
Pacific Graphics 2015
N. J. Mitra, J. Stam, and K. Xu
(Guest Editors)

Volume 34 (2015), Number 7

Towards Automatic Band-Limited Procedural Shaders

Jonathan Dorn, Connelly Barnes, Jason Lawrence and Westley Weimer

University of Virginia, USA

Abstract

Procedural shaders are a vital part of modern rendering systems. Despite their prevalence, however, procedural
shaders remain sensitive to aliasing any time they are sampled at a rate below the Nyquist limit. Antialiasing is
typically achieved through numerical techniques like supersampling or precomputing integrals stored in mipmaps.
This paper explores the problem of analytically computing a band-limited version of a procedural shader as
a continuous function of the sampling rate. There is currently no known way of analytically computing these
integrals in general. We explore the conditions under which exact solutions are possible and develop several
approximation strategies for when they are not. Compared to supersampling methods, our approach produces
shaders that are less expensive to evaluate and closer to ground truth in many cases. Compared to mipmapping
or precomputation, our approach produces shaders that support an arbitrary bandwidth parameter and require
less storage. We evaluate our method on a range of spatially-varying shader functions, automatically producing
antialiased versions that have comparable error to 4x4 multisampling but can be over an order of magnitude
faster. While not complete, our approach is a promising first step toward this challenging goal and indicates a
number of interesting directions for future work.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Procedural shaders are a fundamental component of mod-
ern graphics systems, due to their flexibility and expres-
siveness in specifying the material appearance in a virtual
scene [AMHH08]. Despite their prevalence, however, pro-
cedural shaders remain sensitive to an especially problem-
atic source of visual error known as aliasing any time they
are sampled at a rate below the Nyquist limit [Cro77]. Alias-
ing artifacts may manifest in a number of ways, including as
jagged lines in place of smooth ones, small details that seem
to appear and disappear, or regular features that appear to
cluster instead of being evenly distributed.

There are two common approaches to antialiasing pro-
cedural shaders: supersampling and prefiltering. In the case
of supersampling, the sampling rate is effectively increased
by recording multiple samples of the shading function per
pixel. Although it helps reduce aliasing artifacts, this ap-
proach has the disadvantage of increasing the computational
load on the system and thus decreasing the framerate. Addi-
tionally, aliasing artifacts will still persist anywhere the fre-

quency content in the shading function exceeds the Nyquist
limit of the higher sampling rate.

Prefiltering often takes the form of storing precom-
puted integrals in mipmaps [Wil83] or summed area ta-
bles [Cro84]. The upside to this approach is that it offers the
benefit of exact solutions in many cases with a constant num-
ber of operations. The downside is that it increases storage
requirements and can replace inexpensive computations with
relatively expensive memory accesses. Furthermore, these
precomputation strategies scale exponentially in the number
of dimensions and so it is typically not practical to precom-
pute integrals of functions that depend on more than two or
three variables.

An alternative strategy is to construct an analytically
band-limited version of the shading function. This can be
mathematically expressed as the convolution of the shading
function with a low-pass filter [Cro77, NRS82]. For a few
specialized types of procedural noise functions, exact ana-
lytic band-limiting is a natural side-effect of their construc-
tion [LLDD09]. In most cases, however, the shader devel-
oper must manually calculate the convolution integral. Be-

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



J. Dorn & C. Barnes & J. Lawrence & W. Weimer / Towards Automatic Band-Limited Procedural Shaders

cause this is usually complicated and time consuming for re-
alistic shaders, this is rarely done in practice. Instead, ad-hoc
band-limiting strategies, such as replacing step(x) functions
with smoothstep(x), are sometimes employed [AG99].

This paper explores the problem of automatically comput-
ing an exact analytic band-limited version of a procedural
shader function. Such a system would take as input a shader
program written in a high-level language with any number
of user-defined parameters and output a modified program
that produces the correct band-limited version of the input
shader at any specified sampling rate. The approach should
also allow limiting the function to different bandwidths with-
out requiring significant rendering times. To the extent that
the approach involves approximations, the degree of visual
error should be minimized.

We propose a compiler-based approach that transforms
an existing shader program into a band-limited version. We
exploit the observation that, under certain conditions, band-
limited subexpressions may be composed to produce a larger
band-limited expression. We apply two new compiler anal-
yses to shader program source code. The first recognizes
subexpressions for which we have closed-form solutions to
the band-limiting convolution. This allows us to replace the
original subexpression with a band-limited expression. The
second analysis conservatively approximates the relevant
sampling rates for each subexpression. This allows the trans-
formed subexpressions to be limited to the correct band-
width. In the event that the conditions allowing such com-
position do not hold, we propose a search-based approach to
intelligently select shaders that approximate a band-limited
counterpart to the original shader.

The contributions of this paper are as follows:

• We derive closed-form analytic expressions for the in-
tegral of many common one-dimensional built-in shader
functions with band-limiting kernels parameterized by the
kernel width (Table 1).
• We evaluate several strategies for approximating the band-

limited integral of the function fract(x) = x−bxc, which
arises in many common procedural shader functions.
• We describe a method for approximating a 2D Gaussian

kernel with correlated dimensions as the product of two
axis-aligned 1D Gaussian kernels (Section 3.2). This al-
lows factoring many shader functions into products of
lower-dimensional functions whose band-limited counter-
parts are available.
• We describe two search algorithms that use band-limiting

transformations to approximately band-limit arbitrary
shaders (Section 4) and present empirical results on a set
of texture shaders.

2. Related Work

Texture Prefiltering. Mipmapping [Wil83] and summed
area tables [Cro84] are precomputation strategies that pro-

duce lookup tables allowing a static texture to be band-
limited in constant time. In contrast, our approach requires
no additional memory tables and allows for dynamically ad-
justing shader parameters.

Norton and Rockwood [NRS82] propose an approxima-
tion for shaders that can be decomposed as a sum of sines.
They scale the amplitude of the sines based on the size of a
pixel projected on the surface at that point using a power se-
ries approximation to a box kernel. Our approach is similar
in spirit but more general, addressing a larger class of both
shader and kernel functions.

Heitz et al. [HNPN13] describe a technique using pre-
computed lookup tables to band-limit static or procedural
color map textures for which the mean and standard devi-
ation can be efficiently computed. Their technique assumes
that a shader to calculate the mean already exists; our ap-
proach aims to generate such shaders.

Edge Antialiasing. Much recent effort has been directed
at efficient algorithms for antialiasing edges in rendered
images. Morphological Antialiasing [Res09] post-processes
the rendered image to identify groups of pixels with a large
color gradient and particular spatial arrangement then blends
their colors locally. The technique explicitly assumes that
textures are separately band-limited using other techniques
such as mipmapping.

Bala et al. [BWG03] and Chajdas et al. [CML11] reduce
the computational cost of multi-sample antialiasing by sam-
pling shading at a lower rate than geometry and using in-
terpolation. These techniques detect edges to avoid interpo-
lating shading between unrelated regions. In the absence of
edges, shading quality is predicated on shading having low
frequency content relative to the geometry.

In contrast to these techniques, our approach addresses
high-frequency and non-band-limited shaders.

Shader Simplification. Several researchers have investi-
gated techniques for accelerating procedural shaders in con-
texts with reduced requirements for level-of-detail. Olano et
al. [OKS03] present a compiler technique for applying lo-
cal transformations to a procedural shader, replacing mem-
ory accesses with constant colors. Pellacini’s [Pel05] com-
piler technique locally simplifies computational logic in the
shader as well as removing texture accesses. His approach
uses a hill-climbing search to generate a sequence of pro-
gressively simpler shaders with increasing error relative to
the original.

Sitthi-amorn et al. [SAMWL11] employ a genetic algo-
rithm that applies local syntactic simplifications to optimize
the Pareto frontier between rendering time and image error.
Wang et al. [WYY∗14] also employ a genetic algorithm to
search through code transformations to optimize a Pareto
frontier over time, error, and memory consumption. Their
transformations are informed by modeling the shader func-
tion as Bézier functions on the shaded surface.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



J. Dorn & C. Barnes & J. Lawrence & W. Weimer / Towards Automatic Band-Limited Procedural Shaders

camera

w

k(x−x', w)

f(x')

x

    s
urface

Figure 1: The problem addressed in this paper. The center of
a single pixel projects to point x on the surface. The spac-
ing between pixels at the camera corresponds to a local sur-
face spacing of w. To determine the best single color for the
pixel, we convolve the shader function f (x′) with the band-
limiting kernel k(x− x′,w). Note that the sample spacing w
is a parameter to the kernel function.

Rather than addressing rendering time while tolerating a
certain amount of infidelity in the resulting image, our ap-
proach explicitly addresses the visual property (lower sam-
pling rate) that enables previous techniques to tolerate error
in shaders at lower levels of detail. We apply local transfor-
mations to the shader program, but produce a single shader
with a dependent frequency spectrum.

Automatic Shader Bounds. Heidrich et al. [HSS98] and
Velázquez-Armendáriz et al. [VAZH∗09] describe compiler-
based transformations that automatically augment shaders to
also compute approximate bounds on their output value as a
function of the bounds of their inputs. These bounds allow
renderers to apply techniques such as importance sampling
to more efficiently converge. The transformations applied by
our technique are similar in spirit. However, they are de-
signed to band-limit the output function instead of quanti-
fying its bounds.

3. Band-Limited Shaders by Construction

This paper considers the problem of analytically comput-
ing the band-limited version of a procedural shader function.
Perhaps unsurprisingly, there is currently no known way of
analytically computing these band-limited functions in gen-
eral. This section describes conditions under which exact so-
lutions are possible. Subsequent sections investigate several
approximation strategies for when they are not.

Figure 1 illustrates the problem in one dimension. For-
mally, given a shader function f (x) of a single coordinate
x, and a band-limiting kernel function k(x,w) with sam-
ple spacing w, we desire the band-limited shader function
f̂ (x,w), obtained by convolving f with k:

f̂ (x,w) =
∫ ∞
−∞

f (x′)k(x− x′,w)dx′. (1)

We use the Gaussian function as our band-limiting kernel
with a standard deviation σ equal to the sample spacing w.

In many cases, Equation 1 will not have a closed-form
solution. However, for many built-in functions that are com-
monly found in procedural shader languages, such as bxc or
saturate(x), this integral can be computed directly. An im-
portant contribution of this paper is deriving these integrals
for a number of common built-in functions (Table 1). No-
tably, although band-limiting the fract(x) function permits
an analytical expression it involves a sum with an infinite
number of terms. Section 3.3 explores strategies for approx-
imating this sum to achieve practical running times at ac-
ceptable error rates.

Additionally, note that because convolution is a linear op-
erator, the band-limited version of any linear combination
of the expressions in Table 1 is straightforward to compute.
That is, for any functions f1 . . . fn and constants c0,c1 . . .cn,
such that g(x) = c0 + c1 f1(x)+ · · ·+ cn fn(x), it is the case
that ĝ(x,w) = c0 + c1 f̂1(x,w)+ · · ·+ cn f̂n(x,w).

3.1. Extension to Multiple Dimensions

The previous derivation considered only one-dimensional
shader functions. However, procedural shaders are often
functions of multiple variables,~x = 〈x1,x2, . . .xn〉 (e.g., tex-
ture coordinates, components of the normalized vector to-
wards the camera, etc.). In the special case where the shader
function and the band-limiting kernel are multiplicatively
separable, the band-limited version of f (~x) may be written
in terms of band-limited subexpressions.

More formally, let us partition the components of ~x into
two vectors, ~xA = 〈xi|i ∈ A〉 and ~xB = 〈x j| j ∈ B〉, where A
and B satisfy A∩B = ∅ and A∪B = {1,2, . . . ,n}. Further,
note that the band-limiting kernel k will be a function of ~x
as well. We denote the vector of additional parameters to the
kernel as ~w, capturing the sample rates in each dimension of
~x. Now, if there exist sets A and B such that

f (~x) = g(~xA)h(~xB) and k(~x,~w) = kA(~xA,~wA)kB(~xB,~wB)

then

f̂ (~x,~w) = ĝ(~xA,~wA) ĥ(~xB,~wB).

This provides another means of obtaining exact band-
limited shaders: factor the shader function and band-limiting
kernel into low-dimensional functions for which the band-
limited version is available (e.g., Table 1). However, as the
remaining sections explore, this is not always possible and
approximation strategies must be employed.

3.2. Approximating the 2D Gaussian Kernel

Most shader functions cannot be factored into simple prod-
ucts or linear combinations of the functions in Table 1. In

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



J. Dorn & C. Barnes & J. Lawrence & W. Weimer / Towards Automatic Band-Limited Procedural Shaders

fact, there are many situations where the Gaussian band-
limiting kernel alone cannot be factored. For example, con-
sider the important case of shader functions of two spatial
dimensions (e.g., surface texture coordinates). In this case,
the region subtended by a single pixel is a quadrilateral, as-
suming locally planar geometry, and therefore the necessary
2D Gaussian kernel cannot be expressed as the product of
two 1D Gaussian kernels in each of the texture coordinates.

To handle this common situation, we start with the
common approximation of the quadrilateral as a parallelo-
gram [NRS82]. We further approximate this parallelogram
by its axis-aligned bounding rectangle. As illustrated in Fig-
ure 2, let x and y denote the image plane coordinate axes
and s and t denote the surface texture coordinate axes. The
lengths |∂s/∂x|+ |∂s/∂y| and |∂t/∂x|+ |∂t/∂y| define extent
of the bounding rectangle in s and t, respectively.

We use these lengths as the widths of two 1D Gaussian
functions and approximate the 2D Gaussian kernel as their
product. Note that this approach is exact whenever the image
plane axes are aligned with the texture coordinate axes and
favors blurring over aliasing otherwise.

3.3. The f ract(x) Function

In this section we take a closer look at the derivation of the
band-limited version of fract(x) = x−bxc. We chose to fo-
cus on this particular function for two reasons. First, many
common primitive shader functions such as bxc, dxe, and
trunc(x), can be written in terms of fract(x). Second, it turns
out that this particular integral requires some form of ap-
proximation to make it useful in practice.

Recall that our goal is to solve

f̂ract(x,w) =
∫ ∞
−∞

fract(x′)
1

w
√

2π
e−

(x−x′)2

2w2 dx′.

We use the convolution theorem [Bra86], which states that
the convolution of two functions f and g can be determined
by taking the product of their Fourier transforms and the in-
verse Fourier transform of the result. The Fourier transform

Figure 2: A single pixel in the image plane subtends a
quadrilateral in the surface texture coordinate system assum-
ing locally planar geometry. We approximate this quadrilat-
eral by the axis-aligned bounding rectangle around the par-
allelogram formed by two of its edges.

of a function f (x), denoted F [ f (x)](k), is a function of fre-
quency k describing the spectral content of f (x).

First, we rewrite fract in terms of its Fourier series (the
full derivation may be found in the supplemental material):

fract(x) =
1
2
−
∞
∑
n=1

1
πn

sin(2πnx).

Following the convolution theorem, we take the product of
Fourier transforms of this function and of the Gaussian ker-
nel, then apply the inverse Fourier transform to obtain their
convolution in the spatial domain,

f̂ract(x,w) =
1
2
−
∞
∑
n=1

e−2w2
π

2n2

πn
sin(2πnx).

Although this expression is exact, it contains an infinite
sum that cannot be evaluated in practice. However, the terms
in this sum are scaled by e−2w2

π
2n2

. Thus, the absolute value
of the later terms rapidly approach zero. Therefore, one ap-
proximation method is to simply truncate this sum after a
fixed number of terms or once an error bound is reached.
However, we found that this approach can still yield long
running times and noticeable ringing artifacts, especially
when used in conjunction with other functions (Figure 3b).

We also investigated approximation strategies based on
the method of repeated integration [Hec86]. Repeated inte-
gration uses the observation that the convolution of f and g
can be determined by convolving the n-th integral of f with
the n-th derivative of g. Specifically, we explore approximat-
ing the Gaussian kernel as a box function and a tent function,
whose first and second derivatives, respectively, are impulse
trains. Thus, the convolutions are obtained by repeatedly in-
tegrating f ract(x) and point-sampling. Table 1 lists these
convolutions as fract2 and fract3.

3.4. Example: Band-Limited Checkerboard 1

As a simple example of the preceding results and to compare
the different approximation strategies for fract(x), let us con-
sider a simple black-and-white checkerboard shader, starting
with the code in Listing 1. First, recall that bxc may be writ-
ten in terms of fract(x) (Table 1). Second, observe that ss
depends only on the s coordinate while tt depends only on
the t coordinate. Thus, their product is multiplicatively sep-
arable by definition, as is the product (1−ss)∗(1−tt).

1 float3 checker1 (float2 p ) {
2 float ss = floor (p .s + 0 . 5 ) − floor (p .s ) ;
3 float tt = floor (p .t + 0 . 5 ) − floor (p .t ) ;
4 return (float3 ) (ss∗tt + (1−ss ) ∗(1−tt ) ) ;
5 }

Listing 1: A black-and-white checkerboard shader imple-
mented using the f loor(x) function. Note that p.s and p.t
access the s and t surface texture coordinates, respectively.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



J. Dorn & C. Barnes & J. Lawrence & W. Weimer / Towards Automatic Band-Limited Procedural Shaders

f (x) f̂ (x,w)

x x

x2 x2 +w2

fract1(x)
1
2
−
∞
∑
n=1

sin(2πnx)
πn

e−2w2
π

2n2

fract2(x)
1

2w

(
fract2

(
x+

w
2

)
+
⌊

x+
w
2

⌋
− fract2

(
x− w

2

)
−
⌊

x− w
2

⌋)
fract3(x)

1
12w2

(
f ′(x−w)+ f ′(x+w)−2 f ′(x)

)
where f ′(t) = 3t2 +2fract3(t)−3fract2(t)+ fract(t)− t

|x| xerf
x

w
√

2
+w

√
2
π

e−
x2

2w2

bxc x− f̂ract(x,w)

dxe fl̂oor(x,w)+1

cosx cosxe−
w2
2

saturate(x)
1
2

(
xerf

x
w
√

2
− (x−1)erf

x−1
w
√

2
+w

√
2
π

(
e−

x2

2w2 − e−
(x−1)2

2w2

)
+1

)
sinx sinxe−

w2
2

step(a,x)
1
2

(
1+ erf

x−a
w
√

2

)
trunc(x) fl̂oor(x,w)− ŝtep(x,w)+1

Table 1: Band-limited versions of several common one-dimensional primitive shader functions. The band-limiting kernel used
to derive the second column is the Gaussian function with a standard deviation equal to the sample spacing w. The fract function,
used as the basis of bxc, dxe, and trunc(x), is defined: fract(x) = x−bxc. The different versions of the fract function correspond
to the different approximation strategies described in the paper (Section 3.3). The trunc function truncates its argument to the
nearest integer in the direction of zero. The Gauss error function is denoted by erf.

To construct the band-limited shader, we first determine
the projections of the screen-space x and y vectors. For ex-
ample, in the the OpenGL Shading Language these are avail-
able as dFdx(p) and dFdy(p) [RLK09]. Given these two vec-
tors, we then use the axis-aligned approximation (see Sec-
tion 3.2) to compute the sample spacing in the surface coor-
dinate system.

We compose the body of the band-limited shader in a
bottom-up fashion. Table 1 provides the implementation of
a properly band-limited floor function. We simply replace
calls to floor with calls to this band-limited function, pass-
ing the computed approximate sample spacing.

Band-limiting the remainder of the function is trivial. Ob-
serve that ss and tt are linear combinations of functions
for which we have band-limited expressions. As described
in Section 3, their band-limited values are simply the lin-
ear combination of the band-limited subexpressions. For the

same reason, 1−ss and 1−tt are band-limited expressions
as well. According to the result of Section 3.1, since the ss
and tt are already band-limited and their product is multi-
plicatively separable, the product itself is band-limited and
similarly for (1−ss)∗(1−tt). Finally, we note that the linear
combination of the two products is properly band-limited.

Figure 3 shows the checkerboard shader applied to an in-
finite plane. Note that the target image required 2048 shader
calls per pixel to converge while the band-limited images re-
quired only one call per pixel.

4. Approximate Band-Limiting through Partial
Substitution

Not all shaders are conveniently linear combinations of
terms of mathematically separable functions, however. In
this section we consider an automated search strategy for ap-
proximating band-limited shaders in such situations. We mo-

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



J. Dorn & C. Barnes & J. Lawrence & W. Weimer / Towards Automatic Band-Limited Procedural Shaders

(a) Target (b) fract1 (c) fract2 (d) fract3
Figure 3: Renderings with the checkerboard shader developed in Section 3.4, showing the effect of the different approximations
to band-limiting the fract(x) function from Table 1. The shapes of the corresponding approximations of a square pulse are
given above each rendered image. The target image (3a) was rendered using the original shader with 2048 Gaussian-distributed
samples per pixel. The remaining images were rendered using a single sample per pixel. The faint grid of gray dots and blurred
edges of the foreground checkers in (3b) is due to truncating the infinite series in the band-limited expression for fract. For this
image, we chose to truncate so as to achieve a run time four times slower than fract3 (3d). Truncating the series later reduces
the visual effect at the cost of increased runtime.

tivate our approach with observations on two simple shaders:
an alternate formulation of the checkerboard and a field of
tiled circles.

Consider the checkerboard shader in Listing 2. It produces
an image that is essentially identical to that produced by the
shader in Listing 1. Note that this alternate implementation
employs function composition, to which the techniques of
the previous section do not directly apply. However, if we
replace the calls to fract and step with the band-limited
expressions in Table 1, despite the function composition, we
produce the reasonable image in Figure 4c. This suggests
that, even though we do not have an exact solution for situ-
ations involving function composition, it is sensible to con-
sider the effect of composing band-limited subexpressions.

Our second example to motivate approximation, the cir-
cles shader in Listing 3, is nearly as simple as the checker-
board shaders. It employs function composition of the same
functions (step and fract) to the same depth. This time,
however, as shown in Figure 5b, naively replacing each
subexpression with band-limited expressions introduces un-
acceptable artifacts. The circles appear to be inscribed within
a grid of lines and the distant portion of the image is black
instead of a uniform gray. These artifacts are due to squaring
the result of the band-limited fract and to applying step

to the result of band-limited squares, respectively. Crucially,

1 float3 checker2 (float2 p ) {
2 float ss = step (fract (p .s ) , 0 . 5 ) ;
3 float tt = step (fract (p .t ) , 0 . 5 ) ;
4 return (float3 ) (ss∗tt + (1−ss ) ∗(1−tt ) ) ;
5 }

Listing 2: A black-and-white checkerboard shader imple-
mented using the step(x) and fract(x) functions. Compare
this program with the code listing in Listing 1.

however, we observe that replacing only the call to step

produces the much more appealing image in Figure 5c.

Taken together, the checkerboard and circles examples
suggest that a band-limited shader can be approximated in
the presence of function composition by substituting only a
subset of the relevant functions.

4.1. Approximation Algorithm

To handle such shaders, we use search-based software engi-
neering techniques [HMZ12], exploring the space of simi-
lar shaders to find an implementation that approximates the
band-limited output of the initial shader.

We define the search space with respect to the abstract
syntax tree [ASU86] (AST) of the shader programs. To pro-
duce a new shader from an existing shader, we select a non-
band-limited node of the AST and replace it with the cor-
responding band-limited subtree. Each replacement subtree
takes the same inputs (plus a sample spacing parameter) and
returns the same output type as the node it replaces, ensuring
that the resulting program remains valid.

As with the circles shader above, this transformation may
not result in the correct band-limited shader. We therefore
define the following measurement of the quality or fitness of

1 float3 circles (float2 p ) {
2 float ss = fract (p .s∗10) − 0 . 5 ;
3 float tt = fract (p .t∗10) − 0 . 5 ;
4 return (float3 ) step (ss∗ss + tt∗tt , 0 . 2 ) ;
5 }

Listing 3: A shader for an infinite grid of circles. Unlike the
shader in Listing 2, replacing each subexpression with its
band-limited version produces an unacceptable result.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



J. Dorn & C. Barnes & J. Lawrence & W. Weimer / Towards Automatic Band-Limited Procedural Shaders

(a) Target (2048 samples) (b) Original (16 samples) (c) Band-limited (1 sample)
Figure 4: Renderings with the checkerboard shader in Listing 2. The band-limited image was generated using the f ract3 ap-
proximation to fract, given in Table 1. The other two images were generated using a Gaussian distribution for consistency
with the band-limiting kernel we use in this paper. The false-color insets indicate the L2 image error relative to the target image
(4a). Rendering 4c was an order of magnitude faster than rendering 4b with only 16% more visual error.

the new shader. We consider the similarity between the im-
ages the shader produces for a set of representative scenes
and the corresponding target images. Our technique is in-
dependent of the particular similarity metric used. For our
experiments, we consider the average per-pixel L2 distance
in RGB.

Our search space consists of all programs reachable via
a finite sequence of these node replacements. We represent
programs in the space as a bit vector with one bit per node,
with 1 or 0 indicating the node was or was not replaced,
respectively. For a shader program with N nodes in its AST,
the search space consists of O(2N) programs (since each of
the N nodes can either be replaced or not). For real-world
programs it is infeasible to evaluate every such shader.

Instead, we propose to use genetic search to to guide
exploration of this search space. Genetic search has pre-
viously been shown to apply well to repairing faulty pro-
grams [LNFW12], generating new analytic BRDF mod-
els [BLPW14], and reducing shader run time [SAMWL11,
WYY∗14]. Bitvector genetic algorithms are particularly
well-studied [Mit98]. This provides initial confidence that
it may apply well in this domain. However, to the best of
our knowledge, such searches have not been applied to the
specific problem of band-limiting shaders.

4.2. Determining the Sampling Rate

To achieve the correct degree of band-limiting, the kernels
and the band-limited expressions we derive from them must
incorporate the sample spacing as a parameter. This sample
spacing is necessarily specifically associated with the spa-
tially varying quantity in the original expression. For exam-
ple, consider a modification of the checkerboard shader in
Listing 2 that replaces fract(p.s) with fract(p.s∗2) to pro-
duce checks that are taller than they are wide. This doubles
the effective spacing between samples of the band-limited
expression; the sample spacing parameter must be doubled
to reflect this.

In general, the spacing between samples of the result of
an expression may be different from the spacing between

samples of its inputs. Note that we cannot simply compute
the sample spacing based on the partial derivative with re-
spect to the input parameters. For example, the derivative of
bxc with respect to x is 0 almost everywhere, yet this does
not imply that no function of bxc can ever alias. Nor can we
use finite differencing primitives to compute the local sam-
ple spacing. For example, using dFdx(fract(x)−1), which
falls in the range [−1,1], as the sample spacing for band-
limiting step(fract(x)−1) could result in something other
than the constant value 0.

For our experiments, we apply an approximating dataflow
analysis to compute sample spacing statically as a function
of the axis-aligned projection of the pixel onto the surface
(see Section 3.2). We make the simplifying assumption of
modeling the sample spacing as a linear combination of the
axis-aligned sample spacings in each dimension. The spac-
ing of the result of addition or subtraction is the sum of the
spacings of the terms. The spacing of the result of multipli-
cation or division is the product or quotient, respectively, of
the spacings of the factors. In all other cases, including func-
tion calls, the modeled spacing of the result of an expression
is the average of the non-zero spacings of the inputs.

Both the use of a linear model and our averaging approx-
imation may result in a sampling rate for a subexpression
that is either too high or too low. We therefore learn coeffi-
cients to refine this approximation. Again comparing against
a set of representative target images, we use the Nelder-
Mead simplex search [NM65] to learn multiplicative factors
for approximated sampling rates. In the cases where our av-
eraging approximation produces results that are too large, for
example, the simplex search may learn that a smaller con-
stant causes better agreement with the target.

5. Results

We evaluate the effectiveness of our technique for band-
limiting the shaders listed in Table 2, drawn from the shaders
used in previous work on antialiasing [YNS∗09]. Several of
these shaders (e.g., brick and wood) sample a random tex-
ture or employ a procedural noise function as a source of
randomness. We treat these in the same way as any of the

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



J. Dorn & C. Barnes & J. Lawrence & W. Weimer / Towards Automatic Band-Limited Procedural Shaders

(a) Target (b) Naive Replacement (c) Genetic Search Result (d) Genetic + Simplex Result
Figure 5: Renderings with the circles shader showing the results of using search to determine which expressions to replace and
which coefficients to use to determine sample spacing. The target image (5a) was rendered using the original shader with 2048
samples per pixel. Naively replacing every expression produces artifacts around each the circle (5b). Using the genetic search
(5c) to determine which expressions to replace produces a result that, while still not perfect, more closely matches the desired
image. Combining the results of the genetic and simplex search (5d) produces an even closer approximation of the target.

L2 error Runtime (ms)
Shader Lines Exprs Ours MSAA Ours MSAA Description

step 1 1 0.000 0.001 0.6 17 Black and white plane
ridges 1 1 0.011 0.056 1.3 17 fract(x)
pulse 2 2 0.021 0.089 2.2 18 Black and white stripes
noise1 26 3 0.042 0.044 39 241 Super-imposed noise
checker 3 4 0.072 0.125 4.1 18 Checkerboard
circles1 3 5 0.268 0.308 0.9 18 Tiled circles
wood 51 18 0.141 0.049 268 1337 Wood grain
brick 40 26 0.048 0.118 116 683 Brick wall
noise2 66 28 0.222 0.218 55 319 Color mapped noise
circles2 71 74 0.157 0.066 58 1180 Overlapping circles
perlin 79 244 0.146 0.068 4.0 71 Improved Perlin noise

Table 2: Shaders used for evaluation. “Lines” indicates the number of non-comment, non-blank lines; “exprs” lists the number
of expressions that are candidates for replacement. “L2 error” and “Runtime (ms)” indicate the performance of our antialiased
shaders versus 16x multi-sample antialiasing. Our shaders are often an order of magnitude faster than 16x multi-sampling while
maintaining comparable or better image quality.

functions in Table 1, that is, as nodes that the search may
or may not replace with a corresponding band-limited node.
Specifically, our implementation uses summed area tables
and Gabor noise, for which an anisotropic band-limited for-
mulation is known [LLDD09].

We measured the quality of the shaders by computing
the average per-pixel L2 error between a set of images ren-
dered with one sample per pixel and the corresponding target
images. We generated the target images using the original
shader programs and 2048 Gaussian-distributed samples per
pixel. For these experiments we chose to render an infinite
plane with the texture applied, from five different rotations
around an axis perpendicular to the plane. All images were
generated 256x256 pixels and rendered on an NVIDIA GPU.

For each shader we ran 10 random restarts of the genetic
search with a population of 200 candidate shaders for 20
generations. The number of possible shaders is given by rais-
ing 2 to the number of expressions that may be band-limited.
Thus, for roughly half of our shaders our search exhaustively
evaluated every variant shader that our technique generates,
completing the search in under a minute. On the other hand,
for the brick shader, the search evaluated less than one out of

every 16,000 possible variants. For these shaders, the genetic
search required roughly 8 hours for each random restart.

To reduce the time taken by our experiments, we only
consider the sample spacing expressions generated by our
dataflow analysis during the genetic search. However, as
discussed above, in some cases this may incorrectly esti-
mate the sample spacing. To mitigate this, we apply simplex
search to the result of the genetic search as a post-processing
step to find coefficients to replace those generated by the
dataflow analysis, considering only the expressions band-
limited by the genetic search. We ran the simplex search
using the same error metric and same set of representative
scenes as the genetic search, with 100 random restarts. The
results presented in Table 2 reflect the best coefficients from
this search.

We present images generated using the best shaders found
by the genetic search in Figure 6. For comparison, we also
present the images produced by the original shader with one
sample per pixel and 16 Gaussian-distributed samples per
pixel.

The L2 error and run time of the shaders found by the

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



J. Dorn & C. Barnes & J. Lawrence & W. Weimer / Towards Automatic Band-Limited Procedural Shaders

search are listed in Table 2. Note that the run times of
our shaders are significantly better than from 16x multi-
sampling despite our search considering only image quality.
Even though the band-limited subexpressions are typically
more computationally intensive than their non-band-limited
counterparts, the benefit of taking a single sample per pixel
outweighs the added complexity.

6. Discussion

Our technique consistently produces shaders that are several
times faster than 16x multi-sampling. In many cases, these
shaders also produce comparable or less error than multi-
sampling. However, in some cases such as the wood and cir-
cles2 shaders in our evaluation, we found that although our
technique was more accurate than using only a single sample
per pixel, it did not outperform multi-sampling in terms of
visual quality. Furthermore, for the perlin shader, our tech-
nique failed to achieve any significant improvement. This
prompted us to analyze the circles2 and perlin shaders to
determine what aspects of those programs made the search
more difficult. We summarize our findings and suggest di-
rections for future research in this section.

Loops. Both shaders are structured around an outer loop.
The circles2 shader divides the texture space into cells and
processes adjacent cells in a loop. The perlin shader accumu-
lates several octaves of noise in its outer loop, with an inner
loop that sums the contributions from the vertices of the cell.
The outer loop of the former shader and the inner loop of the
latter have a number of iterations fixed by the algorithm and
so may be easily unrolled completely. The number of octaves
of Perlin noise to accumulate is generally a user-controlled
parameter. For our experiments, we fixed the number of oc-
taves at 4 to allow completely unrolling the loop.

Significantly, the bounds of the loops we investigated
do not depend on spatially varying parameters. However,
we note that one common approach to manually band-
limiting Perlin noise is to exclude higher-frequency octaves
when the sampling rate grows sufficiently large. Previous
work on automatic shader simplification has demonstrated
the capability to unconditionally remove high-frequency oc-
taves [SAMWL11], but these techniques do not incorporate
sampling rate in their transformations. This suggests a new
band-limiting transformation to investigate, namely intro-
ducing spatially-varying bounds to existing loops. Since ar-
bitrary loops necessarily introduce high-frequency effects to
represent the jump between an integer number of iterations,
further research into band-limiting them is required.

Conditionals. Both the circles2 and perlin shaders in-
clude if-statements, to determine the top-most circle and
to identify the correct cell, respectively. Similarly to
Velázquez-Armendáriz et al. [VAZH∗09], we always com-
pute both branches and merge their values with a φ-
function [CFR∗91] for which we know the corresponding

band-limited expression. For the experiments in this pa-
per, we used a simple function based on step, replacing
if (a<=b)c else d with step(a,b)∗c + (1−step(a,b))∗d.
Interestingly, the majority of nodes in circles2 replaced by
the genetic search were these step nodes. This suggests
future research could investigate the effects of different
φ-function implementations on the success of the genetic
search.

Lookup Tables. Perlin noise is often implemented using
nested array accesses, where one array contains indices into
a second array. Simply band-limiting the arrays in the way
one might band-limit a texture would have the result of av-
eraging the indices in the first array. This is unlikely to pro-
duce reasonable results. Recently, researchers have begun to
investigate formal analysis and modeling of such nested ar-
ray accesses [NKWF14]. Further research is required to dis-
cover automated transformations to handle these cases or to
identify data structures and coding styles that handle them
without requiring further transformation.

7. Conclusion and Future Work

This paper has explored the problem of automatically band-
limiting procedural shaders. In general, this is a hard prob-
lem involving finding a solution to the convolution of an
input shader function and a band-limiting kernel parame-
terized by the local distribution of the sample spacing. We
showed that in certain cases an analytic solution can be
achieved and provide those results for a number of built-
in functions that are common in modern procedural shader
languages (Table 1). We also demonstrated that exact so-
lutions can be obtained for any linear combination or sep-
arable product of these functions. Finally, we described a
new approximation strategy for the many cases when an ex-
act solution is not possible. Our approach integrates a meta-
heuristic genetic search over possible subexpression replace-
ments along with a non-linear simplex search over sample
spacing parameters. We showed that in some cases this ap-
proximation strategy is able to find visually pleasing results
that require far less computational effort than MSAA. In a
few cases, our search failed to find a satisfying result largely
due to the difficulty of this search problem. Indeed, more
work on this topic is needed.

We see a number of interesting directions for future work.
One idea is to study alternative methods of parameterizing
the space of code transformations that are considered during
the search. Our genetic algorithm considers the set of shader
functions reachable by replacing a subset of the subexpres-
sions with their band-limited counterparts. Perhaps an ap-
proach that considers more generic function transformations
would lead to better results.

Another direction is to develop closed-form expressions
for higher-order functions and thus expand the set of subex-
pressions that can be exactly band-limited. For example, this

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



J. Dorn & C. Barnes & J. Lawrence & W. Weimer / Towards Automatic Band-Limited Procedural Shaders

Figure 6: Comparison between (from left to right) target (2048 supersampling), no antialiasing, 16x multi-sampling, and our
approach.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



J. Dorn & C. Barnes & J. Lawrence & W. Weimer / Towards Automatic Band-Limited Procedural Shaders

would avoid the requirement that the band-limiting kernel
must be expressible as the product of two one-dimensional
functions. A similar direction mentioned above is to investi-
gate techniques for band-limiting loops that are bounded by
spatially varying quantities.

Finally, it would be interesting to study how the design of
the language may assist with this challenging task. As was
demonstrated by the checker1 and checker2 shaders, there
are typically many different mathematical functions that pro-
duce the same visual effect. Furthermore, it is frequently the
case that one mathematical expression is preferable in terms
of its suitability for this type of analysis (e.g., checker1 per-
mits a better solution than checker2 with our method). It
would be interesting to develop languages or language con-
structs that force a developer to produce shaders that permit
analytic band-limited versions.

8. Acknowledgments

This work was partially supported by NSF grant CCF
116289, CCF 0954024, and CCF 0905373 as well
as AFOSR grant FA8750-15-2-0075 and DARPA grant
FA8650-10-C-7089.

References
[AG99] APODACA A. A., GRITZ L.: Advanced RenderMan:

Creating CGI for Motion Picture, 1st ed. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1999. 2

[AMHH08] AKENINE-MOLLER T., HAINES E., HOFFMAN N.:
Real-Time Rendering, 3rd ed. AK Peters / CRC Press, 2008. 1

[ASU86] AHO A., SETHI R., ULLMAN J.: Compilers: Princi-
ples, Techniques and Tools. Addison Wesley, 1986. 6

[BLPW14] BRADY A., LAWRENCE J., PEERS P., WEIMER W.:
genBRDF: Discovering new analytic brdfs with genetic program-
ming. ACM Transactions on Graphics 33, 4 (Jul 2014). 7

[Bra86] BRACEWELL R.: The Fourier Transform and Its Appli-
cations, 2nd ed. McGraw-Hill series in electrical engineering.
McGraw-Hill, 1986. 4

[BWG03] BALA K., WALTER B., GREENBERG D. P.: Combin-
ing edges and points for interactive high-quality rendering. ACM
Transactions on Graphics 22, 3 (Jul 2003), 631–640. 2

[CFR∗91] CYTRON R., FERRANTE J., ROSEN B. K., WEGMAN
M. N., ZADECK F. K.: Efficiently computing static single as-
signment form and the control dependence graph. ACM Trans-
actions on Programming Languages and Systtems 13, 4 (Oct.
1991), 451–490. 9

[CML11] CHAJDAS M. G., MCGUIRE M., LUEBKE D.: Sub-
pixel reconstruction antialiasing for deferred shading. In Sym-
posium on Interactive 3D Graphics and Games (2011), I3D ’11,
pp. 15–22. 2

[Cro77] CROW F. C.: The aliasing problem in computer-
generated shaded images. Communications of the ACM 20, 11
(Nov 1977), 799–805. 1

[Cro84] CROW F. C.: Summed-area tables for texture mapping.
SIGGRAPH Computer Graphics 18, 3 (Jan 1984), 207–212. 1, 2

[Hec86] HECKBERT P. S.: Filtering by repeated integration. SIG-
GRAPH Computer Graphics 20, 4 (Aug 1986). 4

[HMZ12] HARMAN M., MANSOURI S. A., ZHANG Y.: Search-
based software engineering: Trends, techniques and applica-
tions. ACM Comput. Surv. 45, 1 (2012), 11. URL: http://
doi.acm.org/10.1145/2379776.2379787, doi:10.
1145/2379776.2379787. 6

[HNPN13] HEITZ E., NOWROUZEZAHRAI D., POULIN P.,
NEYRET F.: Filtering color mapped textures and surfaces. In
Proceedings of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games (2013), pp. 129–136. 2

[HSS98] HEIDRICH W., SLUSALLEK P., SEIDEL H.-P.: Sam-
pling procedural shaders using affine arithmetic. ACM Transac-
tions on Graphics 17, 3 (July 1998), 158–176. 3

[LLDD09] LAGAE A., LEFEBVRE S., DRETTAKIS G., DUTRÉ
P.: Procedural noise using sparse gabor convolution. ACM Trans-
actions on Graphics 28, 3 (Jul 2009), 54:1–54:10. 1, 8

[LNFW12] LE GOUES C., NGUYEN T., FORREST S., WEIMER
W.: Genprog: A generic method for automatic software repair.
Transactions on Software Engineering 38, 1 (Jan 2012), 54–72.
7

[Mit98] MITCHELL M.: An introduction to genetic algorithms.
MIT press, 1998. 7

[NKWF14] NGUYEN T., KAPUR D., WEIMER W., FORREST
S.: Dig: A dynamic invariant generator for polynomial and ar-
ray invariants. ACM Transactions on Software Engineering and
Methodology 23, 4 (Sept. 2014). 9

[NM65] NELDER J. A., MEAD R.: A simplex method for func-
tion minimization. The computer journal 7, 4 (1965), 308–313.
7

[NRS82] NORTON A., ROCKWOOD A. P., SKOLMOSKI P. T.:
Clamping: A method of antialiasing textured surfaces by band-
width limiting in object space. SIGGRAPH Computer Graphics
16, 3 (Jul 1982). 1, 2, 4

[OKS03] OLANO M., KUEHNE B., SIMMONS M.: Auto-
matic shader level of detail. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware
(2003), HWWS ’03, pp. 7–14. 2

[Pel05] PELLACINI F.: User-configurable automatic shader sim-
plification. ACM Transactions on Graphics 24, 3 (Jul 2005), 445–
452. 2

[Res09] RESHETOV A.: Morphological antialiasing. In Pro-
ceedings of the Conference on High Performance Graphics 2009
(2009), HPG ’09, pp. 109–116. 2

[RLK09] ROST R. J., LICEA-KANE B.: OpenGL Shading Lan-
guage, 3rd ed. Addison-Wesley Professional, 2009. 5

[SAMWL11] SITTHI-AMORN P., MODLY N., WEIMER W.,
LAWRENCE J.: Genetic programming for shader simplification.
ACM Transactions on Graphics 30, 6 (Dec 2011). 2, 7, 9

[VAZH∗09] VELÁZQUEZ-ARMENDÁRIZ E., ZHAO S., HAŠAN
M., WALTER B., BALA K.: Automatic bounding of pro-
grammable shaders for efficient global illumination. ACM Trans-
actions on Graphics 28, 5 (Dec. 2009), 142:1–142:9. 3, 9

[Wil83] WILLIAMS L.: Pyramidal parametrics. SIGGRAPH
Computer Graphics 17, 3 (Jul 1983). 1, 2

[WYY∗14] WANG R., YANG X., YUAN Y., CHEN W., BALA
K., BAO H.: Automatic shader simplification using surface sig-
nal approximation. ACM Transactions on Graphics 33, 6 (Nov
2014). 2, 7

[YNS∗09] YANG L., NEHAB D., SANDER P. V., SITTHI-
AMORN P., LAWRENCE J., HOPPE H.: Amortized supersam-
pling. ACM Transactions on Graphics 28, 5 (Dec 2009). 7

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

http://doi.acm.org/10.1145/2379776.2379787
http://doi.acm.org/10.1145/2379776.2379787
http://dx.doi.org/10.1145/2379776.2379787
http://dx.doi.org/10.1145/2379776.2379787

