InFix: Automatically Repairing
Novice Program Inputs

Madeline Endres

InFix: Automatically Repairing
Novice Program Inputs

Madeline Endres Recently accepted for
publication at Automated

Software Engineering, a top

Software Engineering
conference (20%
acceptance rate)!

InFix: A Brief Overview

e Motivation: Non-traditional novice programmers are growing in numbers.

We want to help them debug and understand their programs. Many novice

bugs relate to input.
o Both novice bugs in general and input-related bugs in particular, are underserved
by current research efforts

e Method: Adapt techniques from search-based automated program repair
to fix novice input-related bugs (InFix)

e Evaluation: An empirical evaluation of InFix on 25,000+ programs and an
IRB-approved human study

The online Python Tutor interpreter How do Codecademy's

currently has 60,000 users per month

45 million users
learn to code?

Many People Want to
Learn to Code o) Q

1 /‘§ 39%

said online courses
were their primary
took a method for learning

Without traditional classroom
support ourse

Coding bootcamps see huge enroliment increase 112

taken a
university
course

M ’

Wire NEWS~ JOBS EVENTS~ RESOURCES~ ABOUTY [O O O O

Our Dataset: Python Tutor

Python Tutor is a free online interpreter. It helps
novices visualize code execution

In the past 4 years, it had over 200,000 unique users

33% of all user interactions involved a program with a call to input()

25,000+ input-related bugs: instances the user fixed an error by

modifying only the input data

Our Dataset: Python Tutor

Python Tutor is a free online interpreter. It helps
novices visualize code execution

Key Ildea:
Input-related bugs are common for novice programers,
but they are overlooked by current state-of-the art
teaching tools

LI, U0V T MTPUTTETatlCu DUYS.ITISTArictTS UTe USTT MATT It ST1oT Iy
modifying only the input data

@ Visualize Python, Java, JavaSc X +

S G A Not Secure | pythontutor.com/visualize.html#mode=edit

Write code in | Python 3.6

1 u-=42
2 x = float(input())
3 print(x * math.e / 2)

Help improve this tool by completing a short user survey

Please wait ... exe*cuting (takes up to 10 seconds) Live Programming Mode

https://docs.google.com/file/d/1iVZQ_Zl2F2_uGXSeXpBQKLPUKmz_msiV/preview

Input Repair: Ideal Solution vs. Current

Ideal Solution Element Current State of the Art
e Provide repairs that are actually helpful ® Repair tools (e.g. GenProg) are
for novices (high quality) confusing for novices (Yi et al. 2017)
e Find repairs quickly for live feedback ® Repair optimizations require large
on diverse programs course settings with common

assignments (Ahmed et al. 2018)

e Include support for input-related bugs ® Input repair is only proposed for
security bugs (Long et al. 2012)

Talk Outline

1. Python Tutor and Input-Related Errors

a. What do input-related errors look like?

2. The InFix algorithm: Automatically fixing input-related bugs
a. Algorithmic design decisions
b. Our Python specific InFix implementation

3. Evaluation: Does InFix work? (spoiler, yes!)
a. Both a comprehensive evaluation based on program semantics and also
a controlled human study to assess repair quality
b. An empirical evaluation on 25,000+ input error scenarios

Simple Syntactic Input-Related Error

The Code
u 42
x = float(input

print(x math.e 2

10

Simple Syntactic Input-Related Error
The Code The Student Input

: * / 26'2

x = float(input

print(x math.e 2

Simple Syntactic Input-Related Error
The Code The Student Input

: * / 26'2

x = float(input

print(x math.e 2

The Error Message

ValueError: could not convert
string to float: '26,2'

12

Simple Syntactic Input-Related Error
The Code The Student Input Possible Repair

u = 42 / 26,2

x = float(input

print(x * math.e / 2

The Error Message

ValueError: could not convert
string to float: '26,2'

Syntactic Input Bugs: A Common Pattern

The Student Input
26,2

The Error Message

ValueError: could not
convert string to
float: '26,2'

The Student Input
$1.50

The Error Message

Possible Repair

M

ValueError: could not
convert string to
float: '$1.50°

The Student Input

math.py/6

The Error Message

Possible Repair

ValueError: could not
convert string to
float: 'math.py/6'’

Possible Repair

14

More Complex Semantic Input-Related Error

The Code

input_a input
input_b input
input_c input
c_array
dictionary

for 1 in range(len(input_a

dictionary|input_a|i input_b|i
for j in range(len(input_c
c_array dictionary|input_c|j

print(c_array

M

More Complex Semantic Input-Related Error

The Code Key Takeaways
input_a = input e input_b must be at least as long as
input_b input input_a
input_c input
c_array
dictionary
e input_c must consist only of characters

for 1 in range(len(input_a that are in input_a

dictionary input_a i input_b i
for j in range(len(input_c

c_array dictionary input_c j

print(c_array

M :

More Complex Semantic Input-Related Error

The Code

input_a input
input_b input
input_c input
c_array
dictionary

for 1 in range(len(input_a

dictionary input_a i input_b i
for j in range(len(input_c
c_array dictionary input_c j

print(c_array

M

More Complex Semantic Input-Related Error

The Student Input

The Code

input_a = input abcd
input_b input *d%#
input_c = input() <@ % #%%%d*%
c_array

dictionary

for 1 in range(len(input_a

dictionary input_a i input_b i
for j in range(len(input_c *
c_array dictionary input_c j

print(c_array

M

More Complex Semantic Input-Related Error

The Student Input

The Code

input_a = input abcd
input_b input *d%#
input_c = input() <@ % H#%%%d*%
c_array

dictionary

for 1 in range(len(input_a

dictionary input_a i input_b i
for j in range(len(input_c + The Error Message
c_array dictionary input_c j

KeyError: '#'

print(c_array

M

More Complex Semantic Input-Related Error

The Code The Student Input Possible Repair
input_a = input abcd

input_b = input *d%#

input_c input < r#*%*d*%

c_array

dictionary

for 1 in range(len(input_a

dictionary input_a i input_b i
for j in range(len(input_c + The Error Message
c_array dictionary input_c j

KeyError: '#'

print(c_array

M o

Input-Related Errors: Key Insights

Insight Repair Algorithm Implication

e |f novice repairs are generally short) © We can explore the search space
of nearby edits to find fixes

e If many student programs with the - e A small number of indicative
same error message have similar error-message templates can
fixes increase search speed

e |[f student inputs are often structurally- e A randomized approach is
complex with interdependent input surprisingly effective
values but have simple fixes

M g

InFix Algorithm: Formal Input and Output Properties

Inputs

e Program P : program code
e Erroneous input I : token sequence
e Error message M : string

e Error Message Template function 7 : string — Mutation
e Set of general Mutations R : set of Mutations

e Max number of probes (iterations) V: N

M

Output

A repaired input that
does not produce an
error when run with
program P

OR

TIMEOUT

22

InFix Algorithm

Inputs:
program P,
buggy input
1, error
message M

Error-message

Ne2

Apply error
message
template to 7

v

Duplicate I?

template
applies?
Mo
Apply random
mutation to 7/
&
No

Run Pd)

-~

Success!

ERROR: New error
message M

Return
minimized 1,
the repaired
input!

23

InFix Example Walkthrough: Semantic Error

The Code

input_a input
input_b input
input_c input
c_array
dictionary

for i in range(len(input_a
dictionary input_a i

for j in range(len(input_c

dictionary input_c/|j

c_array

print(c_array

M

input_b i

Current
Input

abcd
*d%it
#*%*d*%

Error Action
Message

KeyError:
I#I

24

InFix Example Walkthrough: Semantic Error

The Code

input_a input
input_b input
input_c input
c_array
dictionary

for i in range(len(input_a

dictionary input_a i input_b i
for j in range(len(input_c
c_array dictionary input_c/|j

print(c_array

M

Current
Input

abcd
*d%it
#*%*d*%

abcd
*d%#

Error
Message

KeyError:

I#I

Action

Random Mutation: Remove
random token

25

InFix Example Walkthrough: Semantic Error

The Code

input_a input
input_b input
input_c input
c_array
dictionary

for i in range(len(input_a

dictionary input_a i input_b i
for j in range(len(input_c
c_array dictionary input_c/|j

print(c_array

M

Current
Input

abcd
*d%it
#*%*d*%

abcd
*d%#

Error
Message

KeyError:

I#I

EOFError

Action

Random Mutation: Remove
random token

26

InFix Example Walkthrough: Semantic Error

The Code Current
Input
input_a input
input_b = input abcd
input_c = input *d%#
c_array #*%*d*%
dictionary
abcd
for i in range(len(input_a *d%H#
dictionary input_a i input_b i
for j in range(len(input_c
c_array dictionary input_c j abcd
*d%H#
print(c_array abcd

M

Error
Message

KeyError:

I#I

EOFError

Action

Random Mutation: Remove
random token

Error Message template:
Generate new token - either
random or from bad input

27

InFix Example Walkthrough: Semantic Error

The Code Current
Input
input_a input
input_b = input abcd
input_c = input *d%#
c_array #*%*d*%
dictionary
abcd
for i in range(len(input_a *d%H#
dictionary input_a i input_b i
for j in range(len(input_c
c_array dictionary input_c j abcd
*d%H#
print(c_array abcd

M

Error
Message

KeyError:

I#I

EOFError

Success!

Action

Random Mutation: Remove
random token

Error Message template:
Generate new token - either
random or from bad input

28

InFix Evaluation: Does it work?

Five Research Questions

1. How effective is InFix?

2. How high quality are InFix's repairs?
a. Empirical Evaluation
b. Human Study

3. Are InFix's Design Assumptions Valid?
4. How sensitive is InFix to input parameters?

5. Does expertise affect InFix's helpfulness?

29

InFix Evaluation

Five Research Questions

1.

2.

How effective is InFix?

How high quality are InFix's repairs?
a. Empirical Evaluation
b. Human Study

Are InFix's Design Assumptions Valid?

How sensitive is InFix to input parameters?

Does expertise affect InFix's helpfulness?

Benchmarks

30

InFix Evaluation

Five Research Questions

1.

2.

How effective is InFix?

How high quality are InFix's repairs?
a. Empirical Evaluation
b. Human Study

Are InFix's Design Assumptions Valid?
How sensitive is InFix to input parameters?

Does expertise affect InFix's helpfulness?

Benchmarks

1.

Python Tutor Data Set

31

InFix Evaluation

Year Number of Input-Related Bugs
2015 1,640

2016 4,440

2017 6,949

2018 12,723

Total 25,995

Benchmarks

1.

Python Tutor Data Set

32

InFix Evaluation

Five Research Questions

1.

2.

How effective is InFix?

How high quality are InFix's repairs?
a. Empirical Evaluation
b. Human Study

Are InFix's Design Assumptions Valid?

How sensitive is InFix to input parameters?

Does expertise affect InFix's helpfulness?

Benchmarks

1.

2.

Python Tutor Data Set

IRB-Approved Human Study

33

InFix Evaluation: Focused Research Questions

Research Question

RQ1: How effective is
InFix?

RQ2: How high quality
are InFix's repairs?

Evaluation Metric

% Inputs repaired

Statement coverage

Human subjective
assessment of quality

Success Criterion

>= 80% (Ahmed et al.,
2018)

>= 75% (Tillmann et al.,
2008)

>= 75% the quality of
human patches (Kim et
al., 2013)

34

RQ1. How Effective is InFix?

e 25,995 scenarios with input-related errors
o Pulled from historical Python Tutor student data

e InFix Parameter Settings:
o Max_Probes =60
o Parallel threads =5

e Results: InFix repairs 94.5% of scenarios in a median time of 0.88 seconds
o This exceeds our success criteria of >= 80%!
o And is fast enough to provide real time help in the majority of cases!

35

RQ1: How Effective is InFix?

Input-Error Scenarios Probes to Solve Time (sec)
Year Total Repaired % Med Avg Med Avg
2015 1,640 1,582 96.5 1 2.98 0.87 1.12
2016 4,440 4,683 94.8 2 3.23 0.88 1.16
2017 6,949 6,590 94.8 2 3.47 0.90 1.23
2018 12,723 11,947 93.9 2 3.70 0.88 1.28
Total 25,995 24,559 94.5% 2 3.50 0.88 1.23

36

RQ1: How Effective is InFix?

Input-Error Scenarios Probes to Solve Time (sec)
Year Total Repaired % Med Avg Med Avg
2015 1,640 1,582 96.5 1 2.98 0.87 1.12
2016 4,440 4,683 94.8 2 3.23 0.88 1.16
2017 6,949 6,590 94.8 2 3.47 0.90 1.23
2018 12,723 11,947 93.9 2 3.70 0.88 1.28
Total 25,995 24,559 94.5% 2 3.50 0.88 1.23

37

RQ1: How Effective is InFix?

Input-Error Scenarios Probes to Solve Time (sec)
Year Total Repaired % Med Avg Med Avg
2015 1,640 1,582 1 2.98 0.87 1.12
2016 4,440 4,683 2 3.23 0.88 1.16
2017 6,949 6,590 2 3.47 0.90 1.23
2018 12,723 11,947 2 3.70 0.88 1.28
Total 25,995 24,559 94.5% 2 3.50 0.88 1.23

38

RQ1: How Effective is InFix?

Input-Error Scenarios Probes to Solve Time (sec)
Year Total Repaired % Med Avg Med Avg
2015 1,640 1,582 96.5 1 2.98 1.12
2016 4,440 4,683 94.8 2 3.23 1.16
2017 6,949 6,590 94.8 2 3.47 1.23
2018 12,723 11,947 93.9 2 3.70 1.28
Total 25,995 24,559 94.5% 2 3.50 0.88 1.23

39

RQ1: How Effective is InFix?

Input-Error Scenarios Probes to Solve Time (sec)
Year Total Repaired %Repaired Med Avg Med Avg
2015 1,582 96.5 1 2.98 0.87 1.12
2016 4,683 94.8 2 3.23 0.88 1.16
2017 6,590 94.8 2 3.47 0.90 1.23
2018 11,947 93.9 2 3.70 0.88 1.28
Total 24,559 94.5% 2 3.50 0.88 1.23

40

RQ1: How Effective is InFix?

v

InFix repairs 94.5% of input-related scenarios in a median
0.88 seconds

This is high compared to that achieved by related work
(Ahmed et al., 2018 = 80%)

41

RQ2: What is the Quality of InFix's Repairs?

e In Automated Program Repair, patch quality is a current research focus
o One of two "ongoing challenges" mentioned in It Does what you Say, not what you Mean:
Lessons from a Decade of Program Repair (ICSE Most Influential Paper Keynote, 2019)

e We will assess InFix's repair quality from multiple angles:

1. A broad semantics-based approach using code coverage on nearly
12,000 programs

2. A human evaluation with 97 participants on 60 randomly-chosen stimuli

M 2

RQ2: Why Code Coverage?

e Statement coverage pros:
o Scalable for large evaluation
o Directly comparable to previous work

e Coverage can indicate if InFix commonly produces non-interesting inputs that
bypass large blocks of code (eg. empty list)

e Coverage is a coarse approximation of programmer intent

M

43

RQ2: Code Coverage approach

Study Setup

M

For the 11,947 repaired programs
from the Python Tutor 2018 data,
collected statement coverage
for:

a. Inputs generated by InFix

b. Historical student created
input repair

Results

e InFix repairs achieve a median
83.3% coverage

e Student repairs achieve a median
90.3% coverage

e InFix is within 7% of the student
repair coverage upper bound

e InFix coverage is high » similar
to PEX (71%-95%, 2008) and
higher than KATCH (52%, 2013)

44

RQ2: IRB- Approved Human Evaluation Set-Up

e Randomly selected 60 programs from the Python Tutor Data

e [or each, made two stimuli: One with InFix's repair, and one with the historical
student repair

e Humans describe the cause of the bug
e Humans judge the quality of the suggested input repair (Likert)

o Likert scale questions help us measure the subjective human experience
e Humans judge the helpfulness of the suggested input repair (Likert)

e 97 participants: 24 Michigan Students, 73 MTurk Workers

o Manually verified response quality using participant's answer to the bug description question

M 4

RQ2: IRB- Approved Human Evaluation Set-Up

Python Program

1 n, m= (int(1) for 1 in input().split())

a = [[0 for j in range(m)] for 1 in range(n)]

print(a

Bug Revealing Input and Error Message Suggested Input Repair
Bug Revealing Input Repaired Input
953 95
Error Output Output Produced by Repair
Traceback (most recent call last): [[e, ©, ©, ©, ©], [0, ©, 0, O, 0], [0, O, ©, ©, O], [0, ©, B, O,
File "temp2018.py", line 1, in <module> o], [6, o, e, ©, ©], [6, ©, ©, ©, 0], [0, ©, ©, O, 0], [0, ©, O,
n, m= (int(i) for i in input().split()) e, 0], [e, 6, 6, 0, 0]]

ValueError: too many values to unpack (expected 2)

M

46

RQ2: Human Evaluation Analysis

e |nFix achieves 96% the quality of historical student repairs (p = 0.047)

e Statistical significance determined using two-tailed Mann-Whitney U Test
o Student's t-test not applicable as distribution was not Normal
o Mann-Whiteny is non-parametric and requires independent samples

e This quality is high compared to other repair quality studies
o PAR patches were 75.5% as acceptable as human generated patches (2013)
o 46.1% of Prophet patches were manually found to be correct (2016)

47

v

On average, InFix achieves 83.3% coverage, 90.2% the
coverage of student repairs

InFix repairs are of high quality

97 study participants found InFix to be 96% the quality
(p = 0.047) of human repairs

M

48

InFix: Effective, High Quality, and
Supports Learners at Scale

In summary, my research contributions are:

1. InFix, a novel template-based search algorithm for repairing input-related
bugs
a. Identifying input data as an important source of novice programmer bugs

b. Characterizing common novice input patterns for Python, resulting in error message
templates and general mutation operators

2. An implementation and evaluation of InFix

a. Fixes 94.5% of 25,995 input-related errors in a median of 0.88 seconds
b. Produces repairs that achieve within 7% the coverage and also 96% of the quality of
student repairs (p = 0.047)

49

Bonus Slide; Statistics 1

e Student's T-Test

o Parametric » Assumes a normal distribution
o Has both independent and paired forms

e Mann-Whitney U-Test

o Non-parametric
o Requires independent samples

e Wilcoxon signed-rank test
o Non-parametric
o Requires paired samples

M

51

Bonus Slide; Statistics 2

e Fleiss' Kappa
o Test of interrater reliability
o Assumes fixed number of annotors are giving categorical ratings

e P-value
o The probability that the data is this skewed
o Assumes that the null hypothesis is true

e P-Hacking / Data dredging
o Using multiple statistical tests and multiple hypothesis, but only reporting significant results
o related to spurious correlations, multiple comparisons, and false discovery rate

M

52

Error-Message templates for Python: T

Error Message

ValueError: invalid literal for int()
with base 10: 'x'

ValueError: could not convert string to
float: 'x'

ValueError: too many / not enough
values to unpack

EOFError: EOF when reading a line

M

Associated Input Mutation

Replace last instance of 'x' with a random
integer between -1and 10

Replace last instance of 'x"' with random float
between -1and 10

Append duplicate of / delete last token

Append duplicate or randomized new token

53

Bonus Slide: Additional Mutations for Python: R

Mutation

Insert a token

Split delimited list
Swap a token

Remove a token

Empty the input

M

Description of Input Mutation

Inserts new token at a random location

Splits one line of input into many using a delimiter, often white space
Modify one of the input tokens

Remove a random token from the input

Replaces entire input with an empty sequence

54

RQ3 Bonus: Are InFix's Design Assumptions Valid?

The Design Assumptions Are they Valid?

1. Error message templates are critical for / Yes! Mutation-only version of InFix solves just
InFix? 64.5%

2. Additional random mutations are critical / Yes! Error template only version of InFix solves
for InFix?

just 45.2%

3. Is our algorithm structure critical for Yes! Non-hierarchical version solves 96.5%, but
InFix? the average number of probes is 4.10
compared to 2.98

M .

RQ3 Bonus: Are InFix's Design Assumptions Valid?

e Two main error-message types: syntactic (33%) and semantic (66%)

e The input grammars of novice programs can be surprisingly complex
Are some types of errors more common than others?

e The error messages are not uniform: ValueError is raised by 54.5% of
input-related errors. The following subtypes account for 51.2%
o ValueError: invalid literal for int
o ValueError: could not convert string to float
o ValueError: not enough/too many values to unpack

M "

RQ4: How sensitive is InFix to input parameters?

v

InFix is insensitive to resource parameters, and thus usable with tight
budgets

InFix repairs a non-trivial amount of input-related errors in a single
iteration

57

RQ4: How sensitive is InFix to input parameters?

Maximum Number of Probes

Number of Threads

1 2 3 4 5

1 30.8% 36.4% 39.9% 42.6% 44.6%

5 64.1% 72.7% 77.3% 80.3% 82.6%
10 73.6% 81.0% 84.5% 86.7% 88.4%
20 80.5% 86.1% 88.8% 90.6% 91.7%
30 83.1% 88.2% 90.5% 92.0% 93.0%
60 86.7% 91.0% 92.7% 93.8% 94.5%
500 92.5% 94.5% 95.3% 95.8% 96.1%

58

RQ4: How sensitive is InFix to input parameters?

Maximum Number of Probes

Number of Threads

1 2 3 4 5

1 30.8% 36.4% 39.9% 42.6% 44.6%

5 64.1% 72.7% 77.3% 80.3% 82.6%
10 73.6% 81.0% 84.5% 86.7% 88.4%
20 80.5% 86.1% 88.8% 90.6% 91.7%
30 83.1% 88.2% 90.5% 92.0% 93.0%
60 86.7% 91.0% 92.7% 93.8% 94.5%
500 92.5% 94.5% 95.3% 95.8% 96.1%

59

RQ4: How sensitive is InFix to input parameters?

Maximum Number of Probes

Number of Threads

1 2 3 4 5

1 30.8% 36.4% 39.9% 42.6% 44.6%

5 64.1% 72.7% 77.3% 80.3% 82.6%
10 73.6% 81.0% 84.5% 86.7% 88.4%
20 80.5% 86.1% 88.8% 90.6% 91.7%
30 83.1% 88.2% 90.5% 92.0% 93.0%
60 86.7% 91.0% 92.7% 93.8% 94.5%
500 92.5% 94.5% 95.3% 95.8% 96.1%

60

RQ5: How does expertise affect InFix's helpfulness?

Setup Results

e Collected self-assessment of relative Helpfulness of InFix’s repairs depending on

Python ability from 97 participants experience:
o Beginner = <1 semester
eginne) >¢ Participant Experience Level
o Intermediate = 1-2 semesters # Minimal Moderate Expert
o Expert = 3+ semesters Easiest Stimuli 14 4.7 4.9 5.1
Hardest Stimuli 11 3.6 4.8 5.1
All Stimuli 60 4.0 4.8 5.2

e C(lassified the 60 stimuli into three
difficulty levels
o Three expert annotators ®
o Fleiss' Kappa £=0.71

M .

After controlling for expertise, relative
expertise does not affect helpfulness

RQ5: How does expertise affect InFix's helpfulness?

After controlling for program difficulty, InFix's repairs are

equally helpful for novices and relative experts

62

