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We present Seq2Parse, a language-agnostic neurosymbolic approach to automatically repairing parse errors.
Seq2Parse is based on the insight that Symbolic Error Correcting (EC) Parsers can, in principle, synthesize
repairs, but, in practice, are overwhelmed by the many error-correction rules that are not relevant to the
particular program that requires repair. In contrast, Neural approaches are fooled by the large space of possible
sequence level edits, but can precisely pinpoint the set of EC-rules that are relevant to a particular program. We
show how to combine their complementary strengths by using neural methods to train a sequence classifier
that predicts the small set of relevant EC-rules for an ill-parsed program, after which, the symbolic EC-parsing
algorithm can make short work of generating useful repairs. We train and evaluate our method on a dataset of
1,100,000 Python programs, and show that Seq2Parse is accurate and efficient: it can parse 94% of our tests
within 2.1 seconds, while generating the exact user fix in 1 out 3 of the cases; and useful: humans perceive
both Seq2Parse-generated error locations and repairs to be almost as good as human-generated ones in a
statistically-significant manner.
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1 INTRODUCTION

Parse errors can vex novices who are learning to program. Traditional error messages only indicate
the first error or produce messages that are either incomprehensibly verbose or not descriptive
enough to help swiftly remedy the error [Qian and Lehman 2017; van der Spek et al. 2005]). When
they occur in larger code bases, parse errors may even trouble experts, and can require a great deal
of effort to fix [Ahadi et al. 2018; Denny et al. 2012; Kummerfeld and Kay 2003].

Owing to their ubiquity and importance, there are two established lines of work on automatically
suggesting repairs for parse errors. In the first line, Programming Languages researchers have
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investigated symbolic approaches starting with classical parsing algorithms, e.g., LR [Aho and
Johnson 1974] or Earley [Earley 1970]. These algorithms can accurately locate syntax errors, but do
not provide actionable feedback on how to fix the error. Aho and Peterson [1972] extends these ideas
to implement error-correcting parsers (EC-Parsers) that use special error production rules to handle
programs with syntax errors and synthesize minimal-edit parse error repairs. Sadly, EC-parsers
have remained mostly of theoretical interest, as their running time is cubic in the program size,
and quadratic in the size of the language’s grammar, which has rendered them impractical for
real-world languages [McLean and Horspool 1996; Rajasekaran and Nicolae 2014].
In the second line, Machine Learning and NLP researchers have pursued Deep Neural Network

(DNN) approaches using advanced sequence-to-sequence models [Hardalov et al. 2018; Sutskever
et al. 2014] that use a large corpus of code to predict the next token (e.g., at a parse error location).
Unfortunately, these methods ignore the high-level structure of the language (or must learn it from
vast amounts of data) and hence, lack accuracy in real-world contexts. For example, state-of-the-art
methods such as Ahmed et al. [2021] parse and repair only 32% of real student code with up to 3
syntax errors while Wu et al. [2020] repair only 58% of syntax errors in a real-world dataset.

In this paper, we present Seq2Parse, a new language-agnostic approach to automatically repairing
parse errors based on the following key insight. Symbolic EC-Parsers [Aho and Peterson 1972] can,
in principle, synthesize repairs, but, in practice, are overwhelmed by the many error-correction rules
that are not relevant to the particular program that requires repair. In contrast, Neural approaches
are fooled by the large space of possible sequence level edits, but can precisely pinpoint the set of
EC-rules that are relevant to a particular program. Thus, Seq2Parse addresses the problem of parse
error repair by a neurosymbolic approach that combines the complementary strengths of the two
lines of work via the following concrete contributions.
1. Motivation. Our first contribution is an empirical analysis of a real-world dataset of more than
a million novice Python programs that shows that parse errors constitute the majority of novice
errors, take a long time to fix, and that the fixes themselves can often require multiple edits. This
analysis clearly demonstrates that an automated tool that suggests parse error repairs in a few
seconds could greatly benefit many novices (§ 2).
2. Implementation. Our second contribution is the design and implementation of Seq2Parse,
which exploits the insight above to efficiently and accurately suggest repairs in a neurosymbolic
fashion: (1) train sequence classifiers to predict the relevant EC-rules for a given program (§ 5), and
then (2) use the predicted rules to synthesize repairs via EC-Parsing (§ 6).
3. Abstraction. Predicting the rules is challenging. Standard NLP token-sequence based methods
are confused by long trailing contexts that are independent of the parse error. This confusion
yields to inaccurate classifiers that predict irrelevant rules yielding woefully low repair rates. Our
second key insight eliminates neural confusion via a symbolic intervention: we show how to use
Probabilistic Context Free Grammars (PCFGs) to abstract long low-level token sequences so that the
irrelevant trailing context is compressed into single non-terminals, yielding compressed abstract
token sequences that can be accurately understood by DNNs (§ 4).
4. Evaluation. Our final contribution is an evaluation of Seq2Parse using a dataset of more than
1,100,000 Python programs that demonstrates its benefits in three ways. First, we show its accuracy:
Seq2Parse correctly predicts the right set of error rules 81% of the time when considering the top
20 rules and can parse 94% of our tests within 2.1 seconds with these predictions, a significant
improvement over prior methods which were stuck below a 60% repair rate. Second, we demonstrate
its efficiency: Seq2Parse parses and repairs erroneous programs within 20 seconds 83% of the time,
while also generating the user fix in almost 1 out 3 of the cases. Finally, we measure the quality
of the generated repairs via a human study with 39 participants and show that humans perceive
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Fig. 1. The Python error type distribution.
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Fig. 2. The repair rates of the Python dataset.

both Seq2Parse’s edit locations and final repair quality to be useful and helpful, in a statistically-
significant manner, even when not equivalent to the user’s fix (§ 7).

2 A CASE FOR PARSE ERROR REPAIR

We motivate Seq2Parse by analyzing a dataset comprising 1,100,000 erroneous Python programs
and their respective fixes. This dataset was gathered from PythonTutor.com [Guo 2013] between
the years 2017 and 2018, previously used in related work [Cosman et al. 2020; Endres et al. 2019].
Each program which throws an uncaught Python exception is paired with the next program by
the same user that does not crash, under the assumption that the latter is the fixed version of the
former. We discard pairs that are too different between buggy and fixed versions, since these are
usually unrelated submissions or complete refactorings. We also discard submissions that violate
PythonTutor’s policies (e.g., those using forbidden libraries). The resulting dataset contains usable
program pairs, representing students from dozens of universities (PythonTutor has been used in
many introductory courses [Guo 2013]) as well as non-traditional novices.
One might imagine that parse (or syntax) errors are usually easier to locate and repair than

other algorithmic or runtime errors [Denny et al. 2012]. For example, the Python parser will
immediately inform the programmer about missing parentheses in function argument lists or
improper indentation. However, as has also been shown in previous work [Ahadi et al. 2018;
Kummerfeld and Kay 2003], our data confirm that programmers (especially novices) deal with these
kinds of errors regularly and spend a considerable amount of time fixing them.

Observation 1: Parse errors are very common. Figure 1 presents the statistics of the different
types of errors that users encountered in this dataset. We observe that 77.4% of all faulty programs
failed with a syntax error, accounting for the vast majority of the errors that (novice) programmers
face with their programs. The second category is merely 13.6% of the dataset and represents Python
type errors. This is a strong indication that parse errors are a very common category of error.

Observation 2: Parse errors take time to fix. The web-based compiler used to obtain this dataset
provides server timestamps. The timestamp is associated with each program attempt submission,
erroneous or not. The repair time is the difference between the erroneous and fixed program
timestamps. This timing can be imprecise, as there are various reasons these timings may be
exaggerated, (e.g., users stepping away from the computer, internet lag etc.). However, in aggregate,
due to the large dataset size, these timings can still be viewed as an approximate metric of the time
it took novice programmers to repair their errors.
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Fig. 3. The Python dataset ratio that is fixed under

the given number of token changes.
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Fig. 4. The average time the user needed to fix the

erroneous program for the needed token changes.

Figure 2 shows the programmer repair rate, i.e. the dataset percentage that is repaired under a
given amount of time. It presents the repair rate for parse errors and the rest of the error types,
grouped together here as runtime errors. As expected, parse errors are fixed faster than the rest,
but not by a large difference. For example, we observe that within 2 minutes, 46% of the runtime
errors are repaired, while 63% of the syntax errors are. Although this is a non-trivial difference, we
observe that there are still many “simpler” parse errors that required more than 2 minutes to fix.
Observation 3: Parse errors may need multiple edits to fix. The average token-level changes
needed to fix a program with syntax errors, i.e. the number of changes in the lexed program token
sequence, is 10.7 token changes, while the median is 4. (This does not count lexeme content changes,
such as variable renamings, and thus underapproximates the work required.) As shown in Figure 3,
14.2% of errors need only 1 token change, 23.2% need 2 token changes, 7.0% need 3 and 9.0% need
4. Ultimately, 46.6% of these errors require more than 4 token changes.
Observation 4: Parse errors with more edits take longer to fix. Figure 4 shows the average time
for users to fix syntax errors as a function of the number of token changes needed. As expected,
with an increasing number of token changes needed, programmers need more time to implement
those changes. Most importantly, even for 1 or 2 token changes the average user spends 25 sec,
which is still a considerable amount of time for such simple and short fixes. The repair time jumps
to 56 sec for three token changes.
These four observations indicate that, while some errors can be easily and quickly fixed by

programmers using existing error messages, there are many cases where novices struggle with
fixing syntax errors. Therefore, we can conclude that an automated tool that parses and repairs
such programs in only a few seconds could benefit many novices.

3 OVERVIEW

We begin with an overview of Seq2Parse’s neurosymbolic approach to repairing parse errors,
that uses two components. (Neural) Given a dataset of ill-parsed programs and their fixes, we
partially parse the programs into abstract sequences of tokens (§ 3.2), that can be used to train
sequence classifiers (§ 3.3), that predict program-relevant error rules for new erroneous programs
(§ 3.4). (Symbolic) Next, given an erroneous program, and a (small) set of predicted program relevant
error rules, the ECE-parser can exploit the high-level grammatical structure of the language to
make short work of synthesizing the best repair (§ 3.1). We now give an overview of Seq2Parse,
describing these elements in turn, using as a running example, the program in Figure 5a where the
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1 def foo(a):

2 return a + 42

3
4 def bar(a):

5 b = foo(a) + 17

6 return b +

(a) A Python program with two functions that ma-

nipulate an integer. The second one has a parse error.

1 def foo(a):

2 return a + 42

3
4 def bar(a):

5 b = foo(a) + 17

6 return b

(b) A fixed version for the previous example that has

no parse errors.

Fig. 5. A Python program example with syntax errors (left) and its fix (right).
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Fig. 6. Seq2Parse’s overall approach.

S → Stmts end_marker

Stmts → Stmt \n | Stmt \n Stmts

Stmt → FuncDef | ExprStmt

| RetStmt | PassStmt | ...

FuncDef → def name Params : Block

Block → \n indent Stmts dedent

RetStmt → return | return Args

Args → ExprStmt | ExprStmt , Args

ExprStmt → ArExpr | ...

ArExpr → Literal

| ArExpr BinOp Literal

Literal → name | number | ...

Fig. 7. Simplified Python production rules.

FuncDef

def name Params

( name )

: Block

\n indent Stmts

Stmt

ExprStmt

\n Stmts1

Stmt \n

dedent

Fig. 8. The partial parse tree generated for bar in the

example at Figure 5a

programmer has introduced an extra + operator after the return b on line 6. This extra + should be
deleted, as shown in the developer-fixed program in Figure 5b.

3.1 Error-Correcting Parsing

Earley Parsers for Python. An Earley parser accepts programs that belong to a language that
is defined by a given grammar 𝐺 by using dynamic programming, to store top-down partial
parses in a data structure called a chart [Earley 1970]. The grammar 𝐺 has a starting symbol S
and a set of production rules. Figure 7 presents some simplified production rules for the Python
programming language that will help parse the program in Figure 5a. Terminal symbols (or tokens)
are syntactical symbols and are here presented in lowercase letters. Uppercase letters denote non-
terminal symbols, which are rewritten using production rules during a parse. For example, the
non-terminal Stmt defines all possible Python statements, including expressions (ExprStmt), return
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statements (RetStmt), etc. Figure 8 shows the top levels of the parse tree for the bar function in
Figure 5a using these productions rules.
Error-Correcting Parsers for Python.An Error-Correcting Earley (ECE) Parser extends the original
algorithm’s operations, to find a minimum-edit parse for a program with parse errors [Aho and
Peterson 1972]. An ECE-Parser extends the original grammar 𝐺 with a set of error production rules
to create a new error grammar 𝐺 ′ which has rules to handle insertion, deletion, and replacement
errors. Let’s see how to adapt Python’s production rules for an ECE-Parser. First, the ECE-Parser
adds to𝐺 ′ a new start symbol New_S, the helper symbol Replace that is used for replacement errors
and the symbols Insert and Token that introduce insertion errors. Additionally, for each terminal t
in 𝐺 it adds the new non-terminal E_t that introduces errors relevant to the t symbol.

Next, in addition to the existing production rules, the error grammar 𝐺 ′ has the following error
rules. The new start symbol uses the old one with the option of an insertion error at the end:
• New_S → S | S Insert

Additionally, for each production rule of a non-terminal T in 𝐺 , another non-terminal error rule is
added that introduces the terminal symbols E_t, for each original terminal t it has. For example,
the Stmts, Block and RetStmt rules are updated as:
• Stmts → ... | Stmt E_\n | Stmt E_\n Stmts

• Block → ... | E_\n E_indent Stmts E_dedent

• RetStmt → ... | E_return | E_return Args

Next, for each terminal t in 𝐺 , we add four error rules of the type:
• E_t → t | 𝜖 | Replace | Insert t

These four new error rules have the following usage for each terminal t:
(1) The E_t → t rule will match the original terminal t without any errors. This error rule

is used in cases that the non-error version of the rule is needed. For example, in Block →
E_\n E_indent Stmts E_dedent it can be the case that only E_dedent is needed to match the
error and E_\n and E_indent can match their respective symbols.

(2) Using E_t → 𝜖 a deletion error is considered. The error rule will match nothing, or the empty
token 𝜖 , in the program, meaning the terminal is missing.

(3) Using E_t → Replace a replacement error is considered. Replace will match any terminal
token that is different than t, making a replacement possible.

(4) The rules E_t → Insert twill introduce an insertion error, i.e. Insertwill match any sequence
of Tokens that are not supposed to precede t in order to make the program parse.

For example, for the terminal tokens return, number and \n (a new line) the relevant error
production rules are:
• E_return → return | 𝜖 | Replace | Insert return

• E_number → number | 𝜖 | Replace | Insert number

• E_\n → \n | 𝜖 | Replace | Insert \n

Finally, the Replace non-terminal can match any possible terminal in𝐺 to introduce replacement
errors, the Insert non-terminal will introduce a sequence of insertion errors by using Token which
also matches every terminal and we just differentiate the name in order to be able to distinguish
the different types of errors.
• Replace → return | pass | \n | + | ... [all terminals]

• Insert → Token | Insert Token

• Token → return | pass | \n | + | ... [all terminals]
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(a) The partial parse tree for

the example at Figure 5a.
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(b) Adding a number with the green

E_number error rule.
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return Args

ExprStmt
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Literal
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E_\n

Insert

Token

+

\n

(c) Deleting the + with red E_\n er-

ror rule.

Fig. 9. The rest of the problematic function in Figure 8 and two possible error-correcting parses

ECE Parsing Considerations for Python. Unfortunately, we run into various problems if we try to
directly use an ECE-Parser for large, real-world languages like Python. Figure 9a presents a partial
parse of the problematic statements Stmts1 of Figure 8. Considering a deletion error (Figure 9b), the
E_number → 𝜖 error rule is used to match the empty symbol and generate a parse that suggests
that a number is missing after the + operator. On the other hand, the E_\n → Insert \n error
rule can be used to consider an insertion error (Figure 9c) before the new line character, basically
deleting the + operator. In this case, ArExpr → Literal is used to parse the program instead of
ArExpr → ArExpr BinOp Literal.

The ECE-Parser is an effective approach on finding minimum distance parses for programs
than do not belong in the given programming language, i.e. have parse errors. However, this
parsing algorithm has limited use in large real-world programming languages, e.g. Python or
Java, and more time- and memory-efficient parsing algorithms are often used, e.g. LR parsing
etc. [Chapman 1987; Knuth 1965]. For example, Python has 91 terminal symbols (including the
program’s end_marker) which means that for all the cases of the error rules E_t (excluding the
non-error base case E_t → t), Replace and Token, 455 terminal error rules have to be added to the
grammar𝐺 ′. The Python grammar that we used has also 283 production rules, from which 182 rules
have terminals in them, meaning another 182 error rules need to be added. Including the four helper
production rules, e.g. for the new start symbol, the new grammar 𝐺 ′ has 641 new error production
rules. This large amount of error rules renders the ECE-Parser not scalable for large programs or
programs with a lot of parse errors when using real-world programming languages.
One of our insights, as seen in our running example in Figure 9, is that only a handful of error

rules are relevant to each parse error. Therefore, we propose to improve ECE-Parsing’s scalability
by only adding a small set of error production rules, i.e. keeping the size of 𝐺 ′ limited and only
slightly larger than the original grammar𝐺 . We propose to do so by training classifiers to select a
small set of error rules only relevant to the parse error. However, the program token sequences
that we can use may have irrelevant information, e.g. the foo function in our example in Figure 5
that does not contribute to the parse error. To address this problem, we propose to further abstract
our program token sequences.
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1 def name(name): \n

2 indent return name + number \n

3 dedent \n

4
5 def name(name): \n

6 indent name = name(name) + number \n

7 return name + \n

8 dedent end_marker

(a) The program token sequence generated by the lexer.

1 Stmt \n

2
3 def name Params: \n

4 indent Stmt \n

5 return Expr BinOp \n

6 dedent end_marker

(b) The abstracted token sequence for the same

program. Parts of the program that can’t be ab-

stracted (e.g. def name) remain the same.

Fig. 10. The token sequences for the Python program example in Figure 5.

3.2 Abstracting Program Token Sequences

As shown in Figure 6, our neural component has the task of training a classifier to predict the
relevant error rules for a given ill-parsed program.
Problem: Representing Ill-parsed Programs. As the inputs are ill-parsed, the training and classi-
fication cannot use any form of analysis that requires a syntax tree as input [Gulwani et al. 2018;
Martinez et al. 2013; Sakkas et al. 2020; Wang et al. 2018]. One option is to view the ill-parsed
program as a plain sequence of tokens eliding variable names and such, as shown in Figure 10a.
Unfortunately, we found such token sequences yielded inaccurate classifiers that were confused by
irrelevant trailing context and predicted rules that were not relevant to repair the error at hand.
Solution: Abstract with Partial Parses. Seq2Parse solves the problem of irrelevant context by
abstracting the token sequences using partial parses to abstract away the irrelevant context. That
is, we can use partial parse trees to represent ill-parsed programs as an abstracted token sequence
shown in Figure 10b, where any completed production rules can be used to abstract the relevant
token sub-sequences with the high-level non-terminal.

Figure 8 shows how partial parses can be used to abstract long low-level sequences of tokens into
short sequences of non-terminals. (1) The function foo is completely parsed, since it had no parse
errors and the highest level rule that can be used to abstract it is Stmt → FuncDef. (2) Similarly, note
that Params → ( name ) is another completed production rule, therefore the low-level sequence of
parameter tokens in the bar function can be abstracted to just the non-terminal Params. (3) However,
the production rule for FuncDef is incomplete since the last statement Stmt (under Stmts1) has a
parse error as shown in Figure 9a.
Problem: Ambiguity. The generation of this abstraction, however, poses another difficulty. Earley
parsing collects a large amount of partial parses (via dynamic programming) until the program is
fully parsed. That means at each program location, multiple partial parses can be chosen to abstract
our programs. This ambiguity can be seen even in the two suggested repairs in Figure 9: if we
delete the colored nodes in Figure 9b and Figure 9c we obtain two possible partial parses for our
program, the first one matching Figure 9a and the second one not shown here.
Solution: Probabilistic Context-Free Grammars. Seq2Parse solves the ambiguity problem of
choosing between multiple possible partial parses via a data-driven approach based on Probabilistic
Context-Free Grammars which have been used in previous work to select complete parses for
ambiguous grammars [Collins 2013; Jelinek et al. 1992]. A PCFG associates each of its production
rules with a weight or probability. These weights can be learned [Collins 2013] by using the data
set to count the production rules used to parse a number of programs belonging to that language.
Seq2Parse uses PCFGs to resolve the ambiguity of partial parses by associating each partial tree
(in the Earley table) with a probability which is the product of the used rules’ probabilities. The
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S → Stmts end_marker (𝑝 = 100.0%)
Stmts → Stmt \n (𝑝 = 38.77%) | Stmt \n Stmts (𝑝 = 61.23%)
Stmt → ExprStmt (𝑝 = 62.64%) | RetStmt (𝑝 = 7.59%) | ...

RetStmt → return (𝑝 = 1.61%) | return Args (𝑝 = 98.39%)
Args → ExprStmt (𝑝 = 99.20%) | ...

ExprStmt → ArExpr (𝑝 = 29.40%) | ...

ArExpr → Literal (𝑝 = 86.89%) | ArExpr BinOp Literal (𝑝 = 13.11%)
Literal → name (𝑝 = 64.89%) | number (𝑝 = 20.17%) | ...

Fig. 11. The production rules shown in Figure 7 with their learned probabilities.

tree with the highest probability is selected as a final parse tree which can then be used to generate
an abstracted token sequence, as described above.
Figure 11 shows the learned probabilities for the example Python grammar. We observe, for

example, that ReturnStmt has two possible production rules and almost 98.4% of the times a return

is followed by an argument list. Additionally, 62.6% of the times a Stmt is an ExprStmt and only
7.6% of the times it is a RetStmt. Thus, in our example, the probability that would be assigned to
the partial parse for Stmts1 in Figure 9b (only the sub-tree without the colored error nodes) is the
product of the probabilities of the production rules Stmts→ Stmt \n, Stmt→ RetStmt, RetStmt→
return Args, Args→ ExprStmt etc. which is 38.77% · 7.59% · 98.39% · 99.20% · · · · = 4.57‰, while
the partial parse for Stmts1 in Figure 9c would similarly be calculated as 47.61‰, making it the
proper choice for the abstraction of the program.

3.3 Training Sequence Classifiers

The abstracted token sequences we extracted from the partial parses present us with short abstracted
sequences that abstract irrelevant details of the context into non-terminals. Next, Seq2Parse uses
the NLP approach of sequence models [Hardalov et al. 2018; Sutskever et al. 2014] to (use the abstract
token sequences) to train a classifier that can predict the relevant error rules.
Seq2Seq Architectures. Sequence-to-sequence (seq2seq) architectures transform an input sequence
of tokens into a new sequence [Sutskever et al. 2014] and consist of an encoder and a decoder. The
encoder transforms the input sequence into an abstract vector that captures all the essence and
context of the input. This vector does not necessarily have a physical meaning and is instead an
internal representation of the input sequence into a higher dimensional space. The abstract vector
is given as an input to the decoder, which in turn transforms it into an output sequence.
Seq2Parse uses a sequence classifier that can correctly predict a small set of relevant error

production rules for a given abstracted token sequence. We use a transformer encoder [Vaswani et al.
2017] to encode the input sequences into abstract vectors that we then feed into a DNN classifier
to train and make accurate predictions [Schmidhuber 2015].
Training From a Dataset. Given a dataset of fixed parse errors, such as Figure 5, we extract the
small set of relevant error rules needed for each program to make it parse with an ECE-Parser.
Running the ECE-Parser on every program in the dataset with the full set of error production rules
is prohibitively slow. Therefore, we extract the erroneous and fixed program token-level differences
or token diffs and map them to terminal error production rules. The non-terminal error rules can be
inferred using the grammar and the terminal rules. Next, we run the ECE-Parser with the extracted
error rules to confirm which ones would make the program parse and assign them as labels.
For example, the diff for the program pair in Figure 5 would show the deleted + operator, thus

extracting the error rules Token → + and E_\n → Insert \n, since the extra + precedes a newline
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character \n. Similarly, if a token t is added in the fixed program, the error rule E_t → 𝜖 is added
and if a token t replaces a token a, the error rules E_t → Replace and Replace → a are added.

3.4 Predicting Error Rules with Sequence Classifiers

The learned sequence classifier model, which has been trained on the updated error-rule-labeled
data set can now be used to predict the relevant rules for new erroneous programs. Additionally,
neural networks have the advantage of associating each class with a confidence score that can be
used to rank error rule predictions for new programs, letting us select the top-𝑁 ones that will
yield accurate repairs when used with the ECE-Parser.
For our running example, in Figure 5a, we abstract the program as shown in Figure 10b and

then we predict the error production rules for it with the trained sequence classifier. We rank the
full set of terminal error rules based on their predicted confidence score from the classifier and
return the top 10 predictions for our example. Therefore, the predicted set of error rules is the fol-
lowing: E_number → 𝜖, E_number → Insert number, E_\n → Insert \n, E_(→ 𝜖, E_return → 𝜖,
Token → ), Token → +, Token → :, Token → name, Token → number.

The classifier predicts mostly relevant error rules such as the ones that use E_number, E_\n
and E_return for example, as we showed previously. There are also rules that are not very rel-
evant to this parse error but the classifier predicts probably due to them being common parse
errors, e.g. Token → ), Token → :. Finally, we added the non-terminal error rules needed to intro-
duce these errors, which can be inferred by them. For example, we can infer Stmts → Stmt E_\n,
Stmts → Stmt E_\n Stmts and Block → E_\n indent Stmts dedent from E_\n (we don’t need
E_indent or E_dedent here since no such terminal error rules were predicted).
We then parse the program in Figure 5a with the ECE-Parser and these specific error rules to

generate a valid parse. We observe that it takes our implementation (as we show later in depth)
less than 2 seconds to generate a valid parse, which is also the one that leads to the user repair in
Figure 5b! On the other hand, when we use a baseline ECE-Parser with the full set of error rules it
takes 2 minutes and 55 seconds to generate a valid parse, which is, however, not the expected user
parse but the one shown in Figure 9b. These examples demonstrate the effectiveness of accurately
predicting error rules using sequence classifiers, which are trained on abstracted token sequences.
In the next three sections, we describe in depth the specifics of our approach by defining all

the methods in Figure 12. We start by presenting the program abstraction (section 4) using partial
parses and a learnt PCFG, we then explain how we train sequence models for making error
rule predictions (section 5) and, finally, we demonstrate our algorithms for building Seq2Parse
(section 6), an approach for efficiently parsing erroneous programs.

4 ABSTRACTING PROGRAMSWITH PARSE ERRORS

Seq2Parse abstracts programs (with parse errors) into sequences of abstract tokens that are used
to train sequence classifiers. Next, we explain how a traditional Earley parser can be used to
extract partial parses using a Probabilistic Context-Free Grammar (PCFG), to get a higher level of
abstraction that preserves more contextual information than the low-level sequence output by the
lexer.
Lexical Analysis. Lexical analysis (or lexing or tokenization) converts a sequence of characters
into a sequence of tokens comprising strings with an assigned and thus identified meaning (e.g.
numbers, identifiers etc.). Lexing is usually combined with a parser, which together analyze the
syntax of a programming language 𝐿(𝐺), defined by the grammar𝐺 . When a program has a syntax
error, the output token sequence of the lexer is the highest available level of abstraction as, since
the parser fails without producing a parse tree.
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𝐺 � (𝑁, Σ, 𝑃, 𝑆)
PCFG � (𝑁, Σ, 𝑃, 𝑆, 𝑊 )

𝐺 ′ � (𝑁 ′, Σ, 𝑃 ′, 𝑆′)
𝑃 ′ � 𝑃 ∪ ErrorRules

𝑁 ′ � 𝑁 ∪ {𝑆 ′, 𝐻, 𝐼 } ∪
{𝐸𝑎 | 𝑎 ∈ Σ}

𝑒 ∈ 𝐿(𝐺)
𝑒⊥ ∉ 𝐿(𝐺)
Pair � 𝑒⊥ × 𝑒
DataSet � [Pair]

§ 4 learnPCFG : 𝐺 → [𝑒] → PCFG

partialParse : PCFG→ 𝑒⊥ → 𝑡𝑎

§ 5 trainDL : [𝑡𝑎 × ErrorRules] → DLModel

predictDL : DLModel→ 𝑡𝑎 → ErrorRules

§ 6

diffRules : Pair→ ErrorRules

ECEParse : ErrorRules→ 𝑒⊥ → 𝑒

train : DataSet→ DLModel

predict : DLModel→ 𝐺 → 𝑒⊥ → ErrorRules

Seq2Parse : 𝐺 → DataSet→ (𝑒⊥ → 𝑒)

Fig. 12. A high-level API of the Seq2Parse system that learns to repair syntax errors.

Token Sequences. Our goal is to parse a program token sequence 𝑡𝑖 , which is a lexed program with
parse errors (i.e. 𝑡𝑖 ∉ 𝐿(𝐺)), and repair it into a fixed token sequence 𝑡𝑜 ∈ 𝐿(𝐺) that can be used
to return a repaired program without syntax errors. Let 𝑡𝑖 be a sequence 𝑡𝑖1, 𝑡𝑖2, . . . , 𝑡𝑖𝑛 and 𝑡𝑜 be
the updated sequence 𝑡𝑜1 , 𝑡𝑜2 , . . . , 𝑡𝑜𝑖 , . . . , 𝑡𝑜𝑗 , . . . , 𝑡𝑜𝑘 . The subsequence 𝑡

𝑜
𝑖 , . . . , 𝑡

𝑜
𝑗 can either replace a

subsequence in 𝑡𝑖 , it can be inserted in 𝑡𝑖 or can be the empty subsequence 𝜖 and delete a subsequence
in 𝑡𝑖 to generate the 𝑡𝑜 . It can be the whole program, part of it or multiple parts of it. 𝑡𝑜 will finally
be a token sequence that can be parsed by the original language’s 𝐿(𝐺) parser.

However, programs and hence, 𝑛 can be large which makes these token sequences unsuitable for
training effectively sequence models. Therefore, our goal is to first generate an abstracted token
sequence 𝑡𝑎 that removes all irrelevant information from 𝑡𝑖 and gives hints for the parse error fix by
using the internal states of an Earley parser.

4.1 Earley Partial Parses

Seq2Parse uses an Earley parser [Earley 1970] to generate the abstracted token sequence 𝑡𝑎 for
an input program sequence 𝑡𝑖 . An Earley parser holds internally a chart data structure, i.e. a list
of partial parses. Given a production rule 𝑋 → 𝛼𝛽 , the notation 𝑋 → 𝛼 · 𝛽 represents a condition
in which 𝛼 has already been parsed and 𝛽 is expected and both are sequences of terminal and
non-terminal symbols (tokens).

Each state is a tuple (𝑋 → 𝛼 · 𝛽, 𝑗), consisting of
• the production rule currently being matched (𝑋 → 𝛼𝛽)
• the current position in that production (represented by the dot ·)
• the origin position 𝑗 in the input at which the matching of this production began

We denote the state set at an input position 𝑘 as 𝑆 (𝑘). The parser is seeded with 𝑆 (0) consisting
of only the top-level rule 𝑆 → 𝛾 . It then repeatedly executes three operations: prediction, scanning,
and completion. There exists a complete parse if the complete top-level rule (𝑆 → 𝛾 ·, 0) is found in
𝑆 (𝑛), where 𝑛 the input length. We define a partial parse to be any partially completed rules, i.e. if
there is (𝑋 → 𝛼 · 𝛽, 𝑖) in some state 𝑆 (𝑘), where 𝑖 < 𝑘 ≤ 𝑛.
Let, 𝑡𝑖1, 𝑡𝑖2, . . . , 𝑡𝑖𝑗 , . . . , 𝑡𝑖𝑘 , . . . , 𝑡

𝑖
𝑛 be the input token sequence 𝑡𝑖 , where there is a parse error at

location 𝑘 and the parser has exhausted all possibilities and can not add any more rules in state
𝑆 (𝑘 + 1), i.e. 𝑆 (𝑘 + 1) = ∅. We want to abstract program subsequences 𝑡𝑖𝑗 , . . . , 𝑡𝑖𝑘 by getting the
longest possible parts of the program 𝑡𝑖 that have a partial parse. For example, we start from the
beginning of the program 𝑡𝑖1 by finding the largest 𝑗 for which there is a rule (𝑋 → 𝛼 · 𝛽, 0) ∈ 𝑆 ( 𝑗).
We use this rule for 𝑋 to replace 𝑡𝑖1, 𝑡𝑖2, . . . , 𝑡𝑖𝑗 in 𝑡𝑖 with 𝛼 , thus getting an abstracted sequence 𝑡𝑎 . In
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the same manner, we use the longest possible partial parses that we can extract from the chart to
abstract 𝑡𝑖𝑗+1, . . . , 𝑡𝑖𝑘 , iteratively, until we reach the parse error at location 𝑘 .

Problem: Multiple Partial Parses. However, each of the states 𝑆 ( 𝑗), 0 ≤ 𝑗 ≤ 𝑘 , holds a large
number of partial parses and, thus, our heuristic to choose the longest possible partial parse to
abstract programs may not be able to abstract the token sequence fully until the error location
𝑘 , or not even until the end location 𝑛 of the program that may not have any more parse errors.
Additionally, there may be two or more partial parses in 𝑆 (𝑘), with different lengths, e.g. {(𝑋 →
𝛼 · 𝛽, 𝑗), (𝑋 ′ → 𝛼 ′ · 𝛽 ′, ℎ)} ∈ 𝑆 (𝑘), 𝑗 ≠ ℎ. We propose selecting the most probable parse with the
aid of a PCFG.

4.2 Probabilistic Context-Free Grammars

We learn a PCFG from a large corpus of programs [𝑒], 𝑒 ∈ 𝐿(𝐺), that belong to a language 𝐿(𝐺),
that a grammar 𝐺 defines, with the learnPCFG procedure as shown in Figure 12. We use the
learned PCFG with an augmented Earley parser in partialParse to abstract a program 𝑒⊥ into a
abstract token sequence 𝑡𝑎 .

Probabilistic CFG. A PCFG can be defined similarly to a context-free grammar 𝐺 � (𝑁, Σ, 𝑃, 𝑆)
as a quintuple (𝑁, Σ, 𝑃, 𝑆, 𝑊 ), where:

• 𝑁 and Σ are finite disjoint alphabets of non-terminals and terminals, respectively.
• 𝑃 is a finite set of production rules of the form 𝑋 → 𝛼 , where 𝑋 ∈ 𝑁 and 𝛼 ∈ (𝑁 ∪ Σ)∗.
• 𝑆 is a distinguished start symbol in 𝑁 .
• 𝑊 is a finite set of probabilities 𝑝 (𝑋 → 𝛼) on production rules.

Given a dataset of programs [𝑒], 𝑒 ∈ 𝐿(𝐺) that can be parsed, let count (𝑋 → 𝛼) be the number
of times the production rule 𝑋 → 𝛼 has been used to generate a final complete parse, while parsing
[𝑒], and count (𝑋 ) be the number of times the non-terminal 𝑋 has been seen in the left side of a
used production rule. The probability for a production rule 𝑋 → 𝛼 is then defined as:

𝑝 (𝑋 → 𝛼) = count (𝑋 → 𝛼)
count (𝑋 )

learnPCFG invokes an instrumented Earley parser to calculate all the values count (𝑋 →
𝛼),∀𝑋 → 𝛼 : 𝑃 and count (𝑋 ),∀𝑋 : 𝑁 . The instrumented parser keeps a global record of these values,
while parsing the dataset [𝑒] of programs. Finally, learnPCFG outputs a PCFG that is based on
the original grammar 𝐺 that was used to parse the dataset with the learned probabilities𝑊 .

4.3 Abstracted Token Sequences

Given a program 𝑒⊥ with a parse error and a learned PCFG, partialParsewill generate an abstracted
token sequence 𝑡𝑎 . The PCFG will be used with an augmented Earley parser to disambiguate partial
parses and choose one, in order to produce an abstracted token sequence as described in § 4.1.
We augment Earley states (𝑋 → 𝛼 · 𝛽, 𝑗) to (𝑋 → 𝛼 · 𝛽, 𝑗, 𝑝), where 𝑝 is the probability

that 𝑋 → 𝛼 · 𝛽 is a correct partial parse. When there are two (or more) conflicting partial parses
{(𝑋 → 𝛼 · 𝛽, 𝑗, 𝑝), (𝑋 ′ → 𝛼 ′ · 𝛽 ′, ℎ, 𝑝′)} ∈ 𝑆 (𝑘), the augmented parser selects the partial parse
with the highest probability𝑚𝑎𝑥 (𝑝, 𝑝′). The augmented parser calculates the probability 𝑝 for a
partial parse (𝑋 → 𝛼 · 𝛽, 𝑗, 𝑝) in the state 𝑆 (𝑘), as the product 𝑝1 · 𝑝2 · · · · · 𝑝𝑘−1 of the probabilities
𝑝1, 𝑝2, . . . , 𝑝𝑘−1 that are associated with the production rules (𝑋1 → 𝛼1 · 𝛽1, 𝑖1, 𝑝1), (𝑋2 →
𝛼2 · 𝛽2, 𝑖2, 𝑝2), . . . that have been used so far to parse the string of tokens 𝛼 .
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5 TRAINING SEQUENCE CLASSIFIERS

Our next task is to train a model that can predict the error production rules that are needed
to parse a given program 𝑒⊥ (with syntax errors) according to a given grammar 𝐺 , by using its
(abstracted) program token sequence 𝑡𝑎 . We define the function predictDL which takes as input a
pre-trained sequence classifier DLModel and an abstracted token sequence 𝑡𝑎 and returns as output
a small subset of ErrorRules. We train the DLModel offline with the trainDLmethod with a dataset
[𝑡𝑎 × ErrorRules] of token sequences 𝑡𝑎 and the exact small set of error production rules ErrorRules
that the ECE-Parser used to generate the user parse. We build our classifier DLModel using classic
Deep Neural Networks (DNNs) and parts of state-of-the-art Sequence-to-Sequence (seq2seq) models.
We leave the high-level details of acquiring the dataset of labeled token sequences and using the
predictor for new erroneous programs for section 6. In the next few paragraphs, we summarize the
recent advances in machine learning that help as build the sequence classifier.

We encode the task of learning a function that will map token sequences of erroneous programs
to a small set of error production rules as a supervised multi-class classification (MCC) problem. A
supervised learning problem is one where, given a labeled training set, the task is to learn a function
that accurately maps the inputs to output labels and generalizes to future inputs. In a classification
problem, the function we are trying to learn maps inputs to a discrete set of two or more output
labels, called classes. We use a Transformer encoder to encode the input sequences into abstract
vectors that we then directly feed into a DNN classifier to build a Transformer classifier.

Neural Networks. A neural network can be represented as a directed acyclic graph whose nodes
are arranged in layers that are fully connected by weighted edges. The first layer corresponds to the
input features, and the final to the output. The output of an internal node is the sum of the weighted
outputs of the previous layer passed to a non-linear activation function, which in recent work is
commonly chosen to be the rectified linear unit (ReLU) [Nair and Hinton 2010]. In this work, we
use relatively deep neural networks (DNN) that have proven to make more accurate predictions in
recent work [Schmidhuber 2015]. A thorough introduction to neural networks is beyond the scope
of this work [Hastie et al. 2009; Nielsen 2015].

Sequence Models. Seq2seq models aim to transform input sequences of one domain into sequences
of another domain [Sutskever et al. 2014]. In the general case, these models consist of two major
layers, an encoder and a decoder. The encoder transforms an input token sequence 𝑥1, 𝑥2, . . . , 𝑥𝑛
into an abstract vector 𝑉 ∈ R𝑘 that captures all the essence and context of the input sequence. This
vector does not necessarily have some physical meaning and is just an internal representation of
the input sequence into a higher dimensional space. The abstract vector is then given as an input
to the decoder, which in turn transforms it into an output sequence 𝑦1, 𝑦2, . . . , 𝑦𝑛 .
The simplest approach historically uses a Recurrent Neural Network (RNN) [Rumelhart et al.

1986; Werbos 1990], which is a natural next step from the classic neural networks. Each RNN unit
operates on each input token 𝑥𝑡 separately. It keeps an internal hidden state ℎ𝑡 that is calculated as
a function of the input token 𝑥𝑡 and the previous hidden state ℎ𝑡−1. The output 𝑦𝑡 is calculated as
the product of the current hidden state ℎ𝑡 and an output weight matrix. The activation function is
usually chosen as the standard softmax function [Bishop 2006; Goodfellow et al. 2016]. Softmax
assigns probabilities to each output that must add up to 1. Finally, the loss function at all steps of
the RNN is typically calculated as the sum of the cross-entropy loss of each step.

Transformers. The Transformer is a DNN architecture that deviates from the recurrent pattern
(e.g., RNNs) and is solely relying on attention mechanisms. Attention has been of interest lately
[Bahdanau et al. 2015; Kim et al. 2017; Vaswani et al. 2017] mainly due to its ability to detect
dependencies in the input or output sequences regardless the distance of the tokens. The nature of
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this architecture makes the Transformer significantly easier to parallelize and thus has a higher
quality of predictions and sequence translations after a shorter training period.

The novel architecture of a Transformer [Vaswani et al. 2017] is structured as a stack of𝑁 identical
layers. Each layer has two main sub-layers. The first is a multi-head self-attention mechanism, and
the second is a position-wise fully connected neural network. The output of each sub-layer is
𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟 (𝑥)), where 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟 (𝑥) is the function implemented by each sub-layer,
followed by a residual connection around each of the two sub-layers and by layer normalization
𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥). To facilitate these residual connections, all sub-layers in the model, as well as the
input embedding layers, produce outputs of the same dimension 𝑑𝑚𝑜𝑑𝑒𝑙 .

Transformer Classifier. For our task, we choose to structure DLModel as a Transformer Classifier.
We use a state-of-the-art Transformer encoder to represent an abstracted token sequence 𝑡𝑎 into
an abstract vector 𝑉 ∈ R𝑘 . The abstract vector 𝑉 is then fed as input into a multi-class DNN.
We use trainDL to train the DLModel given the training set [𝑡𝑎 × ErrorRules]. The binary cross-
entropy loss function is used per class to assign the loss per training cycle. DLModel predicts
error production rules for a new input program 𝑡𝑎 . Critically, we require that the classifier outputs
confidence scores C that measure how sure the classifier is that a rule can be used to parse the
associated input program 𝑒⊥. The predictDL function uses the trained DLModel to predict the
confidence scores [ErrorRules × C] for all error production rules ErrorRules for a new unknown
program 𝑒⊥ with syntax errors. The ErrorRules are then sorted based on their predicted confidence
score C and finally the top-N rules are returned for error-correcting parsing. 𝑁 is a small number in
the 10s that will give accurate predictions without making the ECE-Parser too slow, as we discuss
in section 7.

6 BUILDING A FAST ERROR-CORRECTING PARSER

We show how Seq2Parse uses the abstracted token sequences from section 4 and the trained
sequence models from section 5 to generate an error-correcting parser (𝑒⊥ → 𝑒), that will parse an
input program 𝑒⊥ with syntax errors and produce a correct program 𝑒 . We first describe how we
extract a machine-learning-amenable training set from a corpus of fixed programs and finally how
we structure everything to train our model.

6.1 Learning Error Production Rules

The trainDL method requires a dataset of token sequences 𝑡𝑎 that is annotated with an exact and
small set of error production rules, i.e. [𝑡𝑎 × ErrorRules]. These ErrorRules are just a subset of all
the possible error rules that are needed to parse and fix 𝑡𝑎 . The straight-forward approach is to
use ECEParse with all possible error production rules for each program 𝑒⊥ in the dataset. Then,
when ECEParse returns with a successful parse, we extract the rules that where used to parse the
program 𝑒⊥. This approach generates a dataset with the smallest possible set of error rules as labels
per program, since the original ECE-Parser returns the minimum-distance edit parse. However,
this approach completely ignores the programmer’s fix and takes an unreasonable amount of time
to parse a dataset with millions of programs, due to the inefficient nature of the ECE-Parser.
We suggest using an 𝑂 (𝑁𝐷) difference algorithm [Myers 1986] to get a small but still repre-

sentative set of error production rules for each program 𝑒⊥. We employ this algorithm to find the
differences between the input program token sequence 𝑡𝑖 , which is the lexed program 𝑒⊥ and the
fixed token sequence 𝑡𝑜 , which is the lexed program 𝑒 . This algorithm returns changes between
token sequences in the form of inserted or deleted tokens. It is possible that this algorithm returns a
sequence of deletions followed by a sequence of insertions, which can in turn be interpreted as

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 167. Publication date: October 2022.



Seq2Parse 167:15

Algorithm 1 Training Seq2Parse’s model DLModel

Input: Probabilistic Grammar 𝐺 , DataSet 𝐷𝑠
Output: Classifier𝑀𝑜𝑑𝑒𝑙

1: procedure Train(𝐺, 𝐷𝑠)
2: 𝐷𝑀𝐿 ← ∅
3: for all 𝑝𝑒𝑟𝑟 × 𝑝 𝑓 𝑖𝑥 ∈ 𝐷𝑠 do
4: 𝑡𝑎 ← PartialParse(𝐺, 𝑝𝑒𝑟𝑟 )
5: 𝑟𝑢𝑙𝑒𝑠 ← DiffRules(𝑝𝑒𝑟𝑟 × 𝑝 𝑓 𝑖𝑥 )
6: 𝐷𝑀𝐿 ← 𝐷𝑀𝐿 ∪ (𝑡𝑎 × 𝑟𝑢𝑙𝑒𝑠)
7: 𝑀𝑜𝑑𝑒𝑙 ← TrainDL(𝐷𝑀𝐿)
8: return𝑀𝑜𝑑𝑒𝑙

Algorithm 2 Predicting error production rules with
Seq2Parse’s model DLModel

Input: Classifier𝑀𝑜𝑑𝑒𝑙 , Probabilistic Grammar𝐺 ,
Program 𝑃

Output: Error Production Rules 𝑅𝑙𝑠
1: procedure Predict(𝑀𝑜𝑑𝑒𝑙, 𝐺, 𝑃 )
2: 𝑡𝑎 ← PartialParse(𝐺, 𝑃 )
3: 𝑅𝑙𝑠 ← PredictDL(𝑀𝑜𝑑𝑒𝑙, 𝑡𝑎)
4: return 𝑅𝑙𝑠

a replacement of tokens. We map these three types of changes to the respective error production
rules. Let 𝑡𝑖 be a sequence 𝑡𝑖1, 𝑡𝑖2, . . . , 𝑡𝑖𝑛 and 𝑡𝑜 be the updated sequence 𝑡𝑜1 , 𝑡𝑜2 , . . . , 𝑡𝑜𝑚 . We map:
• an inserted output token 𝑡𝑜𝑗 to a deletion error 𝐸𝑡𝑜

𝑗
→ 𝜖 .

• a deleted input token 𝑡𝑖
𝑘
to an insertion error 𝑇𝑜𝑘 → 𝑡𝑖

𝑘
and the helper rule 𝐸𝑡𝑖

𝑘+1
→ 𝐼𝑛𝑠 𝑡𝑖

𝑘+1.
• a replaced token 𝑡𝑖

𝑘
with 𝑡𝑜𝑗 to a replacement error 𝑅𝑒𝑝𝑙 → 𝑡𝑖

𝑘
and the helper rule 𝐸𝑡𝑜

𝑗
→ 𝑅𝑒𝑝𝑙 .

In the case of an insertion error, we also include the helper rules 𝐼𝑛𝑠 → 𝑇𝑜𝑘 and 𝐼𝑛𝑠 → 𝐼𝑛𝑠 𝑇𝑜𝑘 ,
that can derive any nonempty sequence of insertions. To introduce (possible) insertion errors at
the end of a program, we include the starting production rules 𝑆 ′ → 𝑆 and 𝑆 ′ → 𝑆 𝐼𝑛𝑠 .
The above algorithm, so far, adds only the terminal error productions. We have to include the

non-terminal error productions that will invoke the terminal ones. If 𝑋 → 𝑎0𝑏0𝑎1𝑏1 . . . 𝑎𝑚𝑏𝑚, 𝑚 ≥ 0,
is a production in 𝑃 such that 𝑎𝑖 is in 𝑁 ∗ and 𝑏𝑖 is in Σ, then we add the error production 𝑋 →
𝑎0𝑋𝑏0𝑎1𝑋𝑏1 . . . 𝑎𝑚𝑋𝑏𝑚 , 𝑚 ≥ 0 to 𝑃 ′, where each 𝑋𝑏𝑖 , is either a new non-terminal 𝐸𝑏𝑖 that was
added with the previous algorithm, or just 𝑏𝑖 again if it was not added.
Finally, we further refine the new small set of error productions for each program 𝑒⊥ with

ECE-Parser, in order to create the final annotated dataset [𝑡𝑎 × ErrorRules]. The changes that we
extracted from the programmers’ fixes might include irrelevant changes to the parse error fix, e.g.
code clean-up. Therefore, filtering with the ECE-Parser is still essential to annotate each program
with the appropriate error production rules. We implement this error-rule-extracting approach in
the function diffRules, which extracts the token differences between an erroneous program 𝑒⊥
and a fixed program 𝑒 and returns the appropriate error production rules.

6.2 Training and Using a Transformer Classifier

Given a (probabilistic) grammar 𝐺 and a dataset 𝐷𝑠 , Algorithm 1 extracts a machine-learning
appropriate dataset 𝐷𝑀𝐿 in order to train a Transformer classifier 𝑀𝑜𝑑𝑒𝑙 with trainDL. The
classifier𝑀𝑜𝑑𝑒𝑙 can then be used to predict error rules for new erroneous programs 𝑝𝑒𝑟𝑟 .
The dataset 𝐷𝑀𝐿 starts as an empty set. For each program pair 𝑝𝑒𝑟𝑟 × 𝑝 𝑓 𝑖𝑥 , we, first, employ

partialParse with the PCFG 𝐺 and an erroneous program 𝑝𝑒𝑟𝑟 to extract the abstracted token
sequence 𝑡𝑎 . Second, we use the token difference algorithm diffRules to extract the specific error
𝑟𝑢𝑙𝑒𝑠 that fix 𝑝𝑒𝑟𝑟 based on 𝑝 𝑓 𝑖𝑥 . The abstracted sequence 𝑡𝑎 is annotated with the label 𝑟𝑢𝑙𝑒𝑠 and is
added to 𝐷𝑀𝐿 . The Transformer classifier𝑀𝑜𝑑𝑒𝑙 is trained with trainDL and the newly extracted
dataset 𝐷𝑀𝐿 , which is finally returned by the algorithm. Finally, the training procedure can be
performed offline and thus won’t affect the performance of the final program repair.
Having trained the Transformer classifier𝑀𝑜𝑑𝑒𝑙 , we can now predict error rules 𝑅𝑙𝑠 , that will

be used by an ECE-Parser, by using the predict procedure defined in Algorithm 2. predict uses
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Algorithm 3 Generating the final ECEP
Input: Grammar 𝐺 , DataSet 𝐷𝑠
Output: Error-Correcting Parser 𝑃𝑟𝑠
1: procedure Seq2Parse(𝐺, 𝐷𝑠)
2: 𝑝𝑠 ←Map(𝜆.𝑝 → Snd(𝑝), 𝐷𝑠)
3: 𝑃𝐶𝐹𝐺 ← LearnPCFG(𝐺, 𝑝𝑠)
4: 𝑀𝑜𝑑𝑒𝑙 ← Train(𝑃𝐶𝐹𝐺, 𝐷𝑠)
5: ERulePredictor← Predict(𝑀𝑜𝑑𝑒𝑙, 𝑃𝐶𝐹𝐺)
6: 𝑃𝑟𝑠 ← (𝜆.𝑝𝑒𝑟𝑟 → ECEParse(ERulePredictor(𝑝𝑒𝑟𝑟 ), 𝑝𝑒𝑟𝑟 ))
7: return 𝑃𝑟𝑠

the same input grammar𝐺 to generate an abstracted token sequence 𝑡𝑎 for the program 𝑃 with the
partialParse procedure. Finally, the predictDL procedure predicts a small set of error production
rules 𝑅𝑙𝑠 for the sequence 𝑡𝑎 given the pre-trained𝑀𝑜𝑑𝑒𝑙 .

6.3 Generating an Efficient Error-Correcting Parser

Algorithm 3 presents our neurosymbolic approach, Seq2Parse. This is the high-level algorithm that
combines everything that we described so far in the last three sections. Seq2Parse first extracts the
fixed programs 𝑝𝑠 from the dataset 𝐷𝑠 to learn a probabilistic context-free grammar 𝑃𝐶𝐹𝐺 for the
input grammar𝐺 with learnPCFG. It then trains the Transformer classifier𝑀𝑜𝑑𝑒𝑙 to predict error
production rules. We define an error rule predictor, ERulePredictor, using the predict procedure
with the pre-trained 𝑀𝑜𝑑𝑒𝑙 and grammar 𝑃𝐶𝐹𝐺 . Finally, the algorithm returns the ECE-Parser
𝑃𝑟𝑠 , which we define as a function that takes as input an erroneous program 𝑝𝑒𝑟𝑟 that uses the
ERulePredictor to get the set of error rules needed by ECEParse to parse and repair it.

7 EVALUATION

We have implemented our approach in Seq2Parse: a system for repairing parse errors for Python
in its entirety. The code for Seq2Parse is publicly available at https://github.com/gsakkas/seq2parse
and a simplified online demonstration is available at http://seq2parse.goto.ucsd.edu/index.html.
Next, we describe our implementation and an evaluation that addresses four questions:
• RQ1: How accurate are Seq2Parse’s predicted error production rules? (§ 7.1)
• RQ2: How precisely can Seq2Parse repair parse errors? (§ 7.2)
• RQ3: How efficiently can Seq2Parse repair parse errors? (§ 7.3)
• RQ4: How useful are Seq2Parse’s suggested repairs? (§ 7.4)

Training Dataset. For our evaluation, we use the same Python dataset that we used in our error
data analysis in section 2 gathered from PythonTutor.com [Guo 2013] between the years 2017 and
2018. The dataset has more than 1,100,000 usable erroneous Python programs and their respective
fixes. The programs have an average length of 87 tokens, while the abstracted token sequences have
a much shorter average of 43 tokens. We choose 15,000 random programs from the dataset for all
our tests, and the rest we use as our training set.
We first learn a PCFG on the training set of fixed programs to learn the probabilities for each

production rule in the full Python grammar. Seq2Parse then extracts the abstracted token sequences
for all programs in the training set. Next, while the full Python grammar has 455 possible terminal
error production rules, in reality, only 340 error rules are ever used in our dataset and are assigned as
labels. We arrive at this set of error rules by parsing all the erroneous programs in the training set
with the ECE-Parser and the “diff” error rules, as described in subsection 6.1.
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Fig. 13. Results of our error production rule prediction classifiers for the simple original token sequences and

their abstracted versions using the PCFG.

Transformer Classifier. Seq2Parse’s error rule prediction uses a Transformer classifier with six
transformer blocks, that each has a fully-connected hidden layer of 256 neurons and 12 attention
heads. The output of the transformer blocks is then connected to a DNN-based classifier with
two fully-connected hidden layers of 256 and 128 neurons respectively. The neurons use rectified
linear units (ReLU) as their activation function, while the output layer uses the sigmoid function
for each class. Additionally, there are two input embedding layers of a length of 128 units, one for
input tokens and one for their positions in the sequence. We also limit the input abstracted token
sequences to a length of 128 tokens, which covers 95.7% of the training set, without the need of
pruning them. Finally, the Transformer classifier was trained using an Adam optimizer [Kingma
and Ba 2014], a variant of stochastic gradient descent, on NVIDIA GeForce RTX 3080 Ti for a total
of 50 epochs.

7.1 RQ1: Accuracy

Figure 13 shows the accuracy results of our error production rule prediction experiments. The
y-axis describes the prediction accuracy, i.e. the fraction of test programs for which the correct full
set of error rules to repair the program (extracted from the user fix) was predicted in the top-K
sorted rules. The Original version of our transformer classifier does not consider the abstracted
token sequences and used the full Original token sequences, whose results are presented in the
first two bars of Figure 13. The next four bars show our final results using the Abstracted token
sequences to train the classifier with NoPCFG and with fully Abstracted sequences. Finally, the
last two dotted bars show the results for when a probability Threshold is set in order to select the
predicted error rules (instead of picking the static top-K ones) but using again the Abstracted
sequences as input. The predicted error rule set ranges between 1–20 elements.

The blue bars show the accuracy on the full test set of All 15,000 test programs, while the green
bars show the results on a subset of Rare programs, i.e. programs that did not include any of the
50 most popular error rules. The Rare programs account for 1233 programs, roughly 8% of our test
set.
The Original predictor, even with the Top-50 predicted error rules, is less accurate than the

Top-20 predictions of the Abstracted, with an accuracy of 87.13%, which drops to 68.48% and
56.71% respectively for the Top-20 and Top-10 predictions. The Abstracted predictor significantly

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 167. Publication date: October 2022.



167:18 Georgios Sakkas, Madeline Endres, Philip J. Guo, Westley Weimer, and Ranjit Jhala

outperforms the Original predictor with a 72.11% Top-10 accuracy, 81.45% Top-20 accuracy and
92.70% Top-50 accuracy.

The Threshold predictions are almost as accurate as the Abstracted Top-20 predictions with
an accuracy of 79.28% and a median number of selected error rules of 14 (average 14.1). This could
potentially mean that this predictor is a valid alternative for the static Top-20 predictions.
The classifiers are also not very sensitive in the PCFG probabilities used during abstraction, as

shown in the accuracy of the NoPCFG predictor. The NoPCFG predictor has almost 2% less Top-10
and Top-20 accuracy, 70.94% and 80.69% respectively, and less than 1% for Top-50 predictions, with
92.11%.
Finally, we observe that our Abstracted classifiers generalize efficiently for our dataset of

erroneous Python programs and are almost as accurate for the Rare programs as the rest of the
dataset with a 73.32% Top-20 accuracy (88.81% Top-50 accuracy). The same holds for the Threshold
predictions with a 69.83% Rare accuracy. The NoPCFG also has a drop of more than 2% accuracy,
with a 71.29% Top-20 accuracy (86.29% Top-50 accuracy).

Seq2Parse’s transformer classifier learns to encode programs with syntax errors and select
candidate error production rules for them effectively, yielding high accuracies. By abstracting
the tokens sequences, Seq2Parse is able to generalize better andmakemore accurate predictions
with a 81.45% Top-20 accuracy.

7.2 RQ2: Repaired Program Preciseness

Next we evaluate Seq2Parse’s end-to-end accuracy and preciseness when restricting Seq2Parse’s
parsing time to 5 minutes and run our experiments on the 15,000-program test set. Additionally,
we use here the highest-performing transformer classifiers, i.e. the Abstracted, NoPCFG and
Threshold classifiers.

We compare three versions of our Seq2Parse implementation (AllParses, MinimumCost and
Threshold) against two versions of the ECE-Parser with a static selection of the 20 and 50 most
popular error production rules in our training set. We make this choice because we observe that
the 50 most popular error rules are used as labels for as much as 86% of the training set. For the
AllParses, MinimumCost and Threshold versions, we run our experiments for the Abstracted
and NoPCFG classifier predictions.
The MinimumCost ECE-Parser uses the Top-20 predictions from our Abstracted or NoPCFG

classifier to parse and repair buggy programs. The AllParses and Threshold ECE-Parsers use the
Threshold classifier’s predicted set of error rules to repair programs.

The AllParses ECE-Parser keeps internally all possible states that arise from using the predicted
error rules similarly to the original ECE-Parser described by Aho and Peterson [1972]. We use a
maximum repair cost of 3 edits (i.e., a maximum of 3 insertions, deletions or replacements) to limit
the search space. The MinimumCost version, however, always keeps the minimum-edit repair
and discards all other states that may lead to a higher cost. This more efficient version of the
ECE-Parser allows for a higher maximum cost of 10 edits. We use the same ECE-Parser and cost as
in MinimumCost for our Threshold parser. The maximum cost for each parser is a hyperparameter
to Seq2Parse and is set here arbitrarily to achieve a uniform run time across experiments while
obtaining high-quality multiple-edit repairs. Finally, MinimumCost will always return the top 1
repair, while AllParses can generate a large number of repairs and we select to keep only the
top 5 repairs after filtering with a static code checker (Pylint, https://www.pylint.org/) as most
developers will consider only a few suggestions before falling back to manual debugging [Kochhar
et al. 2016; Parnin and Orso 2011].
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Abstracted NoPCFG
Error Rule Parse Rare Parse User Fix Median Parse Rare Parse User Fix Median
Approach Accuracy Accuracy Accuracy Parse Time Accuracy Accuracy Accuracy Parse Time
20 Most Popular 79.87% 65.01% 16.31% 7.0 sec – – – –
50 Most Popular 90.89% 81.26% 18.56% 13.6 sec – – – –
AllParses 61.46% 59.80% 34.57% 7.1 (14.2) sec 55.52% 56.42% 30.21% 20.3 (24.3) sec
MinimumCost 94.25% 94.01% 20.55% 5.3 (12.9) sec 91.63% 90.89% 17.89% 5.9 (18.7) sec
Threshold 94.19% 93.42% 21.19% 2.1 (7.0) sec 93.70% 91.09% 19.39% 2.5 (9.1) sec

Fig. 14. Experimental results of Seq2Parse’s repair approaches. The (parenthesized) numbers in the Median

Parse Time columns represent the median time for larger programs, i.e. programs with more than 100 tokens.

Figure 14 shows the percentage of test programs that each of these five versions can parse
successfully (i.e. the parse accuracy), the rare program parse accuracy, and the user equivalent parse
accuracy, i.e. the amount of parses that match the one that the user compiled. We observe that the
Abstracted MinimumCost parser outperforms every other option with 94.25% parse accuracy
and 94.01% rare parse accuracy. It also generates the intended user parse for 20.55% of the set, i.e.
over 1 out 5 of the cases. The 20 Most Popular parser with 79.87% parse accuracy and 65.01% rare
parse accuracy is much less accurate, and is 4.24% less likely to generate the user parse, while the
50 Most Popular is slightly less accurate with 90.89% and 81.26% accuracy, as expected from the
usage of a large number of popular error rules. The 50 Most Popular parser has also a high user
fix accuracy of 18.56%. The AllParses parser has the lowest parse accuracy of 61.46%, however it
manages to generate the user fix 34.57% of the time and also achieve a 59.80% rare accuracy. Finally,
the Threshold parser is almost as accurate as the efficient MinimumCost parser with 94.19% and
93.42% parse and rare accuracy, while achieving a slightly higher user fix accuracy of 21.19%.

Additionally, the NoPCFG MinimumCost parser achieves 2.6% lower parse accuracy than then
Abstracted version and 3.1% less rare parse accuracy. The NoPCFG Threshold parser also
performs only 0.5% less accurately than then Abstracted version and has a 2.3% less rare parse
accuracy. Finally, both NoPCFG parsers achieve 2.7% and 1.8% respectively user fix accuracy. These
results further confirm that our ECE-Parsers are not very sensitive to the PCFG use in the abstraction
phase. However, the NoPCFG AllParses ECE-Parser performs much worse with 55.52% accuracy
and 56.42% rare parse accuracy, which highlights the importance of abstracting token sequences
with our full algorithm.

Seq2Parse can parse and repair 94.25% of programs with syntax errors. In addition, it generates
the exact user fix over 20% of the time.

7.3 RQ3: Efficiency

Next we evaluate Seq2Parse’s efficiency by measuring how many programs it is able to parse. We
limit each ECE-Parser to 5 minutes. (In general, the procedure is undecidable, and we conjecture
that a longer timeout will diminish the practical usability for developers.) We compare the efficiency
of Seq2Parse for all the versions of Figure 14 using the full test set of 15,000 programs.

Figure 15 shows the cumulative distribution function of all Seq2Parse approaches’ repair rates
over their repair time. We observe that using Threshold predictions with the MinimumCost
ECE-Parser is the most efficient and it maintains the highest parse accuracy at all times, with a
repair rate of 83.04% within 20 seconds and a median parse time of 2.1 seconds. We also observe
that the median parse time for larger programs is slightly higher with 7.0 seconds for programs
with more than 100 tokens and increases a bit more for more than 500 tokens, with 10.8 seconds.
While the ECE-parser uses dynamic programming that may not scale greatly for larger programs,
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Fig. 15. The repair rate for all the Abstracted approaches in Figure 14.

Seq2Parse’s scalability ismostly proportional to the predicted error rules and the number of syntax
errors, and therefore we don’t get an exponential explosion in parse time for larger programs.
The MinimumCost with the top 20 error rule predictions is still very efficient with a repair

rate of 78.10% within 20 seconds and a median parse time of 5.3 seconds. For larger programs the
median parse time is 12.9 seconds for programs with more than 100 tokens and 50.8 seconds for
more than 500 tokens. We observe that a fixed-length set of predicted error rules can hinder the
ECE-parser, when inaccurate predictions are involved.
We observe that, using a fixed set of the 20 and 50 most popular rules, Seq2Parse (with the

MinimumCost ECE-Parser) repairs 61.41% and 58.61% of the programs respectively within 20
seconds, and has median parse times of 7.0 and 13.6 seconds respectively. The 50 most popular
rules admit parsing fewer programs quickly than the 20 most popular.
We also observe that Seq2Parse successfully parses around 49.90% of the programs with its

AllParses approach in 20 seconds and has a median parse time of 7.1 and 14.2 seconds for all
programs and programs with more than 100 tokens respectively. While this approach is much less
efficient that the others, it is also able to generate the exact human repair in more than 1 out of 3
cases, representing a valuable quality tradeoff (§ 7.2).

Seq2Parse can parse programs with syntax errors for the vast majority of the test set in under
20 seconds with a median parse time of 2.1 seconds.

7.4 RQ4: Usefulness

As Seq2Parse is intended as an aid for programmers (especially novices) faced with parse errors,
we are also interested in subjective human judgments of the quality and helpfulness of our repairs.
Around 35% of repairs produced by Seq2Parse using its AllParses approach are identical to
the historical human repair and thus likely helpful for programmers. However, it may be that
Seq2Parse’s parses (and thus repairs) are still helpful for debugging even when they differ slightly
from the human repair (i.e. non-equivalent repairs). To investigate this hypothesis, we conduct a
human study of the quality and debugging helpfulness of Seq2Parse’s non-equivalent repairs.
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Human Study Setup.We recruited participants from two large public research institutions (UC
San Diego and University of Michigan) and through Twitter. The study was online, took around 30
minutes, and participants could enter a drawing for one of two $50 awards. In the study, participants
were each asked to rate 15 debugging hints randomly selected from a corpus of 50 stimuli.1

We created the stimuli by selecting 50 buggy programs from our test set for which Seq2Parse
and the human produced different fixes. Other than ensuring a wide array of difficulty (as assessed
by how long the human took to fix the error), programs were selected randomly. Each stimulus
consisted of a buggy program, its associated syntax error message, and a potential program fix
presented as a debugging hint. For each stimulus, we produced two versions: one where the
debugging hint was generated by Seq2Parse and one where the debugging hint was the historical
human fix. Note that, in practice, the historical human fix would not be available to a struggling
novice in real situations: it represents future or oracular information. Informally, in our comparison,
the historical human fixes can be viewed as an upper bound.
Participants rated the quality and helpfulness of each debugging hint using a 1–5 Likert scale.

They also indicated if the debugging hint provided helpful information beyond that in the Python
error message. Participants were unaware of whether any given hint was generated by a human or
Seq2Parse, and participants were never shown multiple fixes to the same program. To be included
in the analysis, participants had to assess at least four stimuli. Overall, we analyze 527 unique
stimuli ratings from 𝑛 = 39 valid participants (246 for human fixes and 281 for Seq2Parse).
Overall Results.While humans in our study find that non-equivalent repairs produced by Seq2Parse
are lower in both quality and debugging helpfulness than those produced manually (2.9/5 helpful-
ness for tool-produced repairs vs. 3.7/5 for human-produced repairs, 𝑝 < 0.001), humans still often
find Seq2Parse’s fixes helpful for debugging. Participants found that Seq2Parse repairs contained
helpful debugging information beyond that contained in the Python Error message 48% of the time
(134/281). This additional debugging information was helpful in terms of both the content (73%
of the time) and location (55% of the time). Additionally, Seq2Parse fixes are helpful for easy and
hard Syntax Errors alike: we found no statistically-significant difference between the helpfulness or
quality of Seq2Parse’s repairs for easy (those repaired by the human in under 40 seconds) or hard
parse errors (over 40 seconds). Overall, these results indicate that even when Seq2Parse repairs
differ from historical human repairs, they can still be helpful for debugging.
Individual Stimuli. Beyond an analysis of Seq2Parse’s overall quality, we also analyze the
helpfulness of each stimulus. Of the 48 programs for which we collected sufficient data to permit
statistical comparison, the historical repair was statistically more helpful for debugging than
Seq2Parse’s repair for 33% of stimuli (16/48, 𝑝 < 0.05). However, we found that Seq2Parse’s repair
was actually more helpful for debugging than the human’s repair for 15% of stimuli (7/48, 𝑝 < 0.05).
For the remaining 52% of stimuli, we found no evidence of a statistical difference in the debugging
helpfulness of the two repairs.

To better contextualize these results, we provide examples of stimuli with statistically significant
differences in debugging helpfulness. In Figure 16b, Seq2Parse’s repair was significantly more
helpful than the historical repair: Seq2Parse correctly adds parentheses to print while the human
simply deletes the buggy line, perhaps out of confusion or frustration. Similarly, Figure 16a’s
Seq2Parse repair was also better than the human repair. In this case, the user appears to try to
implement a function to calculate the greatest common divisor of two integers, but has empty if
and elif statements. To “fix” this bug, the user deletes the if and elif and modifies the return
statement. However, this fix does not correctly calculate the greatest common divisor. Seq2Parse,
1All human study stimuli are included in our replication package at https://github.com/gsakkas/seq2parse and via the
human study website https://dijkstra.eecs.umich.edu/~endremad/APR_HumanEval/.
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# Buggy
def gcdIter(a, b):

for i in range(1, a+1):

if a % i == 0:

elif b % i == 0:

return i

gcdIter(9, 12)

# Human
def gcdIter(a, b):

for i in range(1, a+1):

return a % i

gcdIter(9, 12)

# Seq2Parse
def gcdIter(a, b):

for i in range(1, a+1):

if a % i == 0: new_var

elif b % i == 0: break

return i

gcdIter(9, 12)

(a) Seq2Parse repair significantlymore helpful: 4.3/5

vs 1.0/5, 𝑝 = 0.03

aList = [12, ' yz ' , ' ab ' ];
aList.reverse();

print "List : ", aList

aList = [12, ' yz ' , ' ab ' ]
aList.reverse()

aList = [12, ' yz ' , ' ab ' ]
aList.reverse()

print("List : ", aList)

(b) Seq2Parse repair significantly more helpful:

4.75/5 vs 2.0/5, 𝑝 = 0.02

a = int(input(enter a))

print(a ∗ ∗ ∗ 3)

a = int(input("enter a"))

print(a ∗∗3)

a = int(input(enter)(a))

print(a ∗∗ (∗ 3))

(c) Historical human repair significantly more help-

ful: 1.8/5 vs 4.75/5, 𝑝 = 0.01
Fig. 16. Three example buggy programs followed by their historical human and Seq2Parse repairs. For (a) and

(b), Seq2Parse’s repair was rated more helpful by participants. For (c), the human repair was more helpful.

on the other hand, adds a template variable to the if and break to the elif. While this also does
not implement greatest common divisor, it is viewed as more helpful than the user repair. This
example also demonstrates the beneficial ability of our approach to conduct multi-edit repairs.

Figure 16c, on the other hand, shows an example of a more helpful human repair. In this case, the
human correctly deletes the extraneous * in the power operator while Seq2Parse adds parentheses
to make a more complex expression, the result of favoring one insertion over one deletion.

35% of Seq2Parse’s repairs are equivalent to historical repairs. Of the remainder, our human
study found 15% to be more useful than historical repairs and 52% to be equally useful. In total,
including both equivalent and non-equivalent cases, Seq2Parse repairs are at least as useful as
historical human-written repairs 78% of the time.

8 RELATEDWORK

There is a vast literature on automatically repairing or patching programs: we focus on the most
closely related work on providing feedback for parse errors.
Error-Correcting Parsers. As we have already demonstrated, error-correcting parses have been
proposed for repairing syntax errors and we have extensively described ECE-Parsers [Aho and
Peterson 1972]. The technique presented by Burke and Fisher [1987] describes another EC-Parser,
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which is applicable with LR and LL parsing. It uses three phases: first attempts to repair the parse
error by symbol insertions, deletions, or substitutions. If that fails, it tries to close one or more
open code blocks and if that fails, it removes code surrounding the erroneous symbol. Finally, it
uses deferred parsing that may be viewed as double parsing, where one main parser moves forward
as much as possible, whereas a second parser is 𝑘 steps behind, so that it can backtrack to a state
𝑘 steps before efficiently if a phase fails. van der Spek et al. [2005] have shown that the previous
approach is not applicable in real-world languages for some specific cases (e.g. multiple function
definitions) and has suggested an improvement that works with the JavaCC parser generator
and a form of follow-set error recovery. Corchuelo et al. [2002] have suggested an error-correcting
version of the popular LR parser. Rather than focusing on error production rules, this method adds
error-repair transitions along with the regular shift/reduce operations. It employs a simple cost
model and heuristics to limit the explosion of the repair search space. Finally, Thompson [1976]
has suggested using probabilistic parsing to overcome the drawback of selecting the minimal-edit
repair by using a PCFG to select the most probable repair parse. However, these approaches are
impractical and inefficient for real-world applications, as they can only successfully parse small
examples or use tiny grammars. In contrast, Seq2Parse relies on pre-trained sequence models to
efficiently explore the repair search space for a minimal overhead in real-time parsing.
Sequence Models in Software Engineering. Rahmani et al. [2021] and Verbruggen et al. [2021]
have suggested using pre-trained auto-regressive transformer models, such as GPT-3 [Brown et al.
2020], to augment pre-existing program synthesis techniques. They use pre-trained models to
acquire semantic power over smaller subproblems that can’t be solved with the syntactic power of
classic program synthesis. Similar to Seq2Parse, their work uses established pre-existing algorithms
from the NLP and PL research areas. However, Seq2Parse trains its own Transformer-based model
to augment an error-correcting parsing algorithm, providing more focused prior knowledge than a
pre-trained sequence model, thus making our model highly accurate.
Sequence Models for Parsing. SynFix [Bhatia and Singh 2016] and sk_p [Pu et al. 2016] are two
systems that use seq2seq models consisting of Long Short-Term Memory networks (LSTMs). They
mostly focus on educational programming tasks in order to learn task-specific patterns for fixing
erroneous task solutions. SynFix uses a model per task and uses as an input sequence the program
prefix until the error locations that the language parser provides. sk_p (while it does not solely
focus on syntax errors) makes sequence predictions per program line, by considering only the
abstracted context lines (previous and next lines). The model is applied to every program line
and the predictions with the highest probabilities are selected. Seq2Parse manages to parse and
repair a large number of programs regardless the task they are trying to solve by encoding the full
erroneous programs with a state-of-the-art Transformer model and utilizing an EC-Parser to parse
them accordingly, thus achieving a much higher accuracy. Additionally, it uses a real-world dataset
of millions of Python programs to learn to effectively parse programs, while SynFix and sk_p are
trained on smaller datasets of correct programs that have errors manually introduced on training,
possibly skewing the predictions away from real-world fixes.
DeepFix [Gupta et al. 2017] is another seq2seq approach for repairing syntactical errors in C

programs. It relies on stacked gated recurrent units (GRUs) with attention and applies some simple
abstraction over the terminal tokens. The input programs are broken into subsequences for each
line and the model gets as input all the line subsequences with their associated line numbers.
DeepFix only predicts single line fixes and its predictions are applied iteratively multiple times,
if multiple parse errors exist or until the parse error is fixed. DeepFix struggles with the same
problems as previous work, as it solely relies on the sequence models’ capability to learn the full
grammar and repair programs with minimal abstraction and prior knowledge over the language.
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Lenient parsing [Ahmed et al. 2021] presents another sequence model approach. It uses two
seq2seq Transformer models and trains them with a large corpus of code. One model is trained to
repair and create proper nested blocks of code, called BlockFix, and the second one, called FragFix,
repairs and parses fragments of code (e.g. program statements) within a repaired block. BlockFix
tokenizes input program block in a similar manner to our abstracted token sequences, by abstracting
identifiers, constants, expressions, etc., and is trained on pairs of valid and manually-corrupted
blocks. On the other hand, FragFix repairs on a program-statement level within blocks (mostly
focusing on missing semicolons and commas), by using serialized versions of ASTs and error hints
manually injected on the ASTs. While this overall approach is mostly automatic, it relies on the
manual corruption of a dataset to generate erroneous programs that may not correlate to the
errors actual developers make and solely relies on the seq2seq models to learn the underlying
language model and make repairs. In contrast, Seq2Parse mitigates this problem by learning how
programmers fixed programs from a large corpus and by abstracting via partial parses. Additionally,
our use of EC-Parsers and the language grammar significantly improves program repairs.
Graph models for parsing. Graph-based Grammar Fix (GGF) [Wu et al. 2020] suggested using a
Gated Graph Neural Network encoder for the partial parse trees that can be acquired from a LALR
parser and a GRU encoder for the parts of the program sequence that are not parsed. This approach
aims to better summarize the context of the program in order to train more accurate models. Its
models then predict an error location in the program sequence and a token suggestion for the
repair. This single-token repair approach is applied iteratively multiple times until the program
correctly parses. While this approach is much more accurate than any previous work, it still lacks
the advantages of using a parser with the actual grammar as the final step of the repairing process
that Seq2Parse takes benefit from and relies again on the model to learn the semantics of the
language.
Neural Machine Translation (NMT) for Program Repair. CoCoNuT [Lutellier et al. 2020]
proposed a complex architecture that uses a new context-aware NMT model that has two separate
Convolutional Neural Network (CNN) encoders, one for the buggy lines and one for their surrounding
lines. It also uses ensemble learning to train NMT models of different hyper-parameters to capture
different relations between erroneous and correct code. This approach uses a minimal level of
abstraction over the input programs, with only a subword-level tokenization to minimize the
vocabulary size and make training tractable. CURE [Jiang et al. 2021] suggested a similar code-aware
NMT model that is pre-trained using unsupervised learning on correct programs. It also uses a
programming language GPT [Brown et al. 2020] model that learns to predict the next token in
program sequences and uses beam search to maintain a small set of accurate repairs.
Qualitative Comparison to Seq2Parse. Seq2Parse performs quite well compared to the afore-
mentioned published state of the art for the particular domain of novice programs. Noting that
many of these are on different benchmarks or datasets, permitting only an indirect comparison. we
believe that Seq2Parse compares favorably in terms of accuracy and efficiency, since it completely
repairs 94.25% of our tests within 2.1 seconds, while generating the exact user fix in more than 1
out 3 of the cases, a metric that most papers ignore.

Specifically, DeepFix [Gupta et al. 2017] uses a multi-layer seq2seq model to repair programs that
may have up to 5 syntax errors, but initial results, although promising, yield error-free compilation
for only 27% out of the 6971 benchmark programs. Lenient parsing [Ahmed et al. 2021] leverages
a large corpus of code and error seeding to train a transformer-based neural network, resulting
in a broadly applicable approach, but one with potentially lower accuracy in our domain (a top-1
repair accuracy of only 32% for real student code with up to 3 syntax errors). GGF [Wu et al.
2020] tries to encode program context in a novel way by using a graph neural network and partial
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parses, which leads to a higher repair accuracy of 58% of the syntax errors in a real-world dataset.
Lastly, CoCoNuT [Lutellier et al. 2020] is a recent state-of-the-art automated repair technique that
depends on a different approach of context-aware NMTs and is evaluated on standard software
defect benchmarks. While CoCoNuT is able to repair a broader range of defects than syntax errors,
it only repairs 509 out of 4456 (11.42%) benchmark defects.

9 CONCLUSION

We have presented neurosymbolic parse program repair, a new language-agnostic neurosymbolic
approach to automatically repair parse errors. Our approach is to use a dataset of ill-parsed
programs and their fixed versions to train a Transformer classifier (neural component) which
allows us to accurately predict EC-rules for new programs with syntax errors. In order to make
accurate predictions, we abstract the low-level program token sequences using partial parses
and probabilistic grammars. A small set of predicted EC-rules is finally used with an ECE-Parser
(symbolic component) to parse and repair new ill-parsed programs in a tractable and precise manner.
We believe that the novel combination of neural and symbolic components helps outperform
previous work in terms of repair accuracy and efficiency.

We have implemented our approach in Seq2Parse, and demonstrated, using a corpus of 1,100,000
ill-parsed Python programs drawn from two years of data from an online web-based educational
compiler, that Seq2Parse makes accurate EC-rule predictions 81% of the time when considering
the top 20 EC-rules, and that the predicted EC-rules let us parse and repair over 94% of the test set
in 2.1 sec median parse time, while generating the user fix in almost 1 out of 3 cases. Finally, we
conducted a user study with 39 participants which showed that Seq2Parse’s edit locations and
repairs are useful and helpful, even when they are not equivalent to the user’s fix.
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