
Andrew Begel: Research Statement
Computers play many crucial roles in our society, from the desktops in the workplace to the cell phones

in our pockets. The software that runs on these systems has grown increasingly large, complex, and prone
to bugs. One reason is that the tools used to program these systems have not kept pace with their growth.
The tools impede programmers from catching bugs early, communicating program concepts easily and
efficiently with colleagues, predicting how a program will behave when used by others, and
understanding the history of the software artifact that is being built. Software has simply grown too large
and complex for programmers to understand without tool support.

The solution is to lower the programmers’ cognitive load, permitting them to concentrate their skills on
the problem they are trying to solve, rather than wasting their skills on the rote details of the code. Some
programming environments have already begun to incorporate features that realize this solution. For
example, many IDEs support program refactorings, which are high-level program transformations that
encompass many of the simple tasks performed during routine software maintenance. IDEs also provide
dynamic feedback regarding the correctness of authored code without requiring the programmer to invoke
the compiler. They offer guidance to proper usage of large, complex APIs without requiring the
programmer to read the manual. Runtime-generated code profiles help programmers optimize their
programs by identifying performance bottlenecks without requiring the programmer to pore over
assembly code and timing measurements. Each of these tools succeeds by combining program analysis
with human-computer interaction, utilizing the increased knowledge the computer has about the program
and the software development process to enrich the interaction between programmer and computer.

My research at the University of California, Berkeley and at MIT has focused on building these kinds
of programming tools and their supporting analyses. Over the past decade, I have worked with
programmers of many ages, abilities and physical impairments, designing programming environments to
enhance their comprehension, productivity, and performance. The work has led to (a) my dissertation
work creating the SPED voice-recognition-based programming environment – enabling those suffering
from repetitive strain injuries (and other physical disabilities that prevent them from using a keyboard and
mouse) to program efficiently enough to remain competitive in the workforce, (b) the StarLogo
programming environment – helping students learn about complex systems modeling through simulation,
(c) the BPF+ packet filter language and optimizer – enabling network analysts to use a high-level,
expressive predicate language to monitor particular packets from a network stream without sacrificing
performance, and (d) a design for a next generation of the HTTP protocol – enabling programmers to
describe long-lasting program interfaces in the face of incremental, anarchic evolution of data structures
and function signatures. In each of these projects, I have developed new algorithms, architectures,
languages, and tools that contribute to the state of the art in research and in practice.

 My ultimate goal with this line of research is to understand and improve the programmer-computer
interface. Achieving this goal will help make existing programmers more productive, help novices more
easily develop expert programming skills, and improve the accessibility of programming environments
for people with disabilities. I will take a three-pronged approach: 1) conduct user studies to learn how
programmers interact with their programming environments, 2) design tools that will help them overcome
the barriers they face in the programming process, and 3) develop novel program analyses and
infrastructure that will make these new tools possible. Much of the research I propose to conduct is cross-
disciplinary, incorporating aspects from software engineering, programming languages, human-computer
interaction, and in the longer term, artificial intelligence and natural language processing. The best setting
for my work is in a computer science department that encompasses human-centered computing,
encourages interdisciplinary research collaborations, and supports first-class research in software
development environments.

Research Contributions
Many programmers suffer from repetitive strain injuries (RSI) and other more severe motor

impairments. These individuals cannot easily use a keyboard and a mouse, and have difficulty staying
productive in a work environment that all but requires long hours typing code into a computer. My
dissertation work helps to lower these barriers by enabling developers to reduce their dependence on
typing by using speech. Speech interfaces may help to reduce the onset of RSI among computer users,
and at the same time, increase access for those already suffering motor impairments.

My approach to speech-based programming comes from a programming language perspective. By
exploiting the domain-specific nature of programming and applying programming language-based
analyses to a verbalized form of authoring, editing and navigating through code, I hope to alleviate many
of the common problems of voice recognition for programmers. Other work in this area relies heavily on
tools provided by speech recognition vendors and rudimentary text-based analyses that do not exploit any
knowledge of the programming language or program being written.

Naturally Verbalizable Programs
The goal of my project is to enable input that is natural to speak, yet understandable by the voice

recognition systems that must process it. Programming languages have historically been communicated in
written form; prior to our work, verbalization of code has been highly ad-hoc and not at all formally
defined. We conducted experiments to reveal how programmers speak code. We found that while there
does exist a common vernacular among programmers for speaking programs, some aspects of speech
present challenges for system understanding. Punctuation is inconsistently verbalized, but generally
omitted in certain constructions. Difficulties arise with homophones (words that sound alike but are
spelled differently), capitalization of words, and concatenated names. We saw differences between native
and non-native English speakers in regards to ambiguous utterances – native speakers use prosody (pitch
and pausing) to disambiguate the construct, while non-native English speakers rephrase the construct in
other ways. Native English speakers are also better at verbalizing abbreviations and partial words. We
observed that programmers tend to identify patterns and describe them, rather than using only their
instantiations. Other experiments we have conducted show that conventional searching and navigating by
voice requires too much input, is too slow, and incurs more cognitive load than using the keyboard or
mouse. Based on these experiments, we have developed Spoken Java, a dialect of Java that is more
naturally verbalized by human developers, along with a command and control language designed to
enable programmers to find and select pieces of code and modify them in high-level linguistic ways.

Language Analyses for Ambiguous Input Streams
A significant artifact of our work is a software development system that can understand spoken

program authoring, editing and navigation, each in isolation and in combination. First, a programmer
speaks program code into a microphone. Then, a speech recognizer turns the speech into text that is fed
into our analysis system and displayed on a screen. Lexical ambiguities found in spoken input, such as
homophonic, misrecognized, unpronounceable, and concatenated words, affect the voice-based
programmer's ability to introduce code and use similar sounding words in different contexts. We
addressed the problems by extending the Generalized LR (GLR) parsing algorithm to support the three
kinds of ambiguities that can arise from a speech-aware lexical analyzer. We then constructed a novel
combined lexer and parser generator called Blender to enable language designers to describe
programming languages designed for speech. This generator can combine lexical descriptions and
grammars from many languages (for instance, from Spoken Java and its associated command language)
into a single analysis module. Our lexer and parser produce an ambiguous parse forest of possible
interpretations for any given program. We are developing a semantic analysis which uses incrementally
updated static semantic information about a program to disambiguate a newly inserted code fragment.

Novel User Interfaces for Manipulating Code
Our studies have shown that browsing and selecting words and phrases with voice recognition is tedious,
error-prone, and slow. Navigation commands supplied by voice recognition tools suffer from several

flaws: users must speak too many words, make repetitive utterances, and rely on generally poor visual
estimation skills. Our replacement for these techniques, a context-sensitive mouse grid, is a program-
aware form of direct navigation. It allows programmers to “drill down” hierarchically through their
program to select the desired statement or word. Using this tool, programmers can quickly point at a
particular program point to indicate where an editing action may take place without having to re-speak
potentially difficult-to-verbalize program text. When verbalization is required, for example, when
searching for a name in the code, we are developing a phonetics-based search to make it unnecessary for
the user to spell. Search results are all presented together, sorted numerically, and shown with
surrounding context to enable the user to quickly navigate with a minimum number of utterances.

While we have striven to make Spoken Java as naturally verbalized as possible, there may be situations
where the programmer does not know how to express a particular construct. In this case, we are
developing a spoken feedback system where any already written construct may be spoken out loud to help
teach and reinforce proper input techniques. We are combining this with visual reinforcement of the
language used by programmers as they enter each construct into the computer. This will help alleviate any
short-term memory problems programmers may suffer when relying exclusively on voice input.

 Future Goals
 In addition to further development of the ideas studied in my dissertation, much of the research I plan

to conduct addresses questions that have arisen during my time in graduate school. (a) How can a
computer exploit task-awareness to improve the software development process? (b) Why are
programmers notoriously bad at documenting their code? Might enabling programmers to comment by
voice alleviate some of the problems? (c) What can we learn from the many years of natural language
research that can be used in the more limited domain of program editing to make spoken programming
analyses more efficient and expand the range of acceptable input? (d) Compilers and optimizers have
become incredibly complex tools; often their output appears mysterious to the programmer. What
feedback can be given to programmers to help them understand the compiler’s operations?

Data Mining the Program Edit History
The programming process has been extensively studied using audio and video taping of programmers

while they work. Programmers have been asked to “think aloud” while they tackle program
comprehension, program authoring and program modification tasks. Very few studies directly record all
keystrokes and mouse movements because the resulting data is too low-level and difficult to analyze.
However, by combining the proper kinds of data mining, log analysis, and search facilities with program
analysis, one could design an inference algorithm to learn what high-level programming interpretation
should be given to a sequence of keystrokes and mouse movements. This information could be useful
both to analyze programmer actions and to help the programmer during the development process itself.
An analysis could infer that the programmer was modifying a set of data structures, for example, or was
refactoring his or her code in some systematic way. Even without analysis, simply making the program
edit history easily visible and searchable could increase collaboration by enabling programmers to
understand the design of someone else’s code, and learn how it evolved over time with respect to features
that were added and bugs that were fixed. The edit history could also be used to automatically generate a
first cut at revision control system comments when the programmer wants to commit source code
modifications. The system could automatically generate to-do items when it detects the programmer
making systematic, but incomplete changes to code, and with a little more analysis, could check off items
when it detects that the programmer has finished the task.

Commenting by Voice
It is notoriously difficult to get developers to comment their code, and even more difficult to maintain

documentation in the face of changes to the code and its design. Numerous studies have tried to pin this
documentation failure on programmers (their education, their workload, their inherent laziness), but
another possible explanation is a simple input modality clash. Both comments and code are entered by
keyboard – if programmers want to write comments, they have to stop programming for a short time,

distracting them from their programming task. If programmers could comment their code orally in an
editor which recorded all voice and edit operations, both comments and code could be entered at the same
time, minimizing interruption. Audible comments could be attached to the program and saved into the
revision control system. Comments could be played back by another developer wishing to learn how the
original programmer created the code. They could be transcribed by speech-to-text systems and added as
textual comments for fast browsing. Grosz and Shieber, among others, have studied associating
comments with program structure, through natural language analysis of the comment text and its position
in the edit history. If one were to combine this analysis with knowledge of the syntax and semantics of the
code being written, it would be possible to identify references to names in the code, and perhaps to
identify references to particular algorithms. If the analysis were robust enough, it might be used to solve
one of the harder problems in software maintenance: keeping comments current when the code changes.

Disambiguating Spoken Program Code
Voice-based entry of code introduces many lexical and syntactic ambiguities that cannot be resolved

until semantic analysis is run. In the system built for my dissertation, lexical and syntactic analysis
phases must generate all possible interpretations of the input in order for semantic analysis to choose the
correct one. In some cases, this process may not scale (as natural language researchers discovered about
English language analysis in the 1970s). I will pursue ways to use partial parsing (based on my work in
program fragment parsing with GLR) and partial semantic analyses to help prune ambiguities as early as
possible in the analysis process. Additional techniques can be developed by adapting natural language
disambiguation algorithms to the more limited domain of programming languages.

Understanding Compilers and Optimizers
Compilers and optimizers have become very complex over the past decade, incorporating program

analyses and optimization techniques that until recently were found solely in research labs. Similarly, it is
increasingly difficult to program the platforms that these tools target due to the incorporation of SMT,
VLIW, parallel processing and complex memory hierarchies. Some programmers learn how compilers
and optimizers typically transform source code into machine code, which is useful for diagnosing
performance problems. However, even this knowledge is inadequate when faced with the code that comes
out of an optimizing compiler. Prior work on visualization of compiler and optimizer output has
concentrated mainly on correlating the debugger’s view of the code with the source. This information
should be applied to the programmer’s view of the code in the program editor, either in source code form,
or in cases where the optimization is not representable in source form, in a high-level pseudo code.
Programmers have two major questions: 1) what did the optimizer do to my code? and 2) why didn’t the
optimizer do this optimization here? To answer the first question, the optimizer might report that a) it
hoisted this code to that location b) it strength-reduced this mathematical operation, c) it unrolled this
loop four times, d) it inlined this function into those call sites, e) these variables are in registers, f) this
region is dead code, or g) it vectorized this loop. It is more difficult, but very profitable, to comprehend
why the compiler did not perform a particular transformation: a) these two pointers are aliased, so no
common subexpression elimination happened here, b) this object-oriented method was not inlined
because the receiver class is not statically determinable, c) this code was not hoisted because there is an
exceptional control path. Other optimizations may have “almost” been applied, but were abandoned due
to one failed predicate – it would be useful to know which predicate prevented the optimization and why.

The Future
This research plan is fairly ambitious, and will likely keep me occupied for the next several years, if not

longer. Some of the research involves exploiting research in areas like artificial intelligence, machine
learning and natural language processing, in which I do not yet have expertise. My background and the
multi-disciplinary approach I have outlined above, combined with a healthy amount of collaboration with
colleagues in these research areas will help to achieve my goal of more productive and accessible
programming for software developers.

