second, based on those exception-handling bugs we designed a language fea-
ture to make it easier to fix such mistakes. We characterized why existing lan-
guage features were insufficient. We proposed that programmers keep track of
important obligations at run-time in special compensation stacks We provide a
static semantics for compensation stacks to highlight their differences from pre-
vious approaches like pure linear type systems. In two case studies we showed
that it is easy to apply compensation stacks to existing Java programs and that
they can be used to make programs simpler and, in some cases, more reliable.

We find this work to be a successful step toward making software more reliable
in the presence of exceptional situations. Using our analysis we can analyze
programs to find error-handling mistakes. Once mistakes have been located we
provide programmers with an easy-to-use tool for fixing them. All of this can be
done cheaply, before the program is deployed. We hope that this approach, or
approaches like it, will be more frequently adopted in the future.
3 While updating a purchase order to reflect items shipped, the processInvoice

method creates an Iterator from a RelationSet Collection that deals with
persistent data in a database. Unfortunately, the transaction associated with the
RelationSet has already been completed.
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