
CirFix: Automatically Repairing
Defects in Hardware Design Code

Hammad Ahmad, Yu Huang, Westley Weimer
University of Michigan, Ann Arbor, MI

1

Bugs = Expensive

2

“Debugging, on average, has grown to
consume more than 60% of today’s ASIC
and SoC verification effort.”
-Harry Foster, Mentor Graphics Corporation

Background

A Solution in the Realm of Software:
Automated Program Repair (APR)

3

Faulty program
w/ bug(s)

Test suite w/
at least one
failing test

Fault localization Patch

Validation

Repaired program No Repairs
Found

OR

“Generate
and Validate”

Background

Problem #1: Software-based APR is not
amenable to traditional hardware testbenches

4

Test suite
with two

failing tests

tc0: pass tc4: fail
tc1: pass tc5: pass
tc2: fail tc6: pass
tc3: pass tc7: pass

Fitness = 0.75 (6 passing, 2 failing tests)

Compiler version N-2017.12-SP2-1_Full64; Runtime version N-2017.12-SP2-1_Full64; Jan 11 11:37 2021
time, clk, reset, enable, count_out, overflow_out

0, 0, 0, 0, x, x
5, 1, 0, 0, x, x

...
250, 0, 0, 1, 5, 1
255, 1, 0, 1, 5, 1
256, 1, 0, 1, 6, 1

$finish called from file "first_counter_tb_t3.v", line 70.
$finish at simulation time 258

Fitness = ???

Background

Problem #2: Fault localization approaches from
software-based APR do not scale to hardware

5

Fault localization
techniques from
software-based

program repair (e.g.,
Tarantula)

Faulty program

Passing tests

Failing tests

Ranked suspiciousness
ratings based on lines
visited for passing and
failing tests

Hardware designs are parallel in nature!

But...

Background

● Proposes a novel dataflow-based fault localization approach for

hardware designs to implicate faulty design code

● Presents a novel approach to guide the search for a hardware design

repair using the existing hardware verification process

● SPOILER: Fixes hardware defects with a repair rate similar to that of

established software-based APR techniques

CirFix: A hardware-design focused automated repair algorithm based

on genetic programming (GP)

Introducing: CirFix

6Background

Fitness Function

● Fitness scores to evaluate candidate repairs

● Testbench instrumentation to record the values of

wires and registers at specified timesteps

● Bit-level comparison of instrumented wires and

registers against expected behavior

7Methodology

Fitness Function: Comparison

8

Simulation
output

Oracle

Oracle: a developer-provided information for circuit behavior

!: uninitialized variable
/: high impedence
_: bit value of 0 or 1

:!,#: ;th bit for time < in output
=!,#: ;th bit for time < in oracle

Methodology

Fault Localization

Produces a uniformly ranked set of implicated design code for a
faulty circuit description

9

AST for circuit
design, simulation

output, circuit
oracle

Comparison of output wire
values between simulation
and oracle to get identifier

names with output
mismatch

Fixed point analysis of
assignments to output

wires and registers

Uniformly ranked
set of implicated

AST nodes

Methodology

Fixed Point Analysis of Assignments

10

Returns a set of
wire/register names that
have output mismatch

Two ways to be implicated:
• Assignments: assigned variable in the mismatch

set
(e.g., count <= 1’b1;)

• Conditionals: conditional includes a
mismatched variable

(e.g., if(reset==1’b1) count <= 1’b0;)

Methodology

More on Methodology in the Paper!

• Selection: “choosing parent(s) to produce offspring(s) for the next
generation of GP evolution”

• Repair Operators: “borrowing code from elsewhere in the
parent’s design to produce a child”

• Repair Templates: “introducing new design code to the parent
to produce a child”

• Fix Localization: “guidelines for the APR algorithm to apply edits
to design code”

11Methodology

Benchmark Suite of Defect Scenarios

A defect scenario consists of:

● A Verilog circuit design

● An instrumented testbench for the design

● A developer-provided oracle for circuit behavior

● A design defect for the circuit

12Experimental Results

Benchmark Suite of Defect Scenarios

A defect scenario consists of :

● A Verilog circuit design

● An instrumented testbench for the design

● A developer-provided oracle for circuit behavior

● A design defect for the circuit

● A seeded defect by a hardware expert

13Experimental Results

Benchmark Suite: Hardware Projects

14

Project Description LOC

decoder_3_to_8 3-to-8 decoder 25

counter 4-bit counter with an overflow bit 56

flip_flop T-flip flop 16

fsm_full Finite state machine 115

lshift_reg 8-bit left shift register 30

mux_4_1 4-to-1 multiplexer 19

i2c Two-wire, bidirectional serial bus for data exchange 2018

sha3 Cryptographic hash function 499

tate_pairing Core for running the Tate bilinear pairing algorithm for elliptic curves 2206

reed_solomon_decoder Core for Reed-Solomon error correction 4366

sdram_controller Synchronous DRAM (SDRAM) memory controller 420

Introductory-level
VLSI course

projects

OpenCores
projects

Open-source
GitHub project

Experimental Results

Benchmark Suite: Defect Seeding

Recruited three hardware experts to seed defects into circuits

Two categories of defects

● Category 1 (i.e., “easy”)

● Category 2 (i.e., “hard”)

32 defect scenarios in benchmark suite

● 19 Category 1 defects

● 13 Category 2 defects

15Experimental Results

Experimental Setup

RQ #1. What fraction of defect scenarios can CirFix repair?

RQ #2. Does CirFix perform better at Category 1 (“easy”) defects
compared to Category 2 (“hard”) defects?

RQ #3. How effective is the CirFix fitness function at guiding the
search a repair? (Spoiler: highly effective; more in the paper!)

RQ #4. How sensitive is CirFix to the quality of the information for
expected behavior? (Spoiler: not very sensitive; more in the paper!)

16Experimental Results

RQ #1: Repair Rate for CirFix

CirFix found 21/32 (65.6%) plausible repairs, with 16/32 (50%)

deemed to be correct (i.e., high quality) upon manual inspection

● 2.05 hours average wall-clock time to find a repair

17Experimental Results

RQ #1: Repair Rate for CirFix

CirFix found 21/32 (65.6%) plausible repairs, with 16/32 (50%)

deemed to be correct (i.e., high quality) upon manual inspection

● 2.05 hours average wall-clock time to find a repair

18

Repair rate comparable to strong results from software-based

program repair (e.g., GenProg’s 52.4%, Angelix’s 34.1%)

Experimental Results

RQ #2: Performance for Individual Defect
Categories

CirFix repaired 12 out of 19 (63.2%) Category 1 (i.e., “easy”) defects and

9 out of 13 (69.2%) Category 2 (i.e., “hard”) defects

19

● 1.9 hours average wall-clock time to repair Category 1 defects, 2.2

hours average wall-clock time to repair Category 2 defects

● No evidence of statistically significant difference in the average

amount of time to find a repair between Category 1 and 2 defects (two-

tailed Mann Whitney U test, ! = 0.374)

Experimental Results

Conclusion

● CirFix: a framework for automatically repairing defects in hardware

designs with a 50% repair rate

● Fitness function based on visibility and comparison

● Fault localization approach based on fixed point analysis of assignments

● First publicly available benchmark for a variety of Verilog defects

○ Replication Materials: https://github.com/hammad-a/verilog_repair

20

Questions?

Feel free to contact Hammad Ahmad (hammada@umich.edu) to start a discussion!

Discussion

https://github.com/hammad-a/verilog_repair
mailto:hammada@umich.edu

