
Research Statement

John Whaley

January 2005

1 My Approach to Research

As a child, I was always interested in building things. When I was six years old, I taught myself programming by
typing in programs that were printed in magazines and modifying them to add new features. To my six-year-old mind,
computers were a source of endless possibilities; whatever I could conceive, I could build. Over twenty-two years
later, I still have that same enthusiasm. My interest in computer science research is fundamentally driven by the desire
to build better systems — faster, more reliable, more maintainable, or that make new things possible — and to help
others do the same.

At the same time, I love intellectual challenges. Nothing satisfies me more than coming up with an elegant solution
to a difficult problem. I was fortunate enough to have a solid foundation in theory from my studies at MIT and Stanford.
Although I am not the type to do theory for theory’s sake, I find theory and formalism indispensable in clarifying
ideas, finding unseen corner cases, suggesting new directions to explore, and in the fundamental understanding of an
algorithm.

The combination of engineering and theory is what first attracted me to the area of compilers and program analysis.
It is one of the areas in computer science where theoretical results are very often put into practice. Also, work in
compilers and program analysis can have a great impact in improving many systems. Any improvement I make
instantly applies across a wide variety of programs; the impact is increased because I operate at the meta level. Finally,
there are many challenging problems in compilers and program analysis: Most of the problems are NP-complete or
undecidable.

My approach to research is influenced by both engineering and theory. When I attack a new research problem, I
start by thinking deeply about the problem. I will often build a small prototype to test out an idea or to gain insight.
After I feel I understand the problem sufficiently, I research what others have published on the problem. I find that
the only way I can fully understand and evaluate other’s approaches is if I first understand the problem myself. After
that, I start implementing. My first attempt is rarely successful, but my experience in building the implementation
quickly exposes what the real issues are. Then, I throw away my first implementation and use what I have learned to
do it right. Finally, after I have a working implementation, I sit down and try to document and formalize the ideas. I
feel it is important to have a working implementation that you can experiment with before you formalize the system
because otherwise your formulation may not match reality or miss some key subtleties. The process of documentation
and formalization often suggests new ways of simplifying or improving the implementation and exposes corner cases
that I would not have considered. Thus, both engineering and theory play complementary roles in my approach to
research.

Finally, I believe strongly in the openness of research and the free flow of ideas. I find communication with
others invaluable in the development and understanding of research ideas. Most of my research ideas were not sudden
personal inspirations but were the result of interacting with others. I often take ideas from different areas of computer
science and apply them to new areas. To facilitate cooperation, communication, and the advancement of research, I
release all of my implementations as open source so that other researchers can build upon my work. I use a public
CVS repository for much of my day-to-day research, so anyone can find out what I am working on and have access to
my latest research.

1



Research Statement for John Whaley 2

2 Research Interests

My primary research interest is in program analysis. I am interested in using advanced program analyses to help find
bugs and security flaws, increase software reliability, improve performance, assist the software development process,
and enhance software understanding. I want to build tools and techniques that are usable by others and that work on
real-life programs.

The remainder of this section outlines some of the specific research areas I am interested in.

2.1 Pointer Analysis

Pointer analysis is one of the most fundamental problems in program analysis. Pointer analysis attempts to answer the
basic question, “What can a pointer point to?” (and the related question, “Can these two pointers point to the same
thing?”) It has applications and implications across almost all program analyses and optimizations. Understanding
pointers is essential to the understanding of almost any program.

Despite its importance, pointer analysis is still one of the most vexing problems in program analysis. Early tech-
niques were flow-sensitive but context-insensitive, which lead to poor accuracy. Context-sensitive techniques were
too slow to be usable on even moderate-sized programs. Later, Steensgaard and Andersen each devised flow- and
context-insensitive algorithms that could handle large programs.

In 1999, Martin Rinard and I developed a flow-sensitive, context-sensitive pointer alias analysis[19]. Our analysis
was compositional, which means that (in the absence of recursion) it analyzed each method once and generated a sum-
mary for that method, which was then applied to each of its callers. (Recursive cycles were iterated until they reached
a fixpoint.) Our analysis was also unique in that it supported partial program analysis by explicitly representing the
interactions between analyzed and unanalyzed regions of the program. Our OOPSLA paper describing the algorithm
has been very well-cited, and there have been at least a dozen publications on extensions to our algorithm. We later
extended the algorithm to handle interactions between multiple threads[7].

In 2002, Monica Lam and I designed and implemented an efficient context-insensitive inclusion-based points to
analysis for Java programs[16]. My algorithm was based on a fast algorithm by Heintze and Tardieu[5]. It improved
on their algorithm by adding field sensitivity and by treating local variables in a flow-sensitive manner.

Most recently in 2004, Monica Lam and I designed a context-sensitive inclusion-based pointer analysis using
binary decision diagrams[17]. The algorithm achieves context sensitivity by creating a clone of a method for every
acyclic path through the call graph and running a context-insensitive algorithm over the expanded call graph to get
context-sensitive results. Normally, this formulation is hopelessly intractable as a call graph often has1014 acyclic
paths or more. But by using a clever encoding that exposes the commonalities among contexts, the exponential
relations can be computed efficiently using binary decision diagrams (BDDs). The result is a highly accurate, yet
very efficient pointer analysis that can scale to very large programs. This algorithm was a significant advance in the
state-of-the-art in pointer analysis. The publication describing this algorithm was the winner of the best paper award
at PLDI.

Formulating context sensitivity as cloning has other benefits. First, it greatly simplifies the development of context-
sensitive analyses. Context-sensitive algorithms are notoriously difficult, while with cloning one can just use a context-
insensitive algorithm on the expanded call graph to get context-sensitive results. Second, unlike most other techniques
for context sensitivity, cloning calculates all of the answers for all of the contexts at once. With a cloning approach, it
is possible for the analysis to answer questions such as “Under what contexts can this occur?”, which is not possible
when using, for example, a summary-based approach. Finally, the technique of cloning allows for fine-grained control
over the amount of context sensitivity in different parts of the program. By cloning specific parts of the program more
than others, one can focus the analysis effort on the parts that are more important.

Looking forward, I am interested in further improving the state-of-the-art in pointer analysis and finding new ap-
plications for analysis results. One of the weaknesses of my PLDI 2004 algorithm is in its treatment of object creation
sites — the analysis represents all objects created at a particular site as a single location, so it cannot distinguish
between multiple objects created at a single creation site. I have been investigating using different forms of context
sensitivity to gain better precision with respect to object creation sites and also better precision within recursive cy-
cles. I am also interested in new applications for accurate pointer analysis results. One of my colleagues has used
my context-sensitive analysis to find SQL injection vulnerabilities in large programs; his results indicate that accurate
context-sensitive analysis is absolutely essential to the problem[6]. Another has written a version of my analysis for C
programs and used it to optimize away bounds checks in the CRED dynamic bounds checker[2]. I am also working on



Research Statement for John Whaley 3

using pointer analysis results to guide the automatic translation of legacy Java code to use the Java generic libraries.
In the future, I plan to use the analysis results to tackle many more difficult problems in the areas of bug finding,
optimizations, and automated program transformations.

2.2 Optimizations and Program Transformations

I am interested in improving the performance of code through optimizations and automated program transformation.
My primary interest is in improving performance where my changes can have a big impact. In 1999, Martin Rinard
and I designed an escape analysis for Java programs[19]. Escape analysis discovers objects that do not escape a par-
ticular region of the program; these objects can be stack-allocated or do not need synchronization, which can lead to
very large performance improvements. In my master’s thesis, I investigated improving performance through dynamic
compilation[10]. My thesis dealt with how to automatically find and exploit opportunities for runtime specializa-
tion based on profile data. My coworkers at IBM Japan implemented many of these ideas in their commercial JIT
compiler[8].

I have also done work on less traditional areas of performance. One of the major issues with client-side Java is
not the steady-state performance, but rather the startup time and memory footprint. In 2001 I published two papers
attacking these problems in different ways.

In the first paper, I developed a technique of checkpointing a running Java virtual machine using reflection and
program analysis[13]. With this technique, you run the system to a desired state and then use reflection to discover the
state of threads and objects in the system. Given the current state, a program analysis determines the set of reachable
objects and methods. The objects and code are serialized to a checkpoint file; unreachable objects, methods and
fields are automatically trimmed. This technique improved startup time by more than an order of magnitude, and also
reduced memory footprint by up to 39% and code size by up to 19%.

In the second paper, I developed the technique of partial method compilation[12]. In partial method compilation,
an online profiler is used to find code regions that are rarely executed and the method is recompiled and optimized
without those regions. If a branch that was predicted to be rare is actually taken at run time, we fall back to the
interpreter or dynamically compile another version of the code. By avoiding compiling and optimizing code that is
rarely executed, we greatly improve compilation time with little or no degradation in performance. This paper was
the winner of the best paper award at OOPSLA 2001. My coworkers at IBM Japan wrote a followup paper[9], which
includes their experience with the technique in a commercial JIT compiler.

In the future, I would like to work on more optimizations that improve other nontraditional measures of perfor-
mance, such as optimizing for power consumption, optimizing to reduce hardware requirements, or optimizing for
reduced memory footprint. I would also like to investigate using program analysis for code transformations; for ex-
ample, automatically updating code to match a new API or introducing dynamic checks where necessary to ensure
safety.

2.3 Virtual Machines

Another research area I am interested in is that of virtual machines. Virtual machines provide a powerful platform for
dynamically profiling and modifying software as it runs.

I have done research on profiling and online measurement within virtual machines. At IBM, I developed a portable
sampling-based profiler for Java virtual machines[3, 11]. Because the profiler had very low overhead, it could be run
continuously, providing a feedback mechanism to the dynamic compiler. The profiler used a novel data structure,
the partial calling context tree (PCCT), which allowed the efficient encoding of approximate context-sensitive profile
information.

While an employee at IBM, I was fortunate enough to be one of the first people to work on the Jalapeño virtual
machine[1] (now known as the Jikes RVM). I was very active in its development and I wrote much of the optimizing
compiler framework[4]. Jalapeño was unique in that it was the first real Java virtual machine that was written entirely
in Java.

While a Ph.D. student at Stanford, I designed and implemented the Joeq virtual machine and compiler infra-
structure[14], a system designed to facilitate research in virtual machine technologies such as Just-In-Time and Ahead-
Of-Time compilation, advanced garbage collection techniques, distributed computation, sophisticated scheduling al-
gorithms, and advanced run time techniques. Like Jalapeño, Joeq is entirely implemented in Java, leading to reliability,



Research Statement for John Whaley 4

portability, maintainability, and efficiency. However, unlike Jalapeño, Joeq is also language-independent, so code from
any supported language can be seamlessly compiled, linked, and executed — all dynamically. Each component of the
virtual machine is written to be independent with a general but well-defined interface, making it easy to experiment
with new ideas. Joeq is released as open source software, and is being used as a framework by many researchers all
over the world. It is also the basis for the Advanced Compilation Techniques class at Stanford.

Virtual machines allow the easy introspection of components as they are executing. When you combine this
with a static analysis, you can obtain both upper and lower bounds on behavior. In a publication that won an ACM
SIGSOFT Distinguished Paper Award, Michael Martin, Monica Lam, and I combined static analyses to deduce illegal
call sequences in a program, dynamic instrumentation techniques to extract models from execution runs, and a dynamic
model checker that ensures that the code conforms to the model[18].

I foresee many new applications for virtual machines in the future. I am interested in using virtual machines for
more sophisticated inspection of running programs, dynamic reoptimization, program shepherding, identifying and
isolating compromised machines, better encapsulation, and easier state migration.

2.4 Program Analysis using BDDs

While working on the BDD-based context-sensitive pointer analysis, I realized there was a correspondence between
the BDD operations and operations in relational algebra. I began to formulate the analysis using Datalog, a declarative
logic programming language for talking about relations. I represent all program information and analysis results as
relations in a database. Because Datalog is succinct and declarative, one can express points-to analyses and many
other algorithms simply and intuitively in just a few Datalog rules. These rules correspond exactly to the inference
rules one would use when writing a formal description of the algorithm. Using Datalog, I was able to encode pointer
analysis in only four lines!

I built a tool calledbddbddb, which stands for “BDD-Based Deductive DataBase”.bddbddb automatically
translates Datalog programs into highly efficient BDD implementations. Usingbddbddb has a number of advantages.
First, bddbddb makes development of BDD-based program analyses exceedingly easy. Whereas before you would
have to write hundreds or thousands of lines of code to implement an analysis, withbddbddb you only need to write
a few lines of Datalog. Second, it closes the gap between the algorithm specification and its implementation. In
bddbddb, the algorithm specification is automatically translated into an implementation, so as long as your algorithm
specification is correct you can be reasonably sure that your implementation will also be correct. Third, because BDDs
can efficiently handle exponential relations, it allows us to solve heretofore unsolved problems in program analysis,
such as context-sensitive pointer analysis for large programs. Finally,bddbddb makes advanced program analysis
more accessible. Trying out a new idea in program analysis used to be confined to the realm of experts and compiler
writers, and would take weeks to months of tedious effort to implement and debug. Withbddbddb, writing a new
analysis is simply a matter of writing a few straightforward inference rules. The tool takes care of most of the tedious
part and helps you develop powerful program analyses easily.

One of the most difficult and critical issues with using BDDs is the question of BDD variable ordering. Different
BDD variable orderings can change an operation that runs in linear time to one that runs in exponential time, or
vice-versa. Unfortunately, finding the best BDD variable order is an NP-complete problem. Michael Carbin and I
have developed an active learning algorithm to determine variable orderings in BDD representations[15]. It uses the
execution times of a number of variable orderings to learn the important features of a good variable ordering, and
it uses the learned features to direct which variable orderings to measure. We have implemented this algorithm in
thebddbddb system, and experiments show that variable orderings generated by our algorithm can outperform those
obtained after months of manual exploration.

Another hazard of using BDDs is the fact that they can be memory-intensive. Recently, I extendedbddbddb to
support distributed computation of Datalog queries. A problem that is too large to fit on one machine is partitioned
into smaller pieces, each of which lives on a separate client. Each client calculates the fixpoint of its local data and
communicates newly-generated relations to the other clients. Preliminary results indicate that this technique can speed
up the computation and also allow larger problems to be solved.



Research Statement for John Whaley 5

3 Conclusion and Future Directions

After my experience with usingbddbddb, I am now firmly convinced that the future of program analysis is in high-
level algorithm specifications that are automatically translated into efficient implementations. BDDs are good for
certain problems; however, for many problems other data structures are much more effective. I would like to extend
bddbddb to support other underlying data structures, such as bit vectors and fast union-find data structures, and to be
able to automatically choose the best data structure for the task at hand.

My goal is to improve program analysis technology to such a point that it becomes a standard and indispensable
part of the software engineering process. Program analysis should be powerful enough to give precise answers to hard
questions but simple enough so that any programmer can use it.

Program analysis is full of interesting research problems that have practical applications. I am very excited about
the possibilities and I am looking forward to contributing whatever I can. Although I do not think I will necessarily
stay in the area of program analysis for my entire career, there are plenty of interesting problems to keep me busy for
the foreseeable future.

References
[1] B. Alpern, D. Attanasio, J. Barton, M. Burke, P. Cheng, J.-D. Choi, A. Cocchi, S. Fink, D. Grove, M. Hind, S. F. Hummel,

D. Lieber, V. Litvinov, T. Ngo, M. Mergen, V. Sarkar, M. Serrano, J. Shepherd, S. Smith, V. C. Sreedhar, H. Srinivasan, and
J. Whaley. The Jalapeno virtual machine.IBM Systems Journal, Java Performance Issue, 39(1), 2000.

[2] D. Avots, M. Dalton, B. Livshits, and M. S. Lam. Using C pointer analysis to improve software security. InInternational
Conference on Software Engineering, May 2005.

[3] J. J. Barton and J. Whaley. A real-time performance visualizer for Java.Dr. Dobb’s Journal of Software Tools, 23(3):44,
46–48, 105, March 1998.

[4] M. G. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M. J. Serrano, V. C. Sreedhar, H. Srinivasan, and J. Whaley.
The Jalapeno dynamic optimizing compiler for Java. InACM Conference on Java Grande, pages 129–141, June 1999.

[5] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using CLA: A million lines of C code in a second. InACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 254–263, June 2001.

[6] M. Martin, B. Livshits, and M. S. Lam. Finding application errors using PQL: a program query language. InACM SIGPLAN
Conference on Programming Language Design and Implementation, June 2005.

[7] M. Rinard and J. Whaley. Compositional pointer and escape analysis for multithreaded Java programs. Technical Report
MIT-LCS-TR-795, MIT Laboratory for Computer Science, November 1999.

[8] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani. A dynamic optimization framework for a Java just-
in-time compiler. InACM SIGPLAN Conference of Object Oriented Programming: Systems, Languages, and Applications,
pages 180–194, 2001.

[9] T. Suganuma, T. Yasue, and T. Nakatani. A region-based compilation technique for a Java just-in-time compiler. InACM
SIGPLAN Conference on Programming Language Design and Implementation, pages 312–323, 2003.

[10] J. Whaley. Dynamic optimization thru the use of automatic runtime specialization. Master’s thesis, Massachusetts Institute of
Technology, May 1999.

[11] J. Whaley. A portable sampling-based profiler for Java virtual machines. InACM Conference on Java Grande, pages 78–87,
June 2000.

[12] J. Whaley. Partial method compilation using dynamic profile information. InACM SIGPLAN Conference of Object Oriented
Programming: Systems, Languages, and Applications, pages 166–179, Oct. 2001.

[13] J. Whaley. System checkpointing using reflection and program analysis. InReflection, the Third International Conference on
Metalevel Architectures and Separation of Crosscutting Concerns, pages 44–51, Sept. 2001.

[14] J. Whaley. Joeq: A virtual machine and compiler infrastructure. InACM SIGPLAN Workshop on Interpreters, Virtual
Machines, and Emulators, pages 58–66, June 2003.

[15] J. Whaley, M. Carbin, and M. S. Lam. Finding effective variable orderings for BDD-based program analysis, 2005. Submitted
for publication.

[16] J. Whaley and M. S. Lam. An efficient inclusion-based points-to analysis for strictly-typed languages. In9th International
Static Analysis Symposium, pages 180–195, Sept. 2002.

[17] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analyses using binary decision diagrams. InACM
SIGPLAN Conference on Programming Language Design and Implementation, June 2004.

[18] J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of object-oriented component interfaces. InInternational
Symposium on Software Testing and Analysis, pages 218–228, July 2002.

[19] J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java programs. InACM SIGPLAN Conference of
Object Oriented Programming: Systems, Languages, and Applications, pages 187–206, Nov. 1999.


