
Research Statement

Sorin Lerner

My research goal is to develop program analysis and language techniques for making software systems easier
to write, maintain and understand. My experience in program analysis has spanned a wide spectrum of
projects, ranging from implementing a low-level dynamic optimizer for x86 [FDDO 2000 ], to developing
a scalable and efficient analysis in C++ [PLDI 2002 ], to proving theoretical properties about analysis
frameworks [POPL 2002, PLDI 2003, POPL 2005 ]. I enjoy implementing practical solutions, while at the
same time developing the theoretical foundations to clearly state what properties these solutions have.

For the past several years, my research has focused on the particular problem of improving software reliability:
I developed a domain-specific language for implementing dataflow analyses and transformations that can
be checked for correctness automatically; I developed an easy-to-program, and therefore less error-prone,
technique for dataflow analyses to interact in mutually beneficial ways; and I worked with colleagues to
develop a tool that not only finds API usage bugs, but can also prove their absence in large C and C++
programs. I present these three research projects in more detail, and then I describe my plans for future
projects.

Correctness of Program Analyses and Transformations

The reliability of any program depends on the reliability of all the tools that process it, including compilers,
static and dynamic checkers, and source-to-source translators: a correct program compiled incorrectly is
effectively incorrect; a guarantee of memory safety (no buffer overruns) or security safety (no high-security
information flows to low-security variables), if provided by a buggy checker, is in fact no guarantee at all.
Unfortunately, program analysis and transformation tools (PATs) are really hard to get right, even for experts
in the field of program analysis. It takes years before a new compiler is stable enough for programmers to
trust it, and even then the compiler will still have numerous bugs. Aside from having an impact on software
reliability in general, the difficulty of writing correct PATs also hinders the development of new languages and
new architectures, and it discourages end programmers from extending PATs with domain-specific checkers
or optimizers.

My thesis research is aimed at making it easier to build reliable PATs by providing the right abstractions for
implementing them, while at the same time providing strong theoretical guarantees about their correctness.
The most error-prone parts of a PAT are the analyses and transformations themselves. Each new program
processed by a PAT potentially triggers new patterns of interactions among its analyses and transformations,
and it is difficult to cover all these interactions in test suites. Furthermore, it is becoming less and less feasible
to increase the reliability of a PAT by simply disabling most of its analyses and transformations: with the
widespread adoption of systems whose good performance depends heavily on compiler optimizations – for
example just-in-time compilers and higher-level languages like C# and Java – turning off the optimizer is no
longer an option; with more and more systems aiming to provide strong guarantees, it is no longer possible
to disable the static checkers that provide these very guarantees.

I developed a language called Rhodium (a previous version of which was called Cobalt) for implement-
ing program analyses and transformations over C-like programs [PLDI 2003, POPL 2005 ]. In Rhodium,
PAT writers declare dataflow facts that represent useful information about a program, and then they write
declarative rules for propagating these facts across statements and for using these facts to trigger program
transformations. Aside from reducing the potential for errors by makings PATs easier to write and maintain,
the restricted domain of Rhodium makes it amenable to rigorous static checking that would be impossible
otherwise. I have implemented a tool that leverages the stylized form of Rhodium analyses and transfor-
mations to check them for correctness automatically. Furthermore, Rhodium analyses and transformations
can be run directly in our research compiler; they can be interpreted as flow-insensitive and/or context-
sensitive or -insensitive interprocedural analyses; and they can be automatically combined to yield more
precise solutions. Finally, Rhodium can also be used to improve the reliability of already existing PATs



by filtering the analysis and transformation results they produce. The Rhodium system is practical and
useful: I have used it to implement and check the correctness of a variety of realistic analyses and trans-
formations, including partial redundancy elimination, partial dead code elimination, arithmetic-invariant
detection, loop-induction-variable strength reduction, and Andersen’s pointer analysis with heap summaries.

Colleagues and I are currently taking the next step in making correct PATs easier to write: instead of
requiring programmers to write the rules for propagating facts across statements, we are designing a tool
that infers these rules automatically from a declaration of the kinds of dataflow facts to compute. Our
current algorithm for automatically generating Rhodium rules employs a search technique similar in nature
to those used in automatic theorem provers. On the cases that we have tried so far, our algorithm is able to
infer almost all of the Rhodium rules we wrote by hand, and it also discovered useful new rules that we had
not thought of previously.

Exploiting Mutually Beneficial Interaction between Analyses

Taking advantage of interactions between separate analyses is often critical for getting good analysis results.
For example, it is well-known that running inlining and class analysis together is important for generating
high-quality code for object oriented languages. Unfortunately, it is difficult to exploit these mutually
beneficial interactions in a way that is both easy-to-program and efficient. Colleagues and I devised a
new approach for exploiting mutually beneficial interactions that allows analyses to be defined easily and
modularly, while still enabling them to be combined automatically and profitably [POPL 2002 ]. I co-designed
the approach and implemented it in our research compiler. I also expressed our technique formally, proved
its soundness, and showed that it can only improve (and therefore never worsens) the results of individual
analyses.

Static Detection of API-Usage-Rule Violations

Software systems often include “API usage rules” that must be obeyed to ensure their correctness. For
example, a system may require that a lock be released only if it was previously acquired, or that a file
be written to only if it was previously opened. ESP is a sound program analysis tool for verifying that
large C and C++ programs adhere to such API usage rules. The key challenge in building a tool like
ESP is to design an analysis algorithm that scales to large programs, while retaining enough precision so
that the user is not flooded with false positives. ESP addresses this challenge with a novel interprocedural
property simulation algorithm that keeps track of only those predicates (expressions tested by branches) that
matter for the property being checked. By examining only relevant predicates, ESP avoids the exponential
blow-up associated with tracking all predicates, while at the same time pruning infeasible paths that would
otherwise produce false positives. I was a member of the ESP research group at Microsoft Research, where I
co-designed and implemented ESP’s property simulation algorithm [PLDI 2002 ]. ESP has since been applied
to the entire Windows kernel at Microsoft, and it has been successful at finding API usage bugs (and also
proving their absence) in Microsoft production code under development.

Future Work

The goal of my future research is to broaden the impact of program analysis and transformation tools (PATs)
by expanding the benefits they provide to programmers. One aspect of this agenda is making PATs reliable
(so that they can be trusted), scalable (so that they be applied to realistic code bases), and efficient (so
that they can be invoked on every compilation). I not only want to develop useful analyses that have these
properties, but I also want to understand the underlying principles behind writing such analyses, and use this
understanding to automate more and more of the PAT-writing process. The grand challenge that I propose
is to automatically generate an efficient, scalable and correct PAT in its entirety from a simple goal-directed
specification. Despite a long line of work dating back to the 70s on generating various parts of a PAT
from specifications (for example the parser, the type checker, and the code generator), there has been little
work on automatically inferring analyzers and optimizers, and on doing so in a way that guarantees their
correctness. Some recent advances in this poorly explored direction are nevertheless encouraging, including



my own work on inferring Rhodium rules, and recent work by Amarasinghe et al. on inferring compiler
heuristics using genetic programming. I believe that there are many more opportunities for novel research
in this area, and I plan to investigate these opportunities. For example, one could develop tools that make
analyses scalable by examining their run-time traces and then using the gathered information to guide the
automatic application of various representation optimizations (such as switching to BDDs or bit-vectors for
encoding dataflow information); tools to automatically (or semi-automatically) explore the tradeoffs between
the scalability and precision of an analysis; tools that infer entire dataflow analyses from a specification of
the desirable transformations; or tools that infer potential optimizing transformations from a high-level
goal-directed specification. This research direction not only poses interesting challenges in the areas of
programming languages, compiler optimizations, and formal methods, but also provides opportunities for
applying techniques from other research areas to program analysis problems. For example, I believe that
search techniques from AI and from the theorem proving community will be helpful in generating analyzers
and optimizers automatically.

Another research direction that will broaden the impact of PATs is to empower end-user programmers
with the ability to create their own domain-specific analyses and transformations. Oftentimes, it is the
end programmer who has the application-domain knowledge and the coding-pattern knowledge necessary
to implement useful analyses. My thesis research has provided a practical foundation for extensible PATs:
end programmers, with little or no knowledge of program analysis, can now easily extend existing PATs
without fear of breaking them. I want to use this foundation for investigating how domain-specific static
checking and domain-specific optimizations can be made practical and useful. I also want to develop domain-
specific languages that, like Rhodium, are targeted at a particular domain, and as a result can provide strong
guarantees via rigorous static checking. More broadly, I want to investigate techniques for allowing end-user
programmers to develop their own lightweight domain-specific languages that can be easily incorporated
into mainstream languages, while still providing strong guarantees. I look forward to collaborating with
colleagues in other areas of computer science and with researchers in pure and applied sciences, to understand
the requirements of domains other than the ones I am familiar with, and to investigate the possible use of
analysis techniques for these domains.

Most broadly, my future research will address a range of issues in software engineering and software reliability.
Using language and analysis techniques, I want to investigate how to find bugs statically in large code
bases, how to concisely express complicated general-purpose code using declarative constructs, and how
to compute static program information to help developers better understand software systems. As in my
previous research, I plan to tackle these and other problems using a combination of language design, analysis
techniques, theorem proving technology, and formal theory.


