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Figure 1: A comparison between Cook-Torrance [1982], Löw et al.’s smooth surface model [2012], and a new analytic BRDF model found
by genBRDF, all fit with Löw et al.’s E2 metric to three materials from the MERL-MIT BRDF database [Matusik et al. 2013].

Abstract

We present a framework for learning new analytic BRDF mod-
els through Genetic Programming that we call genBRDF. This ap-
proach to reflectance modeling can be seen as an extension of tradi-
tional methods that rely either on a phenomenological or empirical
process. Our technique augments the human effort involved in de-
riving mathematical expressions that accurately characterize com-
plex high-dimensional reflectance functions through a large-scale
optimization. We present a number of analysis tools and data vi-
sualization techniques that are crucial to sifting through the large
result sets produced by genBRDF in order to identify fruitful ex-
pressions. Additionally, we highlight several new models found by
genBRDF that have not previously appeared in the BRDF litera-
ture. These new BRDF models are compact, and more accurate
than current state-of-the-art alternatives.
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1 Introduction

Accurately modeling material appearance plays a critical role in
photo-realistic rendering. Despite our understanding of the physics
of light propagation, real-world materials include many complex
and subtle properties that defy common simplifying assumptions.
For this reason, deriving BRDF models that are accurate and com-
pact enough to meet the demands of modern rendering systems,
while remaining general enough to express a range of interesting
materials, remains an open problem.

This paper focuses on homogeneous opaque surfaces whose appear-
ance is characterized by the Bidirectional Reflectance Distribution
Function (BRDF) [Nicodemus et al. 1977]. Traditionally, BRDF
models have been derived manually either according to some phe-
nomenological process [Phong 1975] or based on the physics of
light propagation [Cook and Torrance 1982; He et al. 1991]. A
more recent trend has been to measure the BRDFs of physical sam-
ples and use those measurements either directly [Matusik et al.
2003], or as input to an optimization process that determines the
best fitting parameters of an analytic model [Ngan et al. 2005].

Analytic BRDFs are desirable for their compactness and because
they often have adjustable parameters that designers can use to
specify a wide range of materials [Dorsey et al. 2008]. Their main
drawback is that they are typically less accurate than data-driven
models and often fail to capture subtle aspects of material appear-
ance [Ngan et al. 2005]. Figure 1 illustrates the gap that remains
between analytic BRDF models and measured data in the case of
three material samples from the MERL-MIT database [Matusik
et al. 2003]. Note how the Cook-Torrance model overblurs the high-



lights, while Löw et al.’s model oversharpens them. Deriving new
analytic BRDF models or even modifying existing ones in a prin-
cipled way to achieve a better match is a difficult task as it is hard
to pinpoint which component of the BRDF model needs improve-
ment.

This paper presents a framework for discovering new analytic
BRDF models. This approach can be seen as an extension of tradi-
tional methods that rely either on a phenomenological or empirical
process. Our technique augments the human effort involved in de-
riving mathematical expressions that accurately characterize com-
plex high-dimensional reflectance functions through Genetic Pro-
gramming (GP). We perform a large-scale heuristic-based random
search that considers hundreds of thousands of symbolic transfor-
mations of a few “seed” BRDF expressions with the goal of adapt-
ing them to achieve a more accurate fit to measured data. The
result of this search is a large set (i.e., thousands) of analytic ex-
pressions that trade accuracy for complexity. We introduce analysis
techniques and visualization tools to help identify fruitful BRDF
expressions within these large result sets.

This seemingly inefficient “blind” approach to a staggeringly diffi-
cult optimization problem like learning new analytic BRDF models
has only recently become feasible due to the availability of inexpen-
sive large-scale computing resources. Our approach to enumerating
potential analytic BRDF expressions also incorporates a number of
domain-specific constraints that limit the search space. Finally, we
present several experiments that learn different-sized subterms of
the BRDF (e.g., the entire specular term vs. only the microfacet
normal distribution function) in order to study the trade-off between
the size of the search space and the computational effort required to
identify useful reflectance models.

The main contribution of this paper is not just another BRDF
model (or set of new BRDF models), but rather a framework ca-
pable of learning superior analytic BRDF models. We demonstrate
the versatility of genBRDF by synthesizing new analytic BRDF
models for isotropic materials, relying on the MERL-MIT BRDF
database [Matusik et al. 2003] to guide the search. We evaluate a
selected subset of these models and show that they outperform the
current state-of-the-art. Additionally, we analyze one of these mod-
els in detail to illustrate how our genetic search works and the types
of expressions it is able to discover. Finally, we apply genBRDF to
the more focused task of synthesizing a new BRDF model for met-
als and, lastly, for one specific metal from the MERL-MIT database.
We believe genBRDF will serve as a valuable tool in the develop-
ment of future analytic models for material reflectance and, more
broadly, the many other complex high-dimensional functions that
arise in graphics.

2 Related Work

Modeling Surface Reflectance The manner in which light is
scattered at a point on an opaque surface is fully described by the
Bidirectional Reflectance Distribution Function (BRDF) [Nicode-
mus et al. 1977], a function of 4 variables that relates incident irra-
diance to exitant radiance. Many analytic BRDF models have been
proposed which range from phenomenological to physically-based.
On one end of the spectrum are pure phenomenological models,
such as the well known Phong BRDF model [1975], that aim to
reproduce the qualitative aspects of material appearance without
any regard to the underlying physical process of light-matter in-
teraction. On the other end of the spectrum are physically-based
models, such as the models by He at al. [1991] and Torrance and
Sparrow [1992]. These are based on a theory of light propagation
(e.g., geometric optics, wave-based, etc.) and an idealized model
of the material surface’s microgeometry. Furthermore, physically-

based models are often supplemented with phenomenological com-
ponents in order to express certain underlying physical processes
that are difficult to model exactly [Ashikhmin et al. 2000]. The
current paper can be seen as an automated large-scale phenomeno-
logical approach to BRDF modeling. Our genetic search identifies
mathematical expressions chosen at random that match measured
data better than alternative expressions without consideration of the
physics of light propagation or the material’s underlying physical
structure.

The availability of large measured datasets of surface re-
flectance [Matusik et al. 2003] has enabled experimental validation
of existing analytic BRDF models [Ngan et al. 2005] and fueled the
development of new BRDF models (e.g., [Löw et al. 2012; Bagher
et al. 2012; Walter et al. 2007]). Our method uses the MERL-MIT
database of measured isotropic reflectance functions [Matusik et al.
2003] to guide a large-scale genetic search for better analytic BRDF
expressions. Unlike prior work, we do not propose a single specific
model, but rather a new approach for learning new BRDF models
through Genetic Programming.

Genetic Programming Genetic Programming (GP) is a general
machine learning strategy that uses an evolutionary methodology
to search for a set of instructions (i.e., model) that optimize some
fitness criterion [Koza 1992]. From an initial population of candi-
date models, a new evolved generation of candidates is produced
through a series of pre-defined mutation and combination opera-
tions (i.e., cross-over). After each generation, a new population is
chosen that favors the fittest candidates and the process repeats.

Although GP has been applied to many problems in computer sci-
ence, it has not yet been used extensively in computer graphics. A
notable exception is recent work by Sitthi-Amorn et al. [2011] who
described a GP approach to the problem of automatic procedural
shader simplification. We use a similar internal representation of
analytic BRDF expressions, but instead of simplifying mathemati-
cal expressions, we attempt to grow new ones. Additionally, we use
an island model genetic algorithm [Grosso 1985] which is designed
to favor exploring the space of possible BRDF variants over nar-
rowly searching within profitable regions. We found this approach
to be more suitable for this more challenging synthesis problem.

3 Overview

We apply Genetic Programming (GP) to the task of learning new
analytic expressions for real-world surface reflectance functions. At
a high-level our algorithm iterates between the following two steps:

• Expansion: Given a population of analytic BRDF expres-
sions, compute a new population by randomly mutating indi-
vidual expressions and randomly combining parts of multiple
expressions.

• Selection: Sort the resulting population based on a fitness
score and choose a subset that favors the fittest to survive into
the next generation. Fitness is equal to the residual error after
fitting the free parameters of each BRDF variant to a training
set of measured materials.

The initial population is constructed from one or more existing an-
alytic BRDF models and the search is terminated after a fixed num-
ber of generations.

Figure 2 provides a didactic example of how our genetic search
works when the starting point is the original (“R dot V”) Phong
BRDF model [Phong 1975] and the target (training set) is the (“H
dot N”) Blinn-Phong BRDF model [Blinn 1977]. This sequence
highlights a single variant within each generation, visualized as a
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Figure 2: A didactic example of genBRDF shows how the original (“R dot V”) Phong BRDF model [Phong 1975] is evolved into the (“H
dot N”) Blinn-Phong BRDF model [Blinn 1977]. For selected variants and generations, a visualization of the resulting BRDF expression is
shown (top) as well as the sequence of edits (with respect to the initial BRDF expression) that produced the variant (bottom).

sphere rendered in a natural lighting environment above the cor-
responding analytic expression (we omit the diffuse and specular
parameters for brevity). The value of the parameter n found to give
the best fit to the training data along with the residual error of that
best fit are reported above the sphere images.

Note that the error does not monotonically decrease over consec-
utive generations (e.g., the second generation). Unlike strict hill
climbing approaches, GP intentionally retains a fraction of subopti-
mal variants to allow for greater exploration of the search space in
the hopes of eventually reaching a better local optimum. Thus, the
final sequence of edits, which reduce the error to zero, often include
subsequences that increase error when considered alone. (Note that
the solution found in generation 10 is identical to the target with the
substitution n = n′ + 2.)

4 Genetic Algorithm

Our algorithm is an iterative, population-based, heuristically-
guided search through the space of BRDF expressions. The goal
is to find new BRDF variants that minimize an error function with
respect to a training set of measured reflectance functions.

Analytic BRDF Representation We represent an analytic BRDF
by its Abstract Syntax Tree (AST) [Aho et al. 1986] using the gram-
mar shown in Figure 3. This grammar was designed to capture
constants and mathematical operators commonly found in existing
BRDFs. The unary operators ‘pos’ and ‘clamp’ are defined as:

pos(x) ≡ min(x, 0)/x (1)
clamp(x) ≡ min(max(x,−1),+1). (2)

Of special note is that our grammar also includes a set of n free
BRDF parameters (p0 . . . pn−1) akin in nature to the sharpness pa-
rameter in Blinn-Phong [1977], roughness in Cook-Torrance [Cook
and Torrance 1982], or R0 in Schlick’s approximation of Fresnel
reflectance [Schlick 1994].

Edit Operations Edits (or mutations) are performed at the AST
level and can involve multiple terms from a single BRDF expres-
sion or several terms from multiple BRDF expressions. Instead of
explicitly tracking mutated ASTs, we record a sequences of edits
applied to a starting BRDF expression. For instance, in the example
in Figure 2, the list of edits with respect to the initial Phong BRDF
model (shown at the bottom) would be stored for each variant.

〈brdf 〉 ::= 〈node〉

〈node〉 ::= 〈op〉 | 〈scalar〉

〈op〉 ::= 〈unaryOp〉 ( 〈node〉 )
| 〈binOp〉 ( 〈node〉 , 〈node〉 )
| 〈vecOp〉 ( 〈vector〉 〈vector〉 )

〈unaryOp〉 ::= - | sin | cos | tan | exp | asin | acos | atan | sqrt | pos
| clamp

〈binOp〉 ::= + | - | * | / | max | min | pow

〈vecOp〉 ::= dot

〈vector〉 ::= L | V |H | R | N

〈scalar〉 ::= 〈parameter〉
| 〈const〉
| 〈component〉

〈parameter〉 ::= p0 | p1 | . . . | pn−1

〈component〉 ::= Lz | Vz |Hz | Rz

〈const〉 ::= 1.0 | 2.0 | π | 4.0

Figure 3: The grammar used to generate analytic BRDF expres-
sions in our genetic search.

We allow the following edits:

• Swap(〈node〉1, 〈node〉2): Given two nodes in the AST, re-
place node1 with node2 and node2 with node1. To avoid
creating cycles, no Swap() edits are created when either node
is a descendant of the other.

• Insert(〈node〉new, 〈node〉old): Insert 〈node〉new at the lo-
cation once occupied by 〈node〉old. Inserted nodes are drawn
from a codebook of sub-expressions created from existing an-
alytic BRDF models. In this way, our search leverages ex-
pressions previously found to be useful in modeling BRDFs
while also exploring the space of possible formulations.

• Replace(〈node〉old, 〈node〉similar): Unlike Insert, this
edit replaces 〈node〉old with a similar node, leaving any chil-



dren untouched. Specifically, a 〈binOp〉 is replaced by an-
other 〈binOp〉, a 〈unaryOp〉 with another 〈unaryOp〉, and
a 〈scalar〉 is replaced with a different 〈scalar〉. For example,
this edit could replace sin with cos, + with ∗, or the constant
2.0 with parameter p0.

• Delete(〈node〉): This operation replaces 〈node〉 with the
constant 1.0.

Algorithm To favor exploration (i.e., considering a diverse set of
BRDF variants) over exploitation (i.e., narrowly focusing on many
different BRDF variants with subtle changes), we employ an island
model genetic algorithm [Grosso 1985]. This involves partitioning
the initial population into sub-populations that only rarely interact.
The biological analogy is an archipelago of small islands with crea-
tures that normally evolve in isolation. Occasionally, however, an
organism on one island may migrate to another. Such a strategy
encourages exploration of the space of BRDFs because each island
is freed from the homogenizing effect of selection pressure within
one population. We follow a simple, yet effective migration strat-
egy [Andalon-Garcia and Chavoya-Pena 2012] between 4 islands:
in every other 5th generation, the best variant from each island i
migrates to island ((i+ 1) mod 4).

At each iteration, a new population evolves from the current popu-
lation. For each island’s sub-population of size N , we select N/2
BRDF variants based on their fitness to act as parents of the next
generation of BRDF variants. Rather than selecting the N/2 best
variants, we use tournament selection [Miller et al. 1995], i.e., the
best variant from k = 8 randomly selected variants is retained.
This further encourages exploration. These parent BRDF variants
are randomly paired to create N/2 new offspring using a one-point
crossover operator [Holland 1992]. That is, two edit sequences
〈A1, A2〉 and 〈B1, B2〉 produce offspring 〈A1, B2〉 and 〈B1, A2〉.
The N/2 offspring and the N/2 parents then form the new genera-
tion of size N . To further increase diversity, one additional random
mutation is applied to each variant.

Fitness The fitness of each variant is equal to the residual er-
ror after fitting its free parameters (p0 . . . pn−1) to a selected set of
training materials. We enforce non-negativity of the free parameters
by optimizing in the log domain, and fit each color channel sepa-
rately. We estimate the BRDF parameters using the Nelder-Mead
simplex search [1965] with 3 restarts guided by the E2 BRDF error
metric proposed by Löw et al. [2012]:

E2(p, q) =

∫∫∫
(g2(L, V ; p)− g2(L, V ; q))2 sin θodφodθodθi,

(3)
where g2(L, V ; p) = ln(1 + cosθiρ(L, V ; p)). We sample V at
half the resolution used by Löw et al. to reduce running times. In
particular, we sample θi in 10 degrees steps, and θo and φo in 2
degree steps. Löw et al.’s [2012] E2 metric is originally intended
for fitting BRDF models, and assumes that the BRDF model obeys
reciprocity. However, the grammar listed in Figure 3 does not guar-
antee that BRDF variants are reciprocal. To encourage reciprocity,
we augment the E2 metric to include reciprocal sample directions,
doubling the total number of samples. Lastly, unlike Löw et al.,
we sample the full hemisphere, including directions near grazing
angles.

Input and Initialization Our algorithm takes as input:

1. the maximum number of free BRDF parameters n allowed in
the BRDF variants;

2. an existing analytic BRDF model, represented as an AST,
which serves as the starting point for the search, such as the

Phong BRDF model in the example shown in Figure 2;
3. an optional set of additional analytic BRDF models from

which a codebook of sub-expressions is formed;
4. a training set of measured materials (e.g., a subset of the

MERL-MIT database [Matusik et al. 2003]); and
5. the per-island population sizeN and the maximum number of

iterations

The codebook of BRDF sub-expressions is formed by taking the
union of all the subtrees within the AST representations of a set of
BRDF expressions. For example, if the set of BRDF expressions
was the singleton {cos(R · V )n}, then the codebook would be the
set of sub-expressions {cos(R · V )n, cos(R · V ), n,R · V,R, V }.
In addition, we require special handling of BRDF free parameters,
which may vary in meaning between different BRDF models. For
example, suppose that p0 encodes the sharpness parameter in the
Blinn-Phong model but p0 encodes albedo in another BRDF model.
Naı̈vely constructing the codebook from the subexpressions can re-
sult in an unintentional linking of BRDF parameters that encode
different phenomena. We desire to combine subexpressions involv-
ing those parameters (i.e., exploring the search space by combining
the best of both worlds) but the arbitrary labeling is a complica-
tion. Thus, if we are considering at most n free BRDF parameters
and we encounter an expression pi, we replace it with p0 . . . pn−1.
For example, if an input BRDF expression contains p1/π, we add
{p0/π, p1/π, . . . , pn−1/π} to the codebook.

From the starting BRDF expression and codebook, we create an
initial population by applying a random edit to the starting BRDF
expression, and uniformly distribute these variants over the islands.

5 Experiments

We performed a series of experiments using the genBRDF frame-
work described in the previous sections. The purpose of these ex-
periments was three-fold. First, we wanted to identify analytic ex-
pressions not previously used for BRDF modeling that outperform
the current state-of-the-art in terms of accuracy, compactness, or
both.

Second, we wanted to study the feasibility of, and develop best
practices for, applying a large-scale genetic search to the task of
learning new analytic BRDF models. To this end, we observe that
although our GP search can generate arbitrary expressions within
the chosen grammar (Figure 3), BRDFs are often the product of
several terms, each having a specific physical interpretation. For
example, the geometry term in the Cook-Torrance BRDF model is
meant to capture the effects of microfacets shadowing and masking
one another [Torrance and Sparrow 1992]. Consequently, we hold
fixed a different-sized portion of the starting BRDF expression in
each experiment, thereby allowing the genetic search to focus on a
narrower part of the problem. The goal was to identify the “sweet
spot” that strikes the right balance between the size of the search
space and the computational effort required to identify useful ex-
pressions.

Finally, our third experimental goal was to develop analysis tech-
niques and visualization tools that help quickly identify useful
BRDF expressions in the set of variants returned by our search.

We performed the following experiments:

FULL Experiment We allowed the GP search to manipulate all
of the terms in the BRDF fr(L, V ) and used the Cook-Torrance



BRDF model as the starting point:

fr(L, V ) =
kd
π

+ ks
F

π

DG

(N · L)(N · V )
(4a)

D =
1

m2cos4δ
e−[tan(δ)/m]2 (4b)

G = min

{
1,

2(N ·H)(N · V )

(V ·H)
,
2(N ·H)(N · L)

(V ·H)

}
(4c)

F = R0 + (1−R0)(1− (V ·H))5, (4d)

where δ is the angle between the half-direction (H) and the nor-
mal (N ). The four free parameters (kd, ks, m, R0) correspond
to the amplitude of the diffuse lobe and specular lobe, the root
mean square slope of the Beckmann microfacet distribution func-
tion [Beckmann and Spizzichino 1963], and the reflectance at nor-
mal incidence, respectively. This particular approximation of the
Fresnel term is due to Schlick [1994].

Our codebook consisted of the union of all valid sub-expressions in
the Ward [1992], Blinn-Phong [1977], and Cook-Torrance [1982]
models. We allowed variants to incorporate up to four free parame-
ters (p0 . . . p3).

In all of our experiments, BRDF variants produced during the
search were forced to be non-negative by enclosing the generated
code inside the max function: max(fr, 0). We also return zero
whenever L or V are found to lie below the horizon.

The inner loop of our search involves computing the best fitting val-
ues for the four BRDF parameters in each of the three color chan-
nels independently (Section 4). The final fitness value for each vari-
ant is the sum of these residual errors. In all of our experiments, we
let the GP search run for 100 generations using 4 islands, each with
a population of 1,024, yielding a total of 409,600 BRDF variants.

SPEC Experiment In this experiment we restrict the search to
the specular term, sr(L, V ), instead of attempting to estimate the
entire BRDF:

fr(L, V ) =
kd
π

+ kssr(L, V ). (5)

We use the corresponding specular term of the Cook-Torrance
model as a starting point, and thus sr(L, V ) subsumes the Fres-
nel (F ), geometry (G), and microfacet distribution (D) terms. The
codebook consisted of the union of all valid sub-expressions in the
specular components from the Ward [1992], Blinn-Phong [1977],
and Cook-Torrance [1982] models, and we allow for three free pa-
rameters (p0, . . . p2) in the GP search. Note that GP expressions
generated during our search may not incorporate the parameters kd
and ks because these appear in the fixed parts of the initial BRDF.
However, kd and ks are included when computing the best fit (over
a total of 5 parameters).

On the one hand, formulating the problem as estimating sr(L, V )
embedded within a classical “diffuse plus specular” BRDF formula
reduces the difficulty of finding useful expressions. On the other, it
biases the search towards a particular structure and makes it more
likely to overlook expressions that may produce superior fits [Oren
and Nayar 1994; Kelemen et al. 2001]. These experiments were
designed to analyze this important trade-off.

NDF Experiment As a final experiment, we further restricted the
search to consider only the normal distribution and geometry terms
of a microfacet BRDF [Walter et al. 2007], nr(L, V ). The full
BRDF expression is given as

fr(L, V ) =
kd
π

+ ks
nr(L, V )F

4(V ·N)(L ·N)
, (6)

Figure 4: The set of 40 representative materials from the MERL-
MIT BRDF database used for evaluation. Metals are shown on the
left, dielectrics are shown on the right. Our training set (8 materi-
als) are indicated with green borders.

where F is given in Equation (4d). We allow the term nr(L, V )
estimated by our search to have two parameters and so, as with the
SPEC experiment, the final BRDF has a total of five parameters.

For this experiment, our codebook was composed of the union of
subexpressions from well-known NDF and geometry terms: the
Beckmann [1963] distribution, Walter et al.’s [2007] GGX and
Phong distribution, and Löw et al.’s [2012] normal distribution.

5.1 Training Data

To compute the fitness of each BRDF variant, we use 8 materials
from the MERL-MIT database [Matusik et al. 2003] as our train-
ing set: gold-metallic-paint2, specular-blue-phenolic, red-metallic-
paint, green-plastic, pvc, tungsten-carbide, dark-red-paint, and
blue-metallic-paint (highlighted in Figure 4). These materials were
chosen to achieve a variety of different dielectrics and metals.

5.2 Parallel Evaluation

In the course of each experiment, we evaluate the fitness of a very
large number of BRDF expressions: 409,800 BRDFs ×8 materials
×3 color channels = 9,830,400 BRDF fits. An important benefit
of the genBRDF framework is that it permits parallel execution. In
our implementation, a single server runs the GP search, which gen-
erates and distributes BRDF variants to individual clients working
in parallel, where they are compiled, their parameters are fit to the
training data, and the fitness value is returned to the server. Specif-
ically, we implemented the BRDF fitting procedure in CUDA and
used a 24 node NVidia Tesla M2075 GPU cluster. A single exper-
iment requires between 30 to 60 hours to complete, which would
correspond to between 30 to 60 days on a single GPU.

5.3 Pareto Frontier

The genetic search produces a large number of analytic BRDF vari-
ants. Simply selecting the most fit variant runs the risks of over-
looking perceptual artifacts that are not captured by our fitness mea-
sure. In addition to visual fidelity, other criteria such as expression
length (defined as the string length of the BRDF expression) are
important: we seek the most accurate BRDF variant that is no more
complex than absolutely necessary.

To consider the incompatible dimensions of fitness and length si-
multaneously, we construct a Pareto frontier of BRDF variants. A
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Figure 5: Pareto frontiers for the experiments described in Sec-
tion 5.

Pareto frontier retains only non-dominated solutions, ruling out in-
ferior BRDF expressions that are larger without being more accu-
rate as well as BRDF expressions that are less accurate without be-
ing smaller. This step is critical, because it removes from consid-
eration a significant number of dominated, inferior BRDF variants.
The use of Pareto frontiers is a standard practice for enumerating
the optimal set of choices among multiple dimensions when those
dimensions cannot be directly compared [Sitthi-Amorn et al. 2011].

Figure 5 shows the Pareto frontiers of our three experiments, each
of which contains between 30 and 45 BRDF variants. An ideal
BRDF expression would minimize both fitness and length (lower
left corner). Thus, an axis-hugging curve that approaches the origin
is preferable. The points on a Pareto frontier are formally incompa-
rable and must thus be further inspected or filtered manually. Any
knee in a Pareto frontier, such as at point “E” in Figure 5, represents
a natural choice for further inspection.

5.4 Image-Driven BRDF Evaluation

Despite the significant reduction in problem size by considering
only the Pareto frontier, it is still a difficult and time-consuming
task to analyze 30 to 45 machine-generated analytic BRDF expres-
sions by hand. Simply selecting the variant with the best fitness
value is inadequate, as this risks overlooking perceptual artifacts
that are not captured by our fitness measure and missing more com-
pact expressions that provide high fidelity fits to the training set.

Inspired by prior work [Ngan et al. 2005], we guide the process of
analyzing the BRDF variants on the Pareto frontier by comparing
images of spheres rendered under natural lighting. Specifically, we
use the grace cathedral light probe1 and compute both the L2 er-
ror on absolute radiance values along with the Structural Similarity
Image Metric (SSIM) [Wang et al. 2004] on tone-mapped pixel val-
ues — we found that a simple gamma 2.2 mapping works well in
practice.

Specifically, we fit each BRDF variant on the Pareto frontier to
a representative selection of 40 materials from the MERL-MIT
database (Figure 4). This set includes an even number of metals
and dielectrics to provide a balanced evaluation. (Please refer to
the supplemental materials for an exact listing.) We compare these
fits to the best reported fits for what we consider to be the state-of-
the-art in analytic isotropic BRDF models: Cook-Torrance [1982],
Löw et al.’s [2012] smooth surface (or Rayleigh-Rice) model and
Löw et al.’s microfacet (MF) model, and the model proposed by

1http://www.pauldebevec.com/Probes/

Bagher et al. [2012]. We use the parameter fits reported by Ngan
et al. [2005] for the Cook-Torrance BRDF, and those provided by
the authors of the Löw et al. and Bagher et al. models, respectively.
Additionally, we also fit the Cook-Torrance BRDF ourselves using
the E2 metric [Löw et al. 2012] and the Nelder-Mead simplex al-
gorithm with 100 restarts.

5.5 Reciprocity

Although we encourage reciprocity in the way our fitness measure
is constructed (Section 4) this is not a hard constraint. Instead, we
achieve reciprocity by explicitly culling variants that exceed a nu-
merically computed reciprocity threshold. Specifically, we com-
pute: √

1

#T

∑
p∈T

∫ ∫
(fr(L, V ; p)− fr(V,L; p))2dLdV , (7)

where T is the set of best-fit BRDF parameters for our training set.
We evaluate Equation 7 using Monte Carlo integration with 10,000
uniformly generated (L, V ) pairs. We conclude that a BRDF is
most likely reciprocal if this measure is below 10−5 to allow for
floating-point rounding errors. We only consider BRDF variants
that pass this test when constructing the Pareto frontier.

We also investigated modifying the BRDF grammar in order to en-
force reciprocity during the genetic search. In particular, we per-
formed the FULL Experiment described above, but returned the fol-
lowing expression: 0.5(fr(L, V ) + fr(V,L)), which is always re-
ciprocal. However, we found that this approach restricts the search
space too much and we were not able to produce useful BRDF ex-
pressions. Future work could investigate alternative grammars that
are more flexible, but still designed to guarantee reciprocity in the
generated BRDF models.

6 Results

The three experiments described in the previous section produced
a total of ∼120 BRDF variants across their respective Pareto fron-
tiers. These BRDF variants reveal a variety of different analytic
expressions. They also represent a smooth spectrum of options that
trade accuracy for length, as can be seen by their corresponding
Pareto frontiers (Figure 5). Table 1 lists a selection of 5 BRDF
variants from this total. The corresponding location on the Pareto
frontiers for each of these BRDF variants is marked in Figure 5. A
visual comparison to ground truth, Cook-Torrance [2005], and Löw
et al.’s [2012] smooth surface model is shown in Figure 10. As can
be seen, all models produce slightly different, but accurate matches.

Each entry in Table 1 summarizes a single BRDF variant. BRDF
models A and D correspond to variants 015-000599 and 036-
003067 in the supplementary document “NDF Experiment Result”
respectively; BRDF models B and E correspond to variants 025-
000566 and 026-000754 in the supplementary document “SPEC
Experiment Result”; and BRDF model C corresponds to the variant
025-001330 in the supplementary document “FULL Experiment
Result.” For each entry we list the fitness (×10−3) and expression
length of the variant (as returned by genBRDF, without algebraic
simplifications). The expressions shown in this table have been al-
gebraically simplified for the sake of clarity (e.g., 1.0 ·X was sim-
plified to X , etc.). The last column list how many times the BRDF
variant outperformed all the competing models according to the L2

and SSIM metric on the test set of 40 materials (Section 5.4).

At a high level, BRDF models A and E have similar expressions
after taking into account the fixed components in the NDF and
SPEC experiments (i.e., NDF = SPEC · F/(4(L ·N)(V ·N))),

http://www.pauldebevec.com/Probes/


BRDF Exp. ID Fit (10−3) Len. (Simplified) Expression L2/SSIM

A NDF 015-000599 0.10661 120 nr =
(V ·N)(L·N)e−(p0 tan δ)p1

(L·H)
20/20

B SPEC 025-000566 0.10112 308 sr = e
−
(

tan δ
p1

)p2
π(L·H)

min
{
1,
p1(p0+2)

tan δ

}
F (p0,(L·H))

(p0)cos δ
28/24

C FULL 025-001330 0.10922 314 fr =
p0
π +

p1
π
e
− tan δ

p3

p23(L·H)
min

{
p0p3(p1+2)

tan δ , (L ·H), 1
}
F (p2, (L ·H)) 23/22

D NDF 036-003067 0.09941 272 nr = min
{
1 + p0,

2(V ·N)(L·N)
(L·H)

}
min

{
(L ·H),

p0
p1 tan δ ,

2(H·N)
p0

}
e
− tan δ

p0 29/26

E SPEC 026-000754 0.10673 170 sr = e
−
(

tan δ
p1

)p2
p0+(1−(L·H))5

(L·H)
19/21

Table 1: A representative selection of BRDF models discovered in the course of our experiments with genBRDF.

and a reordering of free parameters (A → E : {p0, p1, R0} →
{1/p1, p2, p0}). Algebraically, the only difference is the factor
(1 − p0) that appears in the Fresnel component. Bear in mind
that these variants were independently discovered in separate ex-
periments with different codebooks. BRDF model A appeared in
generation 15 of the more constrained NDF experiment, whereas
BRDF model E appeared 11 generations later (26) in the less con-
strained SPEC experiment.

BRDF models C and D illustrate how the genetic search is capable
of producing much longer expressions. Originally of similar length
as BRDF models C and D, the expression of BRDF model B after
algebraic simplification is more compact. Genetic programming is
essentially a “blind” search through the space of analytic BRDF ex-
pressions, and it does not take in account the algebraic or physical
implications of mutations on the expressions. Hence, manual sim-
plification and interpretation is still necessary after a good variant
has been found.

Although BRDF model C is slightly less accurate than the other
variants, it is worth noting that it has only 4 parameters, whereas the
others have 5. Furthermore, note that it outperformed the existing 5-
parameter models from prior work in 23 out of the 40 test materials.

We consistently observe a new two-parameter microfacet normal
distribution function (NDF) within these expressions. This NDF
can express a wider range of specular lobe shapes and achieves
more accurate fits to measured data than current models. To gain
further insight into this new expression, we select BRDF model A
for a more in-depth analysis.

6.1 BRDF Model A2

The following BRDF expression was produced by the NDF Exper-
iment:

nR(L, V ) =
(V ·N)(L ·N)

(L ·H)
D′ (8a)

D′ = e
−
(

tan δ
β2

)α
. (8b)

2This BRDF corresponds to variant 015-000599 in the supplemental
document “NDF Experiment Results”. Note that for the sake of clarity,
we performed several changes of variables and algebraic simplifications.
In particular, we substituted the parameter named p0 in the supplemental
document with 1/(β2). This was done to give the final BRDF parameters
more intuitive ranges and to make them similar to their closest counterparts
in the existing BRDF literature.

Figure 6: Example of a false color plot of the relative difference in
L2 error on the forty validation materials (vertical axis) of Löw et
al.’s smooth surface model and the variants on the Pareto frontier
from the NDF experiment (horizontal axis). Blue indicates the vari-
ant has lower error, while red indicates the opposite. Highlighted
is BRDF variant A. Refer to the supplemental document “NDF Ex-
periment Results” for comparisons to other BRDF models.

After a few substitutions and algebraic simplifications, this corre-
sponds to the BRDF

fr(L, V ) =
kd
π

+ ks
D′F

4(L ·H)
(9)

The parameters α and β govern the shape of the specular lobe and
are discussed below. Figures 1 and 10 compare this BRDF model
to what we consider to be the state-of-the-art in analytic isotropic
BRDF models (Section 5). The latter also shows the best fits for all
of these BRDF variants in Table 1 for two materials in our training
set (gold-metallic-paint2 and red-metallic-paint) plus four materi-
als that were not part of the training set. (Please see the supple-
mental document NDF Experiment Results for the complete com-
parisons to all forty materials.)

Of the selected forty materials in the MERL-MIT database that we
tested, and under the testing conditions (e..g, light probe, geome-
try, etc.), BRDF model A produced the most accurate fits 20 times
when the L2 distance metric was used to judge image fidelity and
20 times when the more perceptually meaningful SSIM measure
was used. The second-best performing BRDF model was Löw et
al.’s smooth surface model, which produced the most accurate fits
only 10 times and 5 times for the L2 and SSIM quality measures,
respectively. The more complex model of Bagher et al. [2012] has
7 free parameters, requiring a complex fitting procedure, but did
not perform as well. Furthermore, in the cases where BRDF model
A did not produce the best fits, it was very close. This can be seen
in the false color map shown in Figure 6, which visualizes, for all
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Figure 7: Comparison of (top) the Beckmann microfacet normal
distribution function [Beckmann and Spizzichino 1963] with (bot-
tom) a new two-parameter NDF found by our genetic search.

variants on the Pareto frontier for the NDF experiment, the relative
improvement in L2 error over Löw et al.’s smooth surface model
when BRDF model A gives the lowest error (blue) or the relative
difference when BRDF model A does not yield the lowest error
(red). We relied heavily on these types of visualizations to help
identify interesting parts of the result set.

Discussion We chose this particular BRDF variant because it
contains understandable pieces, captures some interesting trends
that we observed across the entire result set, and occurs near a clear
“knee” in the Pareto frontier (Figure 5). Moreover, the accuracy of
such a compact analytic BRDF expression is noteworthy.

We believe that the two-parameter normal distribution function D′

(Equation 8b) has not been previously studied in the BRDF liter-
ature. This expression appears repeatedly in our search results,
leading us to conclude that it offers a stable and reliable way of
reproducing the shapes of many common specular lobes. Figure 7
illustrates the effect of these two parameters (α and β) on the shape
of the specular lobe and offers a comparison to the often used Beck-
mann distribution [Beckmann and Spizzichino 1963]. Note that D′

is able to create spikier highlights, which are consistent with the
shape of many of the lobes in the BRDF database, and helps ex-
plain its superior performance. Note that the smooth surface model
proposed by Löw et al. [2012] also includes a two-parameter NDF
that can produce similar (but slightly different) shapes.

Figure 8 shows the effect of adjusting either α or β while holding
the other fixed. As our model is not normalized, we adjust ks ac-
cordingly to provide equal overall brightness. kd was kept to zero.
We conclude that the parameters α and β determine the strength
and clarity of the specular highlight, respectively. In other words,
larger values of β2 produce highlights that are softer and appear to
glow near the edges of strong light sources, whereas smaller values
produce sharper and more clearly defined highlights.

α = 0.7 α = 0.85 α = 1 α = 1.15

β = 0.064 β = 0.032 β = 0.016 β = 0.01

β
=

0
.1

α
=

0
.3
5

Figure 8: A visualization of the effect that α and β have in BRDF
model A on the material appearance. Each row of spheres shows
the effect of manipulating a single parameter. ks was scaled appro-
priately to provide equal overall brightness.

BRDF model A can also be regarded as having a significantly sim-
pler geometry term, (1/(4(L·H))), than current models. Compared
to the Cook-Torrance BRDF model, for example, BRDF model A
has dropped the (L·N), (V ·N) and (H ·N) terms that appear in the
numerator and denominator of the geometry term, respectively, de-
pending on the value of the ternarymin function. While we cannot
offer an explanation of this simpler term based on first principles, it
does achieve the qualitative goal of increasing the magnitude of the
BRDF near “grazing” configurations ((L ·H)→ 0) and it does so
with a far simpler expression. Finally, note that BRDF model A is
reciprocal by inspection since (L ·H) = (V ·H).

6.2 METAL Experiment

Although the selected models from the three previous experiments
produce good fits to our test set of forty materials, we did no-
tice that they tend to fit dielectrics better than metals. We used
genBRDF to perform two more targeted experiments to produce
better models for metals. Specifically, we repeated the NDF ex-
periment with a different training set of 8 metals: gold-metallic-
paint, steel, aluminium, nickel, blue-metallic-paint, blue-metallic-
paint2, red-metallic-paint, and brass. From this experiment we
briefly highlight one variant 043-001155; please refer to “METAL
Experiment Result” in the supplementary documents for a detailed
report.

This variant has a fitness of 0.0963×10−3 and an expression length
of 353. The full BRDF after simplification and parameter substitu-
tion is:

nR(L, V ) =
D′G′

α−2β−2 tan2 δ + c

G
′
= min

{
1 + β

2
(1 + cos δ), 2

(L ·N)(V ·N)

(L ·H)
,

1

β2 tan δ

}

where c = cos4(1) = 0.9994 is an example of a vestigial remnant
that can most likely be replaced by the constant “1”. This model
again exhibits the same two-parameter NDF D′ as seen before, in
addition to a somewhat more complex geometry term. It performs
best in terms of the L2 (resp. SSIM) error for 15 (reps. 13) times
over the 20 validation metal materials (left side in Figure 4). For
comparison, Löw et al.’s smooth surface model was the second best
(2/5). The selected BRDF variants in Table 1 performed better
than the alternative BRDF models from prior work 3/7, 10/9, 6/6,
9/10, and 3/7 times respectively. Figure 9 shows a visual compar-
ison for two selected materials.

Lastly, we observe that, even after learning new metal BRDF mod-
els, for some materials only few of the found expressions excel.
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Figure 9: A selection of fitted materials using a selected genBRDF
from the METAL experiment compared to Löw et al.’s smooth sur-
face model.

An example of such a material is chrome. We therefore repeated
the SPEC experiment using only the chrome material sample in the
MERL-MIT database as the training set. As expected, this pro-
duced several superior analytic expressions for this specific ma-
terial when compared to any of the other BRDF variants discov-
ered by our framework in the earlier experiments. For example, the
L2 (SSIM) error on BRDF model D is 0.021(0.969) compared to
0.012(0.976) for variant 049-00770. Please refer to the supplemen-
tal document titled “CHROME Experiment Results” for a complete
analysis.

7 Discussion

Our primary contribution, the proposed genetic search framework,
produces BRDF expressions that are only strictly valid for the ma-
terials in the training set. In other words, they are not guaranteed to
produce valid (or even plausible) BRDFs for any values of their pa-
rameters — a trait shared by other data-driven BRDF models [Ma-
tusik et al. 2003]. In fact, one could interpret the models found
by our search as an analytical encoding/compression of the training
data. However, our analysis shows that when the resulting models
are fit to other measured materials they still produce good results.

Note that unless they are explicitly enforced by either the gram-
mar or fitness function, common properties of BRDFs are not guar-
anteed to be respected by the computed models. Besides reci-
procity, energy conservation is another example of such property.
Note that energy conservation issues are largely mitigated by fit-
ting these models to measured materials that presumably conserve
energy themselves. We validated energy conservation numerically
for the BRDF variants in Table 1 and found that they all conserve
energy for the fitted parameters. Also, note that our models are
not normalized in the sense that the so-called diffuse and specular
“albedos” can exceed 1. The effects of other parameters are typi-
cally non-intuitive, and in general, care should be taken when form-
ing physical interpretations of the terms and parameters in models
found by genBRDF.

More generally, there are a number of factors that impact the results
of our search:

• Training Materials As noted above, the generated expres-
sions and corresponding parameters are only strictly valid for
the training material set. As such the choice of this training
set is critical in determining how the computed models will
extrapolate to other materials. For example, if the BRDF vari-

ants were trained on only plastics, then it is unlikely that the
model will retain similar accuracy for metals

• Initial BRDF and Codebook As with many optimization al-
gorithms, the starting point plays a major role in which part
of the search space is explored. Similarly, the codebook (i.e.,
the “primordial soup” of possible components) can be seen
as operators that allow us to “jump” over ridges and discon-
nected areas in the fitness landscape, enabling exploration of
a much larger portion of the search space. In other words,
the the more varied the codebook, the more “intelligent” the
genetic search can be.

• Fitness Metric The fitness metric plays a crucial role in the
search process. Care has to be taken when applying exist-
ing BRDF fitting functions or BRDF similarity metrics. Typ-
ically, these metrics are either too computationally expensive,
or they rely on specific properties of BRDF models and phys-
ical materials (e.g., reciprocity, continuity, symmetries, etc.).
However, the outcome of these metrics might not be meaning-
ful if the BRDF variant does not exhibit one of these proper-
ties.

• Non-linear Optimization Algorithm The optimization algo-
rithm used for fitting the BRDF parameters also implicitly re-
stricts the search space to functions that can be reliably opti-
mized. A positive consequence of this is that the found BRDF
expressions are likely well-behaved when using the Nelder-
Mead simplex algorithm to fit their parameters.

Our analysis relies on the L2 and SSIM metrics on a specific scene
and lighting to find good expressions. Different metrics such as the
one proposed by Pereira et al. [2012] or CIEDE2000 [Sharma et al.
2005] could potentially produce different results. However, unlike
the fitness metric this choice does not impact the genetic search,
only the analysis.

Finally, note that the variants produced by our search cannot imme-
diately be used for importance sampling without further analysis.
To generate the images in this paper, we followed the common con-
vention of using a proxy-BRDF to guide importance sampling. We
implemented both a GPU-based BRDF renderer (used for generat-
ing the overview reports) as well as a high-quality Mitsuba [Jakob
2010] plug-in. For the former, we use a Blinn-Phong proxy to gen-
erate BRDF samples, while for the latter we use Löw et al.’s smooth
surface model as a proxy. As a side note, we found that of the al-
ternative BRDF models we considered, Löw et al.’s smooth surface
model outperformed the competition in our experiments.

8 Conclusion

We introduced genBRDF; a framework for discovering new ana-
lytic BRDFs. We adapted genetic programming for this purpose
and introduced a suitable grammar and fitness function. Our tech-
nique is not meant to replace, but rather augment, the human ef-
fort involved in deriving expressive analytic models. In addition,
we described a strategy and set of tools for rapidly analyzing the
large result sets returned by our genetic search. We demonstrated
the effectiveness of our method by describing four experiments that
demonstrate new BRDF expressions that in many cases exceed the
best currently available alternatives.

Our search strategy intentionally favors exploration over exploita-
tion. For future research we would like to consider alternative
strategies that perhaps favor exploration in the beginning, but grad-
ually place a heavier emphasis on exploitation as the search pro-
gresses. Other avenues for research include: learning specialized
BRDF expressions of each material in the MERL-MIT database
independently in order to establish a baseline model for future
BRDF development; and finding a fitness metric that better pre-



dicts perceptual quality of the BRDF variants. Finally, we believe
the genBRDF framework could be adapted to many other model-
ing problems in computer graphics that would benefit from having
compact analytic models of complex high-dimensional functions.
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Figure 10: A selection of five materials discovered using our genBRDF framework compared to Cook-Torrance and Löw et al.’s smooth
surface model.


