
Post-compiler Software Optimization for Reducing Energy

Eric Schulte∗ Jonathan Dorn† Stephen Harding∗ Stephanie Forrest∗ Westley Weimer†
∗Department of Computer Science †Department of Computer Science

University of New Mexico University of Virginia
Albuquerque, NM 87131-0001 Charlottesville, VA 22904-4740

{eschulte,stharding,forrest}@cs.unm.edu {dorn,weimer}@cs.virginia.edu

Abstract
Modern compilers typically optimize for executable size
and speed, rarely exploring non-functional properties such
as power efficiency. These properties are often hardware-
specific, time-intensive to optimize, and may not be amenable
to standard dataflow optimizations. We present a general
post-compilation approach called Genetic Optimization Al-
gorithm (GOA), which targets measurable non-functional
aspects of software execution in programs that compile to
x86 assembly. GOA combines insights from profile-guided
optimization, superoptimization, evolutionary computation
and mutational robustness. GOA searches for program vari-
ants that retain required functional behavior while improving
non-functional behavior, using characteristic workloads and
predictive modeling to guide the search. The resulting op-
timizations are validated using physical performance mea-
surements and a larger held-out test suite. Our experimental
results on PARSEC benchmark programs show average en-
ergy reductions of 20%, both for a large AMD system and a
small Intel system, while maintaining program functionality
on target workloads.

Categories and Subject Descriptors D.3.4 [Processors]:
Optimization; D.1.2 [Programming Techniques]: Auto-
matic Programming; D.2.5 [Software Engineering]: Test-
ing and Debugging; I.2.8 [Artificial Intelligence]: Heuristic
methods

Keywords Evolutionary Computation; Power Modeling;
Assembly Code; Compilation; Profile-guided Optimization;
Superoptimization; Mutational Robustness

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’14, March 1–5, 2014, Salt Lake City, Utah, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/2541940.2541980

1. Introduction
From embedded systems to large datacenters, extreme scales
of computation are increasingly popular. At such extremes,
properties such as energy consumption [10] and memory
utilization can be as important as runtime. For example, data
centers are estimated to have consumed over 1% of total
global electricity usage in 2010 [28]. However, there are few
program optimizations targeting these non-functional [19]
performance requirements. The few existing methods must
cope with complex architectures and workload interac-
tions [62]. Although techniques such as voltage scaling and
resource hibernation can be applied at the hardware level
to reduce energy consumption [43], software optimizations
tend to focus on cycle counts and instruction scheduling [35]
for consecutive instructions to lower the switching activ-
ity [47, § 4.3.3].

Software engineers are studying methods that trade the
guarantee of semantic preservation [11, 15, 22, 27, 65] for
greater reliability and robustness [2, 8, 49, 58], availability
and security [50], compile-time algorithmic flexibility [5],
or performance and quality of service [6, 39, 40]. Interest in
such tradeoffs spans domains as diverse as computer graph-
ics [59] and networked servers [50].

Stochastic search methods are increasingly successful at
evolving and repairing off-the-shelf software [14, 26, 33,
42, 65]. Similar to profile-guided optimizations, such tech-
niques leverage existing test suites or annotations [64] to en-
sure that proposed modifications preserve required function-
ality. Analysis of the test-based stochastic searches suggests
that software is mutationally robust, i.e., simple randomized
program transformations often produce semantically distinct
program implementations that still meet functional require-
ments [54]. This surprising result suggests an approach to
optimizing non-functional properties of programs.

We propose a post-compilation, software-based “Genetic
Optimization Algorithm” (GOA) for discovering optimiza-
tions and managing tradeoffs among non-functional soft-
ware properties. We illustrate the approach by focusing on
the example of energy usage, which combines runtime and
other more difficult-to-measure properties. GOA maintains
a population of randomly mutated program variants, first

1
639

selecting those that retain required functionality, and sec-
ond looking for those that improve a non-functional prop-
erty (encoded in an objective function). Our approach lever-
ages ideas from evolutionary computation (population-based
stochastic search), mutational robustness (random mutations
yield independent implementations of the same specifica-
tion), profile-guided optimization (performance measured
on workloads) and relaxed notions of program semantics
(customizing software to particular runtime goals and en-
vironments provided by a software engineer). Evolutionary
algorithms such as GOA are well-suited for exploring dif-
ficult search spaces [29]. As input, GOA requires only the
assembly code of the program to be optimized, a regression
test suite that captures required functionality, and a measur-
able optimization target.

We demonstrate GOA on the problem of reducing en-
ergy consumption for the PARSEC [9] benchmark programs
running on both desktop-class Intel and server-class AMD
hardware. We define an efficient and accurate architecture-
specific linear power model, which is parameterized by
hardware counters. This model provides the objective func-
tion used by GOA; we validate results found by the model
using physical wall-socket measurements. Experimentally,
GOA discovers both hardware- and workload-specific opti-
mizations, and reduces energy consumption of the PARSEC
benchmarks by 20% on average compared to the best avail-
able compiler optimizations.

The main contributions of this paper are as follows:

• GOA, a post-compiler method for optimizing non-functional
properties of assembly programs.
• A specialization of GOA that incorporates efficient pre-

dictive models to optimize energy consumption in assem-
bly programs.
• An empirical evaluation using PARSEC benchmarks

across two microarchitectures. We find that GOA re-
duces energy consumption by 20% as compared to the
best available compiler optimizations, generates opti-
mizations that generalize across different size workloads,
and in most cases fully retains program functionality even
against held-out test cases.

The next section provides three examples of optimiza-
tions found using GOA. We then describe the GOA algo-
rithm more formally (Section 3), report experimental results
(Section 4) discuss the relevant background material and re-
lated work (Section 5), and discuss the significance of our
results and conclude (Sections 6 and 7).

2. Motivating Examples
This section describes three illustrative examples of energy
optimizations found by GOA in the PARSEC benchmark
suite.

blackscholes implements a partial differential-equation
model of a financial market. Because the model runs so

quickly, the benchmark artificially adds an outer loop that
executes the model multiple times. These redundant calcu-
lations are not detected by standard static compiler analyses.
GOA has discovered multiple ways to avoid this redundancy
by making slight random variations on the original assembly
code. For example, some variations can change the number
of floating point operations or cache accesses. Each candi-
date is validated dynamically on the regression test suite,
and if it passes all tests, retaining required functionality, it is
then evaluated for energy efficiency using a linear combina-
tion of hardware performance counters. Over time, the best
variants are subject to further modifications, until a stopping
criterion is reached, and the most energy-efficient variant
found is validated using physical energy measurements.

The validated blackscholes optimization returned by
GOA discovered and removed the redundant calculation on
both AMD and Intel hardware. However, the optimization
strategy differed between the two architectures. In the Intel
case, a “subl” instruction was removed, preventing multiple
executions of a loop, while in the AMD case a similar effect
was obtained by inserting a literal address which (due to
the density of valid x86 instructions in random data [7])
is interpreted as valid x86 code to jump out of the loop,
skipping redundant calculations.

GOA also finds hardware-specific optimizations in the
swaptions benchmark, which prices portfolios. On AMD
systems, GOA reduces the total swaptions energy con-
sumption by 42% from the value produced by the least-
energy combination of flags to gcc (Section 4.1). We believe
this improvement is mostly due to the reduction of the rate
of branch miss-prediction. Although it is not practical for
general compilers to reason about branch prediction strate-
gies for every possible hardware target, GOA can find these
environment-specific specialized adaptations.

We found that no single edit (or small subset of edits)
accounted for this improvement. Rather, many edits dis-
tributed throughout the swaptions program collectively re-
duced mispredictions. Typical edits included insertions and
deletions of .quad, .long, .byte, etc., all of which change
the absolute position of the executing code. Absolute posi-
tion affects branch prediction when the value of the instruc-
tion pointer is used to index into the appropriate predictor.
For example, AMD [25, § 6.2] advocates inserting REP be-
fore returns in certain scenarios.

Finally, GOA finds unintuitive optimizations. In the vips
image processing program, it found an optimization that re-
duced the total energy used by 20.3% on the Intel system.
The optimization actually increased cache misses by 20×
but decreased the number of executed instructions by 30%,
in effect trading increased off-chip communication for de-
creased computation.

In each example, neither the PARSEC-provided compiler
flags nor the usual gcc “–Ox” flags produced these opti-
mizations. These examples show that beneficial energy op-

2
640

timizations exist that are not exploited by common compil-
ers, suggesting the need for a technique to automatically find
them.

3. Genetic Optimization Algorithm (GOA)
This section describes the Genetic Optimization Algorithm
(GOA) for optimizing non-functional behavior of off-the-
shelf assembly programs. The main components of GOA
are depicted in Figure 1. GOA takes as input the original
program source, a regression test suite capable of exercis-
ing program executables, and a scalar-valued objective (or
fitness) function. The objective function takes as input any
program variant that passes the regression test suite and as-
sesses its non-functional behavior.

Inputs

Source Code Fitness Function Test Suite

Assembler

Executable

OptimizationPopulation

Transformation (2)

Run (4)

Fitness (6)
Minimize (8)

compile

link select (1) link (3)

profile (5)insert (7)

copies of seed
with fitness

best

Figure 1. Overview of the program optimization process.

During compilation and linking, the intermediate assem-
bly code representation of the program is extracted from the
build process (Section 3.1) assigned a fitness as in steps 4,
5, 6 below and used to seed a population of mutated copies
of the program (Section 3.3). An evolutionary computation
(EC) algorithm (Section 3.2) then searches for optimized
versions of the original program. Every iteration of the main
search loop: (1) selects a candidate optimization from the
population, (2) transforms it (Section 3.3), (3) links the result
into an executable, (4) runs the resulting executable against
the supplied test suite, (5) collects performance information
for programs that pass all tests, (6) combines the profiling
information into a scalar fitness score using the fitness func-
tion (Section 3.4), and (7) reinserts the optimization and its
fitness score into the population. The process continues until
either a desired optimization target is reached or a predeter-
mined time budget is exceeded. When the algorithm com-
pletes, a post-processing step (8) takes the best individual
found in the search and minimizes it with respect to the orig-
inal program (Section 3.5). Finally, the result is linked into
an executable and returned as the result.

The remainder of this section details the particulars of this
process.

3.1 GOA Inputs
The program to be optimized is presented as a single assem-
bly file, which can either be extracted from the build process,
or provided directly, for example, using gcc’s “–combine”
flag for C. For C++, manual concatenation may be required.
In practice this was straightforward for the PARSEC pro-
grams used as benchmarks in this work. Any performance-
critical library functions must be included in the assembly
file, because GOA optimizes only visible assembly code and
not the contents of external libraries.

The algorithm also takes as input a test suite or indica-
tive workload that serves as an implicit specification of cor-
rect behavior; a program variant that passes the test suite is
assumed to retain all required functionality [65]. There are
two well-known costs associated with adequate test suites—
the cost of creating the test suite, and the cost of running
it. Both are costs that GOA shares with profile-guided op-
timization [45], and we view the task of efficient testing as
orthogonal to this work. For test suite construction, we note
that many techniques for automated test input and test suite
generation are available (e.g., [16]). Our scenario allows us
to use the original program as an oracle, comparing the out-
put of the original to that of the modified variant, which dra-
matically reduces costs. For the cost of running the test suite,
we note that our approach is amenable to test suite reduction
and prioritization (e.g., [60]).

The final input is the fitness function, detailed in Section
3.4, which evaluates behavior on the non-functional proper-
ties of interest.

3.2 Genetic Optimization Algorithm
Unlike recent applications of evolutionary computation to
software engineering (e.g,. [33]), we use a steady state EC
algorithm [36]. This means that the population is not com-
pletely replaced in discrete steps (generations). Instead, in-
dividual program variants (candidate optimizations) are se-
lected from the population for additional transformations,
and then reinserted. The steady state method simplifies the
algorithm, reduces the maximum memory overhead, and is
more readily parallelized.

The pseudocode for GOA is shown in Figure 2. The
main evolutionary loop can be run in parallel across multiple
threads of execution. Threads require synchronized access to
the population Pop and evaluation counter EvalCounter.

The population is initialized with a number of copies of
the original program (line 1). In every iteration of the main
loop (lines 3–15) the search space of possible optimizations
is explored by transforming the program using random mu-
tation and crossover operations (described in the next sub-
section). The probability CrossRate controls the applica-
tion of the crossover operator (lines 6–8). If a crossover is
to be performed, two high-fitness parents are chosen from
the population via tournament selection [46, § 2.3] and com-
bined to form one new optimization (line 8). Otherwise, a

3
641

Input: Original Program, P : Program
Input: Workload, Run : Program→ ExecutionMetrics
Input: Fitness Function, Fitness : ExecutionMetrics→ R
Parameters: PopSize, CrossRate, TournamentSize, MaxEvals

Output: Program that optimizes Fitness
1: let Pop← PopSize copies of 〈P,Fitness(Run(P))〉
2: let EvalCounter ← 0
3: repeat in every thread
4: let p← null
5: if Random() < CrossRate then
6: let p1 ← Tournament(Pop, TournamentSize,+)
7: let p2 ← Tournament(Pop, TournamentSize,+)
8: p← Crossover(p1, p2)
9: else

10: p← Tournament(Pop, TournamentSize,+)
11: end if
12: let p′ ← Mutate(p)
13: AddTo(Pop, 〈p′,Fitness(Run(p′))〉)
14: EvictFrom(Pop,Tournament(Pop, TournamentSize,−))
15: until EvalCounter ≥MaxEvals
16: return Minimize(Best(Pop))

Figure 2. High-level pseudocode for the main loop of
GOA.

single high-fitness optimization is selected. In either case,
the candidate optimization is mutated (line 12), its fitness
is calculated (by linking it and running it on the test suite,
see Section 3.4), and it is reinserted into the population (line
13). The steady state algorithm then selects a member of
the population for eviction using a “negative” tournament
to remove a low-fitness candidate and keep the population
size constant (line 14). Fitness penalizes variants heavily if
they fail any test case and they are quickly purged from the
population. Eventually, the fittest candidate optimization is
identified, minimized to remove unnecessary or redundant
changes (Section 3.5), and is returned as the result.

We report results using a population of size MaxPop =
29, a crossover probability of CrossRate = 2

3 , a tourna-
ment size of TournamentSize = 2 for both selection and
eviction, and a total of MaxEvals = 218 fitness evalua-
tions. In preliminary runs these parameters proved sufficient
to find significant optimizations for most programs with run-
times of 16 hours or less (using 12 threads on a server-class
AMD machine), meeting our goal of “overnight” optimiza-
tion.

3.3 Program Representation and Operations
Each individual program in the population is represented as
a linear array of assembly statements, with one array posi-
tion allocated for each line in the assembly program [52].
Programs are transformed by mutation and crossover opera-
tors defined over the arrays of instructions. Argumented in-
structions are treated as atomic in the sense that arguments
to individual instructions are never changed directly. This
potentially limits the search, but in practice most useful in-

structions are available to be copied from elsewhere in the
program. This decision avoids the “problem of argumented
instructions” (cf. [61]) when modifying assembly code.

The mutation step selects one of the three mutation op-
erations (Copy, Delete or Swap) at random and applies it to
locations in the program, selected uniformly at random, with
replacement. When crossover is performed, two program lo-
cations are selected from within the length of the shorter
program to be crossed. Two-point crossover is then applied
at these points to generate a single output program variant
from the two input program variants, as shown in Figure 3.

Copy Delete Swap

Two Point Crossover

Figure 3. Mutation and Crossover operations on programs
represented as linear arrays of argumented assembly instruc-
tions.

The mutation operations are not language or domain spe-
cific, and they never create entirely new code. Instead, they
produce new arrangements of the argumented assembly in-
structions present in the original program. Our operators
are reasonable extensions of the standard EC mutation and
crossover operations, which are typically defined over bit-
strings. Mutation operators explore the search space through
small local changes, while crossover can escape local op-
tima, either by combining the best aspects of partial solu-
tions or by taking long jumps in the search space.

3.4 Evaluation and Fitness
The goal of GOA is to optimize a given fitness function. In
our energy-optimizing implementation, the fitness function
uses hardware performance counters [18] captured during
test suite execution and combines them into a single scalar
using a linear energy model (Section 4.3) defined over the
values of those counters. Although we demonstrate GOA
using this complex fitness function, it could also be applied
to simpler fitness functions such as reducing runtime or
cache accesses.

Test input data were selected to fulfill two requirements:
(1) minimize the runtime of each evaluation, and (2) return
sufficiently stable hardware performance counter values to
allow reliable fitness assessment. The full test suite, which

4
642

validates that candidate optimizations retain required func-
tionality, need not be the same as the abbreviated test data
used to measure non-functional fitness.

3.5 Minimization
The randomized nature of EC algorithms sometimes pro-
duces irrelevant or redundant transformations. We prefer op-
timizations that attain the largest fitness improvement with
the fewest changes to the original program. To accomplish
this, we include a final minimization step to remove changes
that do not improve the fitness. Minimization allows us both
to focus on mutations that produce a measurable improve-
ment (Section 4.4) and to avoid altering functionality that is
not exercised during the fitness evaluation.

Our minimization algorithm is based on Delta Debug-
ging [67]. Here, Delta Debugging takes a set of deltas (edit
operations) between two versions of a program and deter-
mines a 1-minimal subset of those deltas that cause the first
program to act identically to the second. We reduce the best
optimization found by the evolutionary search to a set of
single-line insertions and deletions against the original (e.g.,
as generated with the diff Unix utility). We then use Delta
Debugging to minimize that set with respect to the fitness
function. If the application of a particular delta has no mea-
surable effect on the fitness function, we do not consider it
to be a part of the optimization. Experimentally, we find that
eliminating such superfluous deltas reduces problems with
untested program functionality. We apply the minimal set of
changes identified by Delta Debugging to the original pro-
gram to produce the final optimized program.

3.6 Algorithm Summary
GOA maintains a population of linear arrays of assembly
instructions, mutating and combining them with the goal
of optimizing a given objective function while retaining all
required functionality as indicated by a test suite. In the next
section we evaluate the effectiveness of GOA by applying it
to the problem of reducing energy consumption.

4. Experimental Evaluation
Our experiments address three research questions:

• Does GOA reduce energy consumption? (RQ1)
• Do our results generalize to multiple architectures and

held-out workloads? (RQ2)
• Do GOA optimizations retain required functionality?

(RQ3)

Recall that GOA requires three inputs: a program to be
optimized, a fitness function, and a workload or test suite.
We evaluate effectiveness and usability against the PARSEC
benchmark suite (Section 4.1). For a fitness function, we de-
velop an efficient energy consumption model, based on hard-
ware counter values (Section 4.3). The test suite was chosen
by selecting from the PARSEC suite the smallest inputs that

C/C++ ASM
Program Lines of Code Description

blackscholes 510 7,932 Finance modeling
bodytrack 14,513 955,888 Human video tracking
ferret 15,188 288,981 Image search engine
fluidanimate 11,424 44,681 Fluid dynamics animation
freqmine 2,710 104,722 Frequent itemset mining
swaptions 1,649 61,134 Portfolio pricing
vips 142,019 132,012 Image transformation
x264 37,454 111,718 MPEG-4 video encoder
total 225,467 1,707,068

Table 1. Selected PARSEC benchmark applications.

generate a runtime of at least one second on each hardware
platform. After running GOA, we evaluate the optimized
program using physical wall-plug measurements of energy.
All software tools described in this work, including installa-
tion and usage instructions, are publicly available at https:
//github.com/eschulte/goa/tree/asplos2014.

4.1 Benchmark Programs and Systems
We use the popular PARSEC [9] benchmark suite of pro-
grams representing “emerging workloads.” We evaluate
GOA on all of the PARSEC applications that produce
testable output and include more than one input set. Testable
output is required to ensure that the optimizations retain re-
quired functionality. Multiple input sets are required because
we use one (training) input set during the GOA optimization
and separate held-out (“testing”) inputs to test after GOA
completes (Section 4.2). The eight applications satisfying
these requirements are shown with sizes and brief descrip-
tions in Table 1. Two PARSEC applications were excluded:
raytrace which does not produce any testable output, and
facesim which does not provide multiple input sets.

We evaluate on an Intel Core i7 and an AMD Opteron.
The Intel system has 4 physical cores, Hyper-Threading, and
8 GB of memory, and it is indicative of desktop or personal
developer hardware. The AMD system has 48 cores and
128 GB of memory, and is representative of more powerful
server-class machines.

We compare the performance of GOA’s optimized exe-
cutables to the original executable compiled using the PAR-
SEC tool with its built-in optimization flags or the gcc “–
Ox” flag that has the least energy consumption.1

4.2 Held-Out Test Suite
We use a large held-out test suite to evaluate the degree to
which the optimizations found by GOA customize the pro-
gram semantics to the training workload. For each bench-
mark besides blackscholes, we randomly generated 100
sets of command-line arguments (and argument values, as

1 PARSEC includes a version of x264 with non-portable hand-written as-
sembly. To compare fairly against both Intel and AMD, we report x264
numbers using the portable C implementation.

5
643

https://github.com/eschulte/goa/tree/asplos2014
https://github.com/eschulte/goa/tree/asplos2014

appropriate) from the valid flags accepted by the program.
blackscholes accepts no flags, but instead requires a fixed
sequence of arguments, one of which indicates an input file
containing a number of independent records. We generated
100 test input files for blackscholes by randomly sam-
pling between 214 and 220 records from the set of all records
in any of the available PARSEC tests.

Each test was run using the original program and its out-
put as an oracle to validate the output of the optimized pro-
gram. If the original program rejected the input or arguments
(e.g., because some flags cannot be used together), we re-
jected that test and generated a new one. We also rejected
tests for which the original program did not generate the
same output when run a second time, or for which the origi-
nal program took more than 30 seconds to run.

The optimized programs were evaluated by running them
with the same inputs and test data, comparing the output
against the oracle. In most cases, we used a binary compar-
ison between the output files. However, for x264 tests pro-
ducing video output, we used manual visual comparison to
determine output correctness.

4.3 Energy Model
Our fitness function uses a linear energy model based on
process-specific hardware counters similar to that developed
by Shen et al. [57]. We simplify their model in two ways:

• We do not build workload-specific power models. In-
stead, we develop one power model per machine trained
to fit multiple workloads and use this single model for
every benchmark on that machine.
• We do not consider shared resources.

Incorporating these simplifications gives the following model:

power = Cconst + Cins
ins

cycle
+ Cflops

flops

cycle

+ Ctca
tca

cycle
+ Cmem

mem

cycle

(1)

energy = seconds× power (2)

Total energy (Equation 2) is given by the predicted power
(Equation 1) multiplied by the runtime. The values for the
constant coefficients are given in Table 2. They were ob-
tained empirically for each target architecture, using data
collected for each PARSEC benchmark, the SPEC CPU
benchmark suite, and the sleep UNIX utility. For each pro-
gram, we collected the performance counters as well as the
average Watts consumed, measured by a Watts up? PRO
meter. We combined these data in a linear regression to de-
termine the coefficients shown in Table 2.

The disparity between the AMD and Intel coefficients is
likely explained by significant differences in the size and
class of the two machines. For example, the 13× increase
in idle power of the AMD machine as compared to the Intel

Intel AMD
Coefficient Description (4-core) (48-core)

Cconst constant power draw 31.530 394.74
Cins instructions 20.490 -83.68
Cflops floating point ops. 9.838 60.23
Ctca cache accesses -4.102 -16.38
Cmem cache misses 2962.678 -4209.09

Table 2. Power model coefficients.

machine is reasonable given the presence of 12 times as
many cores, and 15 times as much memory.

Even without our simplifications, the predictive power
of linear models is rarely perfect. McCullough et al. note
that on a simple multi-core system, CPU-prediction error is
often 10–14% with 150% worst case error prediction [38].
We checked for the presence of overfitting using 10-fold
cross-validation and found a 4–6% difference in the average
absolute error, which is adequate for our application. Since
we ultimately evaluate energy reduction using physical wall-
socket measurements, our energy model is required only to
be accurate and efficient enough to guide the evolutionary
search.

We find that our models have an average of 7% absolute
error relative to the wall-socket measurements. Collecting
the counter values and computing the total power increases
the test suite runtime by a negligible amount. Thus, our
power model is both sufficiently efficient and accurate to
serve as our fitness function.

The Intel Performance Counter Monitor (PCM) counter
can also be used to estimate energy consumption. We did not
use this counter because the model used to estimate energy
is not public, and because it estimates energy consumption
for an entire socket and does not provide per-process energy
consumption. Relying on the PCM would reduce the paral-
lelism available to our GOA implementation.

4.4 RQ1 — Reduce Energy Consumption
Table 3 reports our experimental results. The “Energy Re-
duction” columns report energy reduction while executing
the tests by the GOA-optimized program, as measured phys-
ically and compared to the original. For example, if the orig-
inal program requires 100 units and the optimized version
requires 20, that corresponds to an 80% reduction.

GOA found optimizations that reduced energy consump-
tion in many cases, with the overall reduction on the sup-
plied workloads averaging 20%. Although in some cases—
such as in bodytrack on AMD or bodytrack, ferret,
fluidanimate, freqmine and x264 on Intel—GOA failed
to find optimizations that reduced energy consumption, it
found optimizations that reduce energy consumption by an
order of magnitude for blackscholes and over one-third
for swaptions on both systems. We find that CPU-bound
programs are more amenable to improvement than those that
perform large amounts of disk IO. This result suggests that

6
644

Program Changes Energy Reduction Runtime Reduction Functionality
Code Edits Binary Size Training Held-Out Held-Out Held-Out

Program AMD Intel AMD Intel AMD Intel AMD Intel AMD Intel AMD Intel

blackscholes 120 3 -8.2% 0% 92.1% 85.5% 91.7% 83.3% 91.7% 81.3% 100% 100%
bodytrack 19656 3 -38.7% 0% 0% 0% 0.6% 0% 0.3% 0.2% 92% 100%
ferret 11 1 84.8% 0% 1.6% 0% 5.9% 0% -7.9% -0.1% 100% 100%
fluidanimate 27 51 -3.3% 11.4% 10.2% 0% — — — — 6% 31%
freqmine 14 54 18.7% 34.9% 3.2% 0% 3.3% -1.6% 3.2% 0.1% 100% 100%
swaptions 141 6 27.0% 18.5% 42.5% 34.4% 41.6% 36.9% 42.0% 36.6% 100% 100%
vips 57 66 -52.8% 0% 21.7% 20.3% 21.3% — 29.8% — 100% 100%
x264 34 2 0% 0% 8.3% 0% 9.2% 0% 9.8% 0% 27% 100%
average 2507.5 23.3 3.4% 8.1% 22.5% 17.5% 24.8% 19.8% 24.1% 19.7% 78.1% 91.4%

Table 3. GOA energy-optimization results on PARSEC applications. The “Code Edits” column shows the number of unified
diffs between the original and optimized versions of the assembly program. “Binary Size” indicates the change in size of
the compiled executable. The “Energy Reduction” columns report the physically measured energy reduction compared to
the original required to run the tests in the fitness function (“Training Workload”) or to run all other PARSEC workloads
for that benchmark (“Held-Out Workloads”). The “Runtime Reduction” columns report the decrease in runtime compared to
the original. In some cases, the measured energy reduction is statistically indistinguishable from zero (p > 0.05). Note that
for some benchmarks (e.g., bodytrack), although there is no measured improvement, the minimization algorithm maintains
modeled improvement, resulting in a new binary. We do not report energy reduction on workloads for which the optimized
variant did not pass the associated tests (indicated by dashes). The “Functionality” columns report accuracy on the held-out
test suite.

GOA is likely better at generating efficient sequences of
executing assembly instructions than at improving patterns
of memory access. Overall, when considering only those
programs with non-zero improvement, average energy re-
duction was 39%. The increased improvement on held-out
workloads compared to training workloads was expected
given the increased comparative size and runtime of most
held-out workloads.

In most benchmark programs energy reduction is very
similar to runtime reduction (see Columns “Energy Reduc-
tion” and “Runtime Reduction”, Table 3). This is not sur-
prising given the important role of time in our energy model.
However, in some cases (e.g., ferret) energy was reduced
despite an increase in runtime.

Although some optimizations are easily analyzed through
inspection of assembly patches (e.g., the deletion of “call
im region black” from vips skipping unnecessary zero-
ing of a region of data), many optimizations produce unin-
tuitive assembly changes that are most easily analyzed using
profiling tools. Such inspection reveals optimizations (Sec-
tion 2) that run the gamut from removing explicit semantic
inefficiencies in blackscholes to re-organizing assembly
instructions in swaptions and vips in such a way as to de-
crease the rate of branch mispredictions. The AMD versions
of fluidanimate and x264 seem to improve performance
by reducing idle cycles spent waiting for off-chip resources.

4.5 RQ2 — Generality
We evaluate the generality of our results on the two architec-
tures and using the held-out test cases described earlier.

The “AMD” and “Intel” columns in Table 3 show re-
sults for the two architectures (described in Section 4.1). On
both architectures, optimizations fix branch mispredictions
in swaptions and vips; rely on relaxed notions of pro-
gram semantics, such as by eliminating unnecessary loops
in blackscholes; or remove redundant zeroing behavior in
vips.

The GOA technique appears to find more optimizations
on AMD than Intel. We hypothesize that the higher over-
all energy usage of the larger server-class AMD system af-
fords more opportunity for improvement. It is also notable
that the two programs with better results on AMD than In-
tel (fluidanimate and x264) are also the only two pro-
grams for which we find significant failures on held-out test
data. This suggests that workload-specific improvements or
customizations are more easily accomplished (or more read-
ily rewarded) on the AMD than the Intel system. Despite
these differences, GOA substantially reduces energy con-
sumption on both AMD-based server-class and Intel-based
workstation-class systems.

We also evaluate generality in terms of held-out work-
loads. GOA only has access to the supplied workload (Sec-
tion 3.2). The PARSEC benchmark includes multiple work-
loads of varying size for each of our benchmark applications.
The “Energy Reduction on Held-Out Workloads” columns
in Table 3 show how optimizations learned on the smaller
workloads apply to the larger held-out workloads.

Overall, we find that performance gains on the training
workload generalize well to workloads of other sizes. The
energy reduction of 20% on the training workloads is sim-
ilar to the 22% observed for held-out workloads. However,

7
645

when the optimizations customized to the training workload
change the semantics on the held-out workload and produce
different answers, the energy consumption varies dramati-
cally. On Intel, fluidanimate and vips consume signif-
icantly more energy, while on AMD fluidanimate con-
sumes significantly less. We attribute this improvement on
held-out workloads to their increased size, which leads to
a larger fraction of runtime spent in the inner loops where
most optimizations are located. This generalization is im-
portant for the practical application of GOA. The training
workload must execute quickly, because it is run as part of
the inner loop of the GOA algorithm.

Although high-quality training data remains an essential
input to our approach, the energy reductions found by GOA
in this experiment generalized beyond the particular training
data, and no special care was required in selecting training
workloads. The defaults supplied as part of the PARSEC
benchmark proved sufficient.

4.6 RQ3 — Functionality and Relaxed Semantics
A strength of our approach is its ability to tailor optimiza-
tions to the workload and architecture available [17, 45].
In many situations (e.g., if the deployment scenario is con-
trolled, as in a datacenter, or if the available test suite is ex-
tensive) this is advantageous, and “relaxed semantics” may
be an acceptable tradeoff for improvements to important
non-functional properties. However, in some situations it
may be more important to replicate original program behav-
ior even in untested scenarios. We constructed a set of held-
out test cases (see 4.2) and evaluated untested behavior by
measuring the accuracy of the optimizations on these tests
(the final columns in Table 3).

Recall that the optimizations are required to pass all avail-
able held-in test cases. The “Functionality on” columns
show that GOA generally finds optimizations that behave
just as the original, even on held-out tests not seen during
the optimization process. The exceptions are x264 (in which
the AMD optimization works across every held-out input,
but does not appear to work at all with some option flags)
and fluidanimate (where the optimizations appeared to be
brittle to many changes to the input, including workloads of
different sizes). Notably, the minimization step (Section 3.5)
ensures that changes to parts of the program not exercised by
the training set are likely to be dropped (because removing
those changes does not influence the energy consumption
on the training set). Anecdotally we note that the unmin-
imized optimizations typically showed worse performance
on held-out tests than did the minimized optimizations. Al-
though not a proof, this gives confidence that the technique
produces optimizations that retain, or only slightly relax, the
original program semantics.

Developers concerned with retaining the exact behavior
of the original program have several available off-the-shelf
random testing techniques (e.g., [16, 20, 32, 56]) that could
be used by interpreting the original program’s behavior as

the oracle. This would restrict the search to considering only
optimizations that are even more similar to the original. It
would also increase the time cost for running GOA, but
does not limit its applicability. As mentioned earlier, there is
increasing willingness to trade guarantees of exact semantic
preservation for other desired system properties [1, 2, 5, 6, 8,
39, 40, 50, 58, 59]. Taken together, the growing popularity of
acceptability-oriented computing [48–50] and the difficulty
of manually optimizing for energy [17, 35, 47], suggest that
automatically reducing energy and manually focusing on
semantics is a profitable tradeoff compared to the traditional
converse.

4.7 Threats to Validity
Although the experimental results suggest that GOA can op-
timize energy, the results may not generalize to other non-
functional properties or to other programs. One threat to
generality is that energy consumption and our modeling are
machine- or architecture-specific, and our optimizations are
only individually valid for a particular target architecture.
We attempt to mitigate this threat by considering two dis-
tinct architectures. We note that this is a general issue for
performance optimization [41] and not specific to our ap-
proach. A second threat is that energy consumption can dif-
fer dramatically by workload—optimizations developed for
training test cases may not be as effective when deployed.
We mitigate this threat by physically measuring energy re-
duction on held-out workloads. A third threat is that our
approach requires high-quality test cases (or specifications,
etc.). If the test suite does not ensure that the implementation
adheres to its specification, the resulting optimizations may
over-customize the program to the environment and specific
workload.

The performance of this post-compiler optimization tech-
nique may depend on the compiler used to generate the as-
sembly code. Our evaluation considered only GCC, and it is
possible that our results will not generalize to assembler pro-
duced by other compilers (e.g., the improvements in branch
prediction might not be achieved in code generated by a
compiler with better branch prediction capability).

Finally, by embracing relaxed program semantics we ac-
knowledge that our optimizations may change the behavior
of the program. Section 4.6 on held-out test suites provides
one way to assess this threat in cases where relaxed seman-
tics are undesirable. Earlier studies of a similar approach
used for program repair suggest that our minimization step
mitigates this threat significantly [34, 55].

5. Background and Related Work
Our approach combines (1) fundamental software engineer-
ing tools such as compilers and profilers, (2) mutation op-
erations and algorithms from evolutionary computation, (3)
relaxed notions of program semantics to customize software

8
646

to a specified environment, and (4) software mutational ro-
bustness and neutral spaces.

5.1 Compilers and Profilers
Compilers. Optimizing compilers are well-established in
both research and industrial practice [3]. Our work pro-
vides post-compilation optimizations that refine compiler-
generated assembly code.

Traditional compiler optimizations consider only trans-
formations that are provably semantics-preserving (e.g.,
dataflow analysis). In practice, the C language includes un-
defined behavior which may lead to compiler- and architecture-
dependent runtime behavior, often with surprising effects,
such as compilers eliding null checks in programs that rely
on undefined behavior [63, §3.3.4].

The difficulty of proving transformations to be semantics-
preserving, combined with large differences in energy con-
sumption across machines, means that semantics-preserving
compiler optimizations to reduce energy consumption re-
main unlikely in the near future. For example, a feature re-
quest that the popular llvm compiler add an “–Oe” flag to
optimize for energy was rejected with the counter-suggestion
to use the established optimizations for speed instead.2

Profiling. Profiling techniques are an established method
for guiding both automated and manual optimizations [21].
We use hardware counters, allowing for fine-grained mea-
surements of hardware events without requiring virtualiza-
tion or instrumentation overheads. This allows test programs
to operate at native speeds, which is critical in a search that
explores hundreds of thousands of program variants. Our
prototype implementation uses the Linux Perf [18] frame-
work to collect hardware counters on a per-process basis.

Profile Guided Optimization. Profile guided optimization
(PGO) techniques combine test runs with instrumented pro-
grams (or, more recently, with hardware counters) to profile
program runtime behavior. These profiles then guide the ap-
plication of standard compiler optimizations to improve run-
time performance, especially to reposition code to reduce in-
struction loads [45].

PGO can be used to tailor optimizations to a particular
workload and architecture. However, the actual transforma-
tions provide the same guarantees and limitations of tradi-
tional compiler passes. That is, PGO typically narrows its
search space by focusing on particular parts of the program
(e.g., hot paths). By contrast, our work broadens the scope
of possible optimizations through randomized operators and
relaxed semantics.

Auto-tuning. Auto-tuning extends PGO, providing addi-
tional performance enhancements and the ability to aggres-
sively customize an application to specific hardware. It often
requires that applications be written in a distinct modular
style. For example, the exceptional performance gains found

2 http://llvm.org/bugs/show_bug.cgi?id=6210

by the popular FFTW [17] required that the fast Fourier
transform (FFT) source code be written in “codelets” (small
optimized sub-steps) which were then combined into hard-
ware dependent “plans.”

Auto-tuning addresses the same problem as this work,
namely that “computer architectures have become so com-
plex that manually optimizing software is difficult to the
point of impracticality.” [17, § 5] Unlike auto-tuning, how-
ever, our method does not require that software be written in
any special manner.

Superoptimization. Massalin’s classic work introducing
superoptimization [37] exhaustively tested all possible com-
binations of instructions in Motorola’s 68020 assembly lan-
guage to find the fastest possible implementation of simple
programs up to 14 instructions in length. The more recent
MCMC project [51] leverages increased computing power
and heuristic search to find optimizations on the same scale
of ˜10 instructions in the much larger x86 instruction set.

Despite its impressive results, the MCMC technique is
not directly comparable to this work. They focus on very
short sequences of assembly instructions while we operate
on entire programs (hundreds of thousands of lines of as-
sembly on average). Because of the extremely small size and
simple functionality of their benchmark code, they initialize
their heuristic search using a random sequence of x86 as-
sembly instructions (using all instructions, including vector
operations), and work back from these random sequences to
functional code. Such an approach is not feasible for larger
programs such as the PARSEC benchmarks.

Both approaches to superoptimization use simple tests of
random sequences of assembly instructions to find faster as-
sembly sequences than those accessible through traditional
compiler optimizations. Although GOA addresses an en-
tirely different scale in terms of functional and size complex-
ity of the programs analyzed, we exploit the same insights
that optimal instruction sequences are often not directly ac-
cessible through semantics-preserving operations and that
tests can restrict attention to desired modifications. Ulti-
mately, we see superoptimization as complementary, possi-
bly being used in conjunction with our technique (e.g., as an
alternating phase targeting the hottest profiled paths).

5.2 Evolutionary Computation
Program Repair. Evolutionary computation is one of sev-
eral techniques for automatically repairing program defects
by searching for patches (sequences of edits) [14, 26, 33, 42,
65], including at the assembly level [52, 53]. GOA differs
from this earlier work by addressing a different problem with
a continuous complex objective function (reducing power
consumption), rather than a discrete single-dimensional ob-
jective (passing all test cases).

Evolutionary Improvement. Previous work on the evolu-
tionary improvement of software was limited to modifying
abstract syntax trees of simple ˜10-line C functions [66].

9
647

http://llvm.org/bugs/show_bug.cgi?id=6210

While optimizations were found that are not possible using
standard compiler transformations, the small program size
and simplified build environment suggest that results may
not generalize to legacy software.

Exploring Tradeoffs. EC techniques have recently been
used to explore tradeoffs between execution time and visual
fidelity in graphics shader programs [59]. This work is simi-
lar in spirit to ours but lacks an implicit specification through
test cases. Instead, all mutants are valid and a Pareto-optimal
frontier of non-dominated options with respect to execution
time and visual fidelity is produced.

5.3 Relaxed Program Semantics
As mentioned earlier (Section 1), there is increasing inter-
est in the tradeoff between exact semantics-preserving trans-
formations and improving non-functional properties of pro-
grams. “Loop perforation” removes loop iterations to re-
duce program resource requirements while maintaining an
acceptable Quality of Service (QoS) [39, 40]. Other systems
change program behavior by switching function implemen-
tations [5] at runtime in response to QoS monitoring [23].
A formal system has even been developed to prove “accept-
ability properties” of some applications of the “relaxed” pro-
gram transformations [11].

We view our work as partially customizing software
to particular runtime goals and environments provided by
a software engineer. While we do change explicitly pro-
grammed behavior (e.g., removing loop iterations, dropping
calculations, etc.), we do not rely on QoS, but always give
the exact right answer on tested inputs.

5.4 Mutational Robustness and Neutral Spaces
Recent work [54] showed that software functionality is sur-
prisingly robust to random mutations similar to those used
in this work, with over 30% of mutations producing neu-
tral program variants that still pass an original test suite.
These results were obtained over a wide variety of soft-
ware (including both large open source projects and exten-
sively tested benchmarks from the software testing commu-
nity [24]). Many of these neutral mutations introduced non-
trivial algorithmic changes to the program, yielding new im-
plementations of the program’s implicit specification.

These results help explain how random mutations can
modify programs without “breaking” them, and it provides
a rationale for why GOA succeeds in building “smart” opti-
mizations from “dumb” program transformations.

6. Discussion
The experimental results support the claim that GOA can
significantly reduce energy consumption on PARSEC bench-
mark programs in a way that generalizes to multiple archi-
tectures and to held-out workloads and tests. We next discuss
the relationship between our work and traditional biologi-

cal notions of trait selection (optimization), and we outline
promising directions for future work.

6.1 Mathematical models of evolution
GOA’s evolutionary computation algorithm is inspired by
widely accepted theories of biological evolution, a field with
a mature literature of mathematical results. Insights from the
Breeders Equation guided our design of the linear power
model fitness function, and analyses of Darwinian selection
suggested larger population sizes and higher recombination
rates than those used in similar applications to software
engineering [33, 59].

Predating Darwin’s Origin of Species [13], breeders used
the Breeder’s Equation to measure the effectiveness with
which they could select for particular traits. The modern for-
mulation of this classic model helped us analyze heritability
and dependencies between traits. In our work, fitness is di-
rectly measurable in kilowatt hours, and hardware counters
measure phenotypic traits. Analysis using biological the-
ory pointed directly to the choice of a simple energy model
based on hardware counters (Section 4.3). We used the fit-
ness function to create a selection gradient analogous to β
in Equation 3 and derived in the same way. This equation
decomposes the effect of natural selection into measurable
phenotypic traits by regressing phenotypic traits β against
fitness [12, Chpt. 4].

The Multivariate Breeder’s Equation is shown in Equa-
tion 3, where ∆Ẑ is a vector representing the change in
phenotypic means, G is a matrix of the additive variance-
covariance between traits and β is a vector representing the
strength of selection. This equation quantifies the notion of
heritability and the likely side effects of optimizing a given
phenotypic trait in terms of other uncontrolled traits. The
mathematical foundation provided by the Breeders Equation
will provide a starting point for designing fitness functions
for other GOA applications, for example, as outlined in Sec-
tion 6.3.

∆Ẑ = Gβ (3)

6.2 Fault Localization
Previous applications of EC to software engineering have
relied on fault localization techniques as a way to limit the
space of possible code modifications to the execution paths
of the given test suite [33, 34]. In this paper we did not
impose that restriction, and we discovered that minimized
optimizations often did not modify the instructions executed
by the test cases. We speculate that these optimizations may
operate through changes to program offset and alignment,
or by modifying non-executable data portions of program
memory.

6.3 Future Work
Other Architectures. To date, we have applied GOA only
to x86 assembly code. Our program representations and mu-

10
648

tation operations are quite general, and we believe that GOA
would apply equally well to other instruction sets, such as
ARM [52] or Java bytecode [44]. We note, however, that the
high density of x86 instructions in random data [7] may have
played a role in our results (Section 2),

Co-evolutionary Model Improvement. GOA could be ex-
tended to iteratively refine the models that predict measur-
able values from hardware performance counters (such as
the energy model used in this work). At a high level, the ap-
proach would be as follows:

1. Build an initial model from hardware counters and empir-
ical measurements across multiple benchmark programs.

2. Evolve benchmark variants that maximize the difference
between the model and reality.

3. Re-train the model using the evolved versions of bench-
mark programs.

Assuming that the measurable quantity predicted by the
model (e.g., energy) can be changed only a limited amount,
the evolutionary process would likely find and exploit errors
in the initial model. Adding individuals to the training data
that exploit these errors would improve subsequent versions
of the model. Over multiple iterations, this competitive co-
evolution [4] between the model and the candidate optimiza-
tions could improve both the model and the final optimiza-
tions.

Mathematical Analysis. Our energy reduction optimiza-
tions of vips on both systems produce optimized versions
that (despite running for fewer cycles) generate significantly
more page faults than the original. It would be desirable to
predict unintuitive results of optimization such as these, i.e.
program features that are not included in the fitness function
or energy model.

The concept of Indirect selection [12, Chpt. 6] suggests
an approach for predicting some side effects of the search.
Indirect selection is defined as the impact of selection on
properties (traits) that are not themselves targets of selection
but are strongly correlated with the selected traits. Variance-
covariance matrices (G in Equation 3) could be used to
predict the effects of optimization on program character-
istics that are not included directly in the fitness function
but likely affected by the optimization process. This would
require constructing and analyzing the program’s variance-
covariance matrix of traits of neutral mutations before the
optimization run.

Compiler Flags. Finding effective combinations and or-
derings of compiler passes is an open research question, and
it is known that no single sequence of compiler passes is op-
timal for all programs [30] or even for all methods in a sin-
gle program [31]. GOA could be extended to include multi-
ple populations, each generated using unique combinations
of compiler optimizations. By allowing each population to
search independently for optimizations and occasionally ex-

changing high-fitness individuals among the populations, it
may be possible to mitigate this problem.

7. Conclusion
We present an automated post-compilation technique for
optimizing non-functional properties of software, such as
energy consumption. Our Genetic Optimization Algorithm
(GOA) combines insights from profile-guided optimization,
superoptimization, evolutionary computation and mutational
robustness. GOA is a steady-state evolutionary algorithm,
which maintains a population of candidate optimizations
(assembly programs), using randomized operators to gener-
ate variations, and selecting those that improve an objective
function (the power model) while retaining all required func-
tionality expressed in a test suite.

We describe experiments that optimize the PARSEC
benchmarks to reduce energy consumption, evaluated via
physical wall-socket power measurements. The use case is
an embedded deployment or datacenter where the program
will be run multiple times. Our technique successfully re-
duces energy consumption by 20% on average. Our results
show that GOA is effective on multiple architectures, is able
to find hardware-specific optimizations and to correct in-
efficient program semantics, that the optimizations found
generalize across held-out workloads, and that in most cases
the optimizations retain correctness on held-out test cases.

To summarize, GOA is: powerful, significantly reducing
energy consumption beyond the best available compiler op-
timizations and capable of customizing software to a target
execution environment; simple, leveraging widely available
tools such as compilers and profilers and requiring no code
annotation or technical expertise; and general, using general
program transformations from the EC community, able to
target multiple measurable objective functions, and applica-
ble to any program that compiles to x86 assembly code.

8. Acknowledgments
The authors gratefully acknowledge the support of the Na-
tional Science Foundation (SHF-0905236, CCF-1116289,
CCF-0954024), Air Force Office of Scientific Research
(FA9550-07-1-0532,FA9550-10-1-0277), DARPA (P-1070-
113237), and the Santa Fe Institute.

References
[1] Harold Abelson, Don Allen, Daniel Coore, Chris Hanson,

George Homsy, Thomas F Knight Jr, Radhika Nagpal, Erik
Rauch, Gerald Jay Sussman, and Ron Weiss. Amorphous
computing. Communications of the ACM, 43(5):74–82, 2000.

[2] David H. Ackley and Daniel C. Cannon. Pursue robust indef-
inite scalability. Proc. HotOS XIII, USA, 2011.

[3] Alfred Aho, Ravi Sethi, and Jeffrey Ullman. Compilers:
Principles, Techniques and Tools. Addison Wesley, 1986.

11
649

[4] Peter J Angeline and Jordan B Pollack. Competitive environ-
ments evolve better solutions for complex tasks. In ICGA,
pages 264–270, 1993.

[5] J. Ansel, C. Chan, Y.L. Wong, M. Olszewski, Q. Zhao,
A. Edelman, and S. Amarasinghe. PetaBricks: a language
and compiler for algorithmic choice, volume 44. ACM, 2009.

[6] Woongki Baek and Trishul M Chilimbi. Green: a frame-
work for supporting energy-conscious programming using
controlled approximation. In ACM Sigplan Notices, vol-
ume 45, pages 198–209. ACM, 2010.

[7] E.G. Barrantes, D.H. Ackley, S. Forrest, and D. Stefanović.
Randomized instruction set emulation. ACM Transactions on
Information and System Security (TISSEC), 8(1):3–40, 2005.

[8] J. Beal and Gerald Jay Sussman. Engineered robustness
by controlled hallucination. In AAAI 2008 Fall Symposium
”Naturally-Inspired Artificial Intelligence”, November 2008.

[9] C. Bienia, S. Kumar, J.P. Singh, and K. Li. The parsec bench-
mark suite: Characterization and architectural implications.
In Proceedings of the 17th international conference on Par-
allel architectures and compilation techniques, pages 72–81.
ACM, 2008.

[10] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a frame-
work for architectural-level power analysis and optimizations.
In Computer Architecture, 2000. Proceedings of the 27th In-
ternational Symposium on, pages 83–94, 2000.

[11] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Mar-
tin C Rinard. Proving acceptability properties of relaxed non-
deterministic approximate programs. In Programming Lan-
guage Design and Implementation, pages 169–180, 2012.

[12] Jeffrey K Conner and Daniel L Hartl. A primer of ecological
genetics. Sinauer Associates Incorporated, 2004.

[13] Charles Darwin. On the origin of species, volume 484. John
Murray, London, 1859.

[14] Vidroha Debroy and W. Eric Wong. Using mutation to auto-
matically suggest fixes for faulty programs. In International
Conference on Software Testing, Verification, and Validation,
pages 65–74, 2010.

[15] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug
Burger. Neural acceleration for general-purpose approximate
programs. In International Symposium on Microarchitecture,
pages 449–460, 2012. DOI=10.1109/MICRO.2012.48.

[16] Gordon Fraser and Andreas Zeller. Mutation-driven genera-
tion of unit tests and oracles. Transactions on Software Engi-
neering, 38(2):278–292, 2012.

[17] M. Frigo and S.G. Johnson. FFTW: An adaptive software
architecture for the FFT. In Acoustics, Speech and Signal
Processing, volume 3, pages 1381–1384, 1998.

[18] Thomas Gleixner. Performance counters for Linux, 2008.
http://lwn.net/Articles/310176/.

[19] Martin Glinz. On non-functional requirements. In Require-
ments Engineering Conference, 2007. RE’07. 15th IEEE In-
ternational, pages 21–26. IEEE, 2007.

[20] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: di-
rected automated random testing. In Programming Language
Design and Implementation, pages 213–223, 2005.

[21] Susan L. Graham, Peter B. Kessler, and Marshall K. McKu-
sick. gprof: a call graph execution profiler (with retrospec-
tive). In Programming Languages Design and Implementa-
tion, pages 49–57, 1982.

[22] Mark Harman, William B. Langdon, Yue Jia, David R. White,
and Andrea Arcuriand John A. Clark. The gismoe challenge:
constructing the pareto program surface using genetic pro-
gramming to find better programs (keynote paper). In Au-
tomated Software Engineering, pages 1–14, 2012.

[23] H. Hoffmann, J. Eastep, M.D. Santambrogio, J.E. Miller, and
A. Agarwal. Application heartbeats for software performance
and health. In ACM SIGPLAN Notices, volume 45, pages 347–
348. ACM, 2010.

[24] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas
Ostrand. Experiments of the effectiveness of dataflow-and
control flow-based test adequacy criteria. In International
Conference on Software Engineering, pages 191–200, 1994.

[25] Advanced Micro Devices Incorporated. Software optimiza-
tion guide for amd64 processors. Technical report, Ad-
vanced Micro Devices Incorporated, September 2005. http:
//support.amd.com/TechDocs/25112.PDF.

[26] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun
Kim. Automatic patch generation learned from human-written
patches. In International Conference on Sofware Engineering,
2013.

[27] Christoph M. Kirsch and Hannes Payer. Incorrect
systems: it’s not the problem, it’s the solution. In
Design Automation Conference, pages 913–917, 2012.
DOI=10.1145/2228360.2228523.

[28] Jonathan Koomey. Growth in data center electricity use 2005
to 2010. Oakland, CA: Analytics Press. August, 1:2010, 2011.

[29] John R. Koza, Forrest H. Bennett III, David Andrew, and Mar-
tin A. Keane. Genetic Programming III: Darwinian Invention
and Problem Solving. Morgan Kaufmann, 1999.

[30] Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyungh-
wan Cho, David Whalley, Jack Davidson, Mark Bailey, Yun-
heung Paek, and Kyle Gallivan. Finding effective optimiza-
tion phase sequences. In ACM SIGPLAN Notices, volume 38,
pages 12–23. ACM, 2003.

[31] Prasad A Kulkarni, David B Whalley, Gary S Tyson, and
Jack W Davidson. Exhaustive optimization phase order space
exploration. In Code Generation and Optimization 2006.
International Symposium on, pages 13–pp. IEEE, 2006.

[32] K. Lakhotia, M. Harman, and P. McMinn. A multi-objective
approach to search-based test data generation. In Genetic and
Evolutionary Computation Conference, 2007.

[33] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest,
and Westley Weimer. A systematic study of automated pro-
gram repair: Fixing 55 out of 105 bugs for $8 each. In Inter-
national Conference on Software Engineering, 2012.

[34] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and
Westley Weimer. GenProg: A generic method for auto-
mated software repair. Transactions on Software Engineering,
38(1):54–72, 2012.

[35] M.T.-C. Lee, V. Tiwari, S. Malik, and M. Fujita. Power anal-
ysis and minimization techniques for embedded dsp software.

12
650

http://lwn.net/Articles/310176/
http://support.amd.com/TechDocs/25112.PDF
http://support.amd.com/TechDocs/25112.PDF

Very Large Scale Integration Systems, 5(1):123–135, 1997.

[36] Sean Luke. Essentials of Metaheuristics. Lulu, sec-
ond edition, 2013. http://cs.gmu.edu/~sean/book/

metaheuristics/.

[37] H. Massalin. Superoptimizer: a look at the smallest program.
ACM SIGARCH Computer Architecture News, 15(5):122–
126, 1987.

[38] John C McCullough, Yuvraj Agarwal, Jaideep Chandrashekar,
Sathyanarayan Kuppuswamy, Alex C Snoeren, and Rajesh K
Gupta. Evaluating the effectiveness of model-based power
characterization. In USENIX Annual Technical Conf, 2011.

[39] S. Misailovic, D.M. Roy, and Martin Rinard. Probabilistically
accurate program transformations. Static Analysis, 2011.

[40] S. Misailovic, S. Sidiroglou, H. Hoffmann, and Martin Rinard.
Quality of service profiling. In International Conference on
Software Engineering, pages 25–34, 2010.

[41] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Pe-
ter F. Sweeney. Producing wrong data without doing anything
obviously wrong! In Architectural support for programming
languages and operating systems, pages 265–276, 2009.

[42] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoud-
hury, and Satish Chandra. SemFix: Program repair via se-
mantic analysis. In International Conference on Sofware En-
gineering, pages 772–781, 2013.

[43] Kevin J Nowka, Gary D Carpenter, Eric W MacDonald,
Hung C Ngo, Bishop C Brock, Koji I Ishii, Tuyet Y Nguyen,
and Jeffrey L Burns. A 32-bit powerpc system-on-a-chip with
support for dynamic voltage scaling and dynamic frequency
scaling. Solid-State Circuits, IEEE Journal of, 37(11):1441–
1447, 2002.

[44] Michael Orlov and Moshe Sipper. Flight of the FINCH
through the Java wilderness. Transactions on Evolutionary
Computation, 15(2):166–192, 2011.

[45] Karl Pettis and Robert C Hansen. Profile guided code posi-
tioning. In ACM SIGPLAN Notices, volume 25. ACM, 1990.

[46] R. Poli, W.B. Langdon, and N.F. McPhee. A field guide to
genetic programming. Lulu Enterprises Uk Ltd, 2008.

[47] Sherief Reda and Abdullah N. Nowroz. Power modeling and
characterization of computing devices: a survey. Electronic
Design Automation, 6(2):121–216, 2012.

[48] Martin Rinard. Acceptability-oriented computing. In Object-
oriented programming, systems, languages, and applications,
pages 221–239, 2003.

[49] Martin Rinard. Survival strategies for synthesized hardware
systems. In Formal Methods and Models for Co-Design,
pages 116–120, 2009.

[50] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M.
Roy, Tudor Leu, and Jr. William S. Beebee. Enhancing server
availability and security through failure-oblivious computing.
In Operating Systems Design and Implementation, 2004.

[51] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic
superoptimization. In Architectural Support for Programming
Languages and Operating Systems, 2013.

[52] Eric Schulte, Jonathan DiLorenzo, Stephanie Forrest, and
Westley Weimer. Automated repair of binary and assembly

programs for cooperating embedded devices. In Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2013.

[53] Eric Schulte, Stephanie Forrest, and Westley Weimer. Auto-
matic program repair through the evolution of assembly code.
In Automated Software Engineering, pages 33–36, 2010.

[54] Eric Schulte, ZacharyP. Fry, Ethan Fast, Westley Weimer, and
Stephanie Forrest. Software mutational robustness. Genetic
Programming and Evolvable Machines, pages 1–32, 2013.

[55] Eric Schulte, Westley Weimer, and Stephanie Forrest. Repair-
ing security vulnerabilities in the netgear router binary. Com-
puter Communications Review, (submitted).

[56] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a con-
colic unit testing engine for C. In Foundations of Software
Engineering, pages 263–272, 2005.

[57] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao
Zhang, and Zhuan Chen. Power containers: An OS facility
for fine-grained power and energy management on multicore
servers. In Architectural support for programming languages
and operating systems, pages 65–76, 2013.

[58] Stelios Sidiroglou, Oren Laadan, Carlos Perez, Nicolas Vi-
ennot, Jason Nieh, and Angelos D. Keromytis. Assure: au-
tomatic software self-healing using rescue points. In Archi-
tectural Support for Programming Languages and Operating
Systems, pages 37–48, 2009.

[59] Pitchaya Sitthi-Amorn, Nicholas Modly, Westley Weimer, and
Jason Lawrence. Genetic programming for shader simplifica-
tion. ACM Transactions on Graphics, 30(5), 2011.

[60] Adam M. Smith and Gregory M. Kapfhammer. An empirical
study of incorporating cost into test suite reduction and prior-
itization. In Symposium on Applied Computing, 2009.

[61] Thomas Sperl. Taking the redpill: Artificial evolution in native
x86 systems. CoRR, abs/1105.1534, 2011.

[62] Lingjia Tang, Jason Mars, Xiao Zhang, Robert Hagmann,
Robert Hundt, and Eric Tune. Optimizing Google’s ware-
house scale computers: The NUMA experience. In High Per-
formance Computer Architecture, pages 188–197, 2013.

[63] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and
M Frans Kaashoek. Improving integer security for systems
with kint. In Operating Systems Design and Implementation,
pages 163–177, 2012.

[64] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buch-
holz, Bertrand Meyer, and Andreas Zeller. Automated fixing
of programs with contracts. In International Symposium on
Software Testing and Analysis, pages 61–72, 2010.

[65] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and
Stephanie Forrest. Automatically finding patches using ge-
netic programming. In International Conference on Software
Engineering, pages 364–367, 2009.

[66] David R. White, Andrea Arcuri, and John A. Clark. Evolu-
tionary improvement of programs. Transactions on Evolu-
tionary Computation, 15(4):515–538, 2011.

[67] Andreas Zeller. Yesterday, my program worked. Today, it
does not. Why? In Foundations of Software Engineering,
pages 253–267, 1999.

13
651

http://cs.gmu.edu/~sean/book/metaheuristics/
http://cs.gmu.edu/~sean/book/metaheuristics/

	Introduction
	Motivating Examples
	Genetic Optimization Algorithm (GOA)
	GOA Inputs
	Genetic Optimization Algorithm
	Program Representation and Operations
	Evaluation and Fitness
	Minimization
	Algorithm Summary

	Experimental Evaluation
	Benchmark Programs and Systems
	Held-Out Test Suite
	Energy Model
	RQ1 — Reduce Energy Consumption
	RQ2 — Generality
	RQ3 — Functionality and Relaxed Semantics
	Threats to Validity

	Background and Related Work
	Compilers and Profilers
	Evolutionary Computation
	Relaxed Program Semantics
	Mutational Robustness and Neutral Spaces

	Discussion
	Mathematical models of evolution
	Fault Localization
	Future Work

	Conclusion
	Acknowledgments

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 293.09, 8.46 Width 30.49 Height 43.20 points
 Origin: bottom left

 1
 0
 BL

 31
 AllDoc
 33

 CurrentAVDoc

 293.0857 8.4616 30.4945 43.2005

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 13
 12
 13

 1

 HistoryList_V1
 qi2base

