
Can Large Language Models Transform Natural Language

Intent into Formal Method Postconditions?

MADELINE ENDRES∗, University of Michigan, USA

SARAH FAKHOURY,Microsoft Research, USA

SAIKAT CHAKRABORTY,Microsoft Research, USA

SHUVENDU K. LAHIRI,Microsoft Research, USA

Informal natural language that describes code functionality, such as code comments or function documentation,

may contain substantial information about a program’s intent. However, there is typically no guarantee that a

program’s implementation and natural language documentation are aligned. In the case of a con�ict, leveraging

information in code-adjacent natural language has the potential to enhance fault localization, debugging,

and code trustworthiness. In practice, however, this information is often underutilized due to the inherent

ambiguity of natural language, which makes natural language intent challenging to check programmatically.

The “emergent abilities” of Large Language Models (LLMs) have the potential to facilitate the translation of

natural language intent to programmatically checkable assertions. However, it is unclear if LLMs can correctly

translate informal natural language speci�cations into formal speci�cations that match programmer intent.

Additionally, it is unclear if such translation could be useful in practice.

In this paper, we describe nl2postcond, the problem of leveraging LLMs for transforming informal natural

language to formal method postconditions, expressed as program assertions. We introduce and validate metrics

to measure and compare di�erent nl2postcond approaches, using the correctness and discriminative power of

generated postconditions. We then use qualitative and quantitative methods to assess the quality of nl2postcond

postconditions, �nding that they are generally correct and able to discriminate incorrect code. Finally, we �nd

that nl2postcond via LLMs has the potential to be helpful in practice; nl2postcond generated postconditions

were able to catch 64 real-world historical bugs from Defects4J .

CCS Concepts: • General and reference→ Metrics; Validation; • Software and its engineering→ Cor-

rectness; Completeness; Software reliability; Software veri�cation; Formal software veri�cation; • Computing

methodologies→ Arti�cial Intelligence.

Additional Key Words and Phrases: Large Language Models, Postconditions, Formal Speci�cations

ACM Reference Format:

Madeline Endres, Sarah Fakhoury, Saikat Chakraborty, and Shuvendu K. Lahiri. 2024. Can Large Language

Models Transform Natural Language Intent into Formal Method Postconditions?. Proc. ACM Softw. Eng. 1, FSE,

Article 84 (July 2024), 24 pages. https://doi.org/10.1145/3660791

1 INTRODUCTION

Informal natural language speci�cations are omnipresent in modern software. For example, Pfeif-
fer [40] found natural language documentation in 98% of over 20,000 GitHub repositories, with 10%

∗Work done while interning at Microsoft.

Authors’ Contact Information: Madeline Endres, University of Michigan, Ann Arbor, MI, USA, endremad@umich.edu;

Sarah Fakhoury, Microsoft Research, Redmond, WA, USA, sfakhoury@microsoft.com; Saikat Chakraborty, Microsoft

Research, Redmond, WA, USA, saikatc@microsoft.com; Shuvendu K. Lahiri, Microsoft Research, Redmond, WA, USA,

shuvendu@microsoft.com.

© 2024 Copyright held by the owner/author(s).

ACM 2994-970X/2024/7-ART84

https://doi.org/10.1145/3660791

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3660791
https://doi.org/10.1145/3660791

84:2 M. Endres, S. Fakhoury, S. Chakraborty, S. Lahiri

of repository artifacts speci�cally for documentation. He [17] found over 20% of non-blank program
lines contained in-�le comments in their study of 150 of the most starred projects on GitHub. At
the same time, it is well known that software bugs (unexpected exceptions, incorrect output) often
arise from the weak association between the intended behavior (documented in natural language)
and the behavior of the implementation [47, 49]. This issue is exacerbated with AI-assisted pro-
gramming where users generate code from natural language intent [2, 15, 46], without a good way
to ensure their association. Reliably translating informal natural language descriptions to formal
speci�cations could help catch bugs before production and improve trust in AI-generated code [24].

Current approaches to translating natural language to formal speci�cations are heuristic-based
and either rely on the input being in a structured format [3, 49] or can only generate a restricted class
of speci�cations (e.g., regarding nullness or exceptions) [16, 47]. Further, most of these approaches
are customized for only one speci�c programming language (such as Java). In the past, large-scale
neural modeling for the problem of generating speci�cations has been di�cult given the absence
of large code corpora with matching natural language intent and corresponding speci�cations.
Large Language Models (LLMs) have generated interest in programming due to their ability to

synthesize high-quality code from natural language intent in a surrounding context [6, 29, 34].
Given the limitations of current approaches for translating natural language to formal speci�cations,
we explore the use of LLMs for this problem. Even though LLMs have not seen structured data
matching natural language intent to speci�cations, larger models such as GPT-4 have demonstrated
“emergent abilities” to do well on tasks that they were not explicitly trained for [54]. This includes
the capability to follow natural language instructions to perform reasoning tasks through prompting
strategies like few-shot learning [25], chain-of-thought [55] and multi-step reasoning [58].

In this paper, we explore the feasibility of leveraging LLMs as a bridge between informal natural
language and method postconditions (we term this approach nl2postcond). A method postcondition

is an assertion that relates the method’s input and output states, and holds true after any successful
method execution. We assess this ability in a programming language-agnostic way, targeting
postconditions expressed as assertions in the underlying programming language.

1.1 Motivating Examples

1.1.1 Formalizing User Intent. Consider the example in Fig. 1, adapted from the Python code gen-
eration benchmark, HumanEval [6]. A programmer intends to remove all numbers with duplicates
from a list. For example, given the list [1,2,3,2,4] the function should return [1,3,4] without
2 as it appears more than once. The programmer describes the this behavior in a docstring (see
Fig. 1b). However, the natural language speci�cation is ambiguous; it does not indicate if all copies
of a duplicated element should be removed, or if one copy should be retained. Here, the programmer
intends the former, however, it is not uncommon to expect that the program should ful�ll the latter.

Figure 1c shows two postconditions, one satisfying each possible intent. The programmer can ver-
ify that the second postcondition “assert all(numbers.count(i)==1 for i in return_list)”
correctly matches their intent, by ensuring that all numbers in return_list occur exactly once
in the input list. The �rst postcondition, however, incorrectly asserts that return_list is a set
of the input list. As it is not always clear at �rst glance what the user intent is, generating such
postconditions from natural language allows for checkable and unambiguous statements about a
program’s intended behavior, formalizing a user’s intent. User-validated speci�cations can also be
useful to prune incorrect code suggestions in interactive code generation settings [12, 24].

1.1.2 Detecting Real-World Functional Bugs. In practice, postconditions generated in the target
programming language can be used in assertions, as demonstrated in �g. 1c, to check the correctness
of a function, enabling the early detection of bugs or violations of a programmer’s intent.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

Can LLMs Transform NL Intent into Formal Method Postconditions? 84:3

(a) Programmer intent for a func-

tion that removes all instances

of numbers that have duplicates

from a list.

1 def remove_duplicates(numbers: List[int]):

2 """ From a list of integers, remove all elements that occur more than

once. Keep order of elements left the same as in the input """

(b) Ambiguous natural language specification: it does not specify if all

copies or all but one copy of a duplicated element should be removed. In

this case, the programmer intends the former.

1 assert len(set(numbers)) == len(set(return_list)) ✗

1 assert all(numbers.count(i) == 1 for i in return_list) ✓

(c) Postconditions generated by GPT-4. Note that while both could be correct with a literal reading of the

natural language specification, only the second one is correct with respect to developer intent.

Fig. 1. Example of how postconditions could be used to clarify ambiguous natural language specifications.

1 /** @return a new line with reversed direction.*/
2 public Line revert() {

3 final Line reverted = new Line(zero, zero.subtract(direction));

4 return reverted; }

(a) Original function plus java doc.

Line.revert() only maintains ∼10 digits for the direction. This
becomes an issue when the line’s position is evaluated far from the
origin.

(b) Bug report (not seen by the LLM.)

1 // Correct bug−finding postcondition 1

2 assert this.direction.negate().equals(returnValue.direction);

3 // Correct bug−finding postcondition 2

4 assert this.direction.dotProduct(returnVal.direction) == −1 * this.direction.getNormSq();

(c) Two bug-catching post conditions generated by GPT 4.

Fig. 2. Example of how postconditions or other formal specifications could catch bugs. This example is a

historical bug from Defects4J (Math-9): the Line constructor does not return a new line with enough precision.

The postconditions were generated by GPT-4 in our evaluation, and both catch the bug.

The example in Figure 2 shows how formal speci�cations can be used to catch bugs in real-world
programs. A bug from the Apache Commons Math project, the function revert() calls a constructor
Line() that should return a new Line object with a reversed direction. The associated bug report 1

explains that revert() does not maintain enough precision, and fails in certain scenarios. Both of
the provided postconditions in Figure 2c catch the bug by leveraging project-speci�c context and
general mathematical knowledge about the speci�cations of a reversed line.

1.2 Overview

In these examples, we demonstrated that GPT-4 can generate postconditions from natural language
that closely capture informal intent and also detect program bugs. However, it is unclear to what
extent LLMs are capable of the nl2postcond problem in general. We pose the high-level question:

Given a natural language description of a method and a candidate postcondition, how do

we judge the quality of the postcondition?

1https://issues.apache.org/jira//browse/MATH-938

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

https://issues.apache.org/jira//browse/MATH-938

84:4 M. Endres, S. Fakhoury, S. Chakraborty, S. Lahiri

We attempt to study this question through two high-level research questions:

• RQ1: How well do LLM-generated postconditions formalize informal natural language intent?
• RQ2: Can LLM-generated postconditions help catch real-world bugs?

To answer these questions, we de�ne automated metrics for measuring the usefulness of LLM-
generated postconditions, describe di�erent ways to encode the problem statement for an LLM,
explore di�erent LLMs, and perform an empirical investigation (both quantitative and qualitative)
on benchmarks across multiple programming languages. We �rst de�ne automated evaluation
metrics for the correctness and completeness (i.e., the discriminative power) of a postcondition
(Section 2.1), and we propose a generic “prompt” and variants to transform an informal intent into
an input for LLM (Section 2.2). We evaluate RQ1 using a Python programming dataset and present
a detailed analysis of generated postconditions quality across di�erent LLMs and prompt variants
(Section 3). Next, we evaluate RQ2 on a benchmark of real-world Java defects and report on the
ability of postconditions to �nd bugs by distinguishing the �xed version from the buggy version
(Section 4). Finally, we articulate the limitations (Section 6) and discuss related works (Section 5).

1.3 Contributions

• Evaluating the feasibility of LLMs to facilitate nl2postcond via an empirical evaluation of the
quality and usefulness of LLM generated postconditions on multiple benchmarks in multiple
mainstream programming languages.

• Automated and semantics-based metrics (both correctness and completeness) for evaluating
natural language generated postconditions, validated through an empirical and qualitative
investigation. In particular, we believe this paper is the �rst to propose the use of LLMs to
derive a natural distribution of code mutants to evaluate the completeness of speci�cations.

• The �nding that with su�ciently robust natural language descriptions, LLMs can use nl2postcond
to generate correct postconditions with high discriminative power. We illustrate that with GPT-4

we can generate correct postconditions for up to 96% problems in the EvalPlus benchmark, with
correct postconditions able to discriminate up to 81% of distinct buggy programs on average.

• The �nding that LLM-generated nl2postcond postconditions are precise enough to capture
real-world bugs in large industrial projects; nl2postcond postconditions detect 64 historical bugs
from 70 buggy methods in industrial-scale Java projects.

2 NL2POSTCOND: OVERALL APPROACH

2.1 Problem Formulation and Metrics

We �rst formalize the nl2postcond problem through metrics to evaluate the quality of generated
postconditions. Consider an example ⟨nl, r, T ⟩, where nl is the natural language description of a
problem, r is a reference code implementation, and T is a set of test inputs. For this section, we
assume that each test 8 ∈ T is an input that assigns a value to the input parameters and globals of r .
We further assume that the reference solution is deterministic and returns a single output value ret
containing the output. In this simple setting, it su�ces to only have the set of inputs in T , as the
desired output for each input 8 can be obtained by executing r (8). For the purpose of postcondition
generation through an LLM, the set of tests T is hidden from the LLM that generates a postcondition.
The reference implementation r may or may not be present during the postcondition generation.
However, both r and T are used to de�ne the metrics for the o�ine evaluation for a benchmark set.

2.1.1 Test-set Correctness. Given an example 4 � ⟨nl, r, T ⟩, a candidate postcondition post is an
assertion over the input and output states of r . For an expression expr and a state B that assigns
valuation to variables, let eval(expr, s) be the result of evaluating expr after replacing the variables

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

Can LLMs Transform NL Intent into Formal Method Postconditions? 84:5

in expr with their values from B . A postcondition is correct if the reference implementation r

satis�es it for every possible (legal) input. Therefore, a candidate postcondition post is correct if for
every input 8 , if r (8) is the output value, then eval(post, (i, r (i))) is true, where (8, r (8)) is the joint
state of the input parameters and output return variable. However, such a notion of correctness is
di�cult to establish in the absence of formal veri�cation tools, and may further require manual
e�ort to establish such proof even for veri�cation-aware languages [26, 45]. We take a pragmatic
approach, assuming that the test cases in T are su�ciently comprehensive to approximate the
space of all legal inputs. Therefore, an expression post is test-set-correct w.r.t. T (denoted as correctT)
i� ∀8 ∈ T : eval(post, (i, r (i)) == true. Henceforth, we may refer to "test-set-correct" as simply
correct, since correctness in the remainder of the paper is with respect to the provided tests.
Given a set of< postconditions from an LLM, we de�ne a metric accept@k for 1 ≤ : ≤ < to

capture the statistical expected value of containing at least one test-set-correct postcondition while
sampling subsets of size : from the set of< conditions. This is inspired by the pass@k metric
proposed for evaluating the quality of correctness of generated code given a set of tests [6].

2.1.2 Test-set Completeness for Code Mutants: Bug-Completeness-Score. (Test-set) correctness is a
necessary condition for a valid and useful postcondition, however, it is not su�cient. For example,
the expression true vacuously satis�es any implementation A for any input 8 ∈ T , and is therefore
correct. The value of a postcondition comes from how well it captures the desired intent expressed
in the natural language intent nl. However, given that nl is informal, we cannot establish a check to
ensure the association. Instead, we leverage the reference implementation and tests as the source
of ground truth for what the user intends. However, this again poses the problem that the most
desired postcondition is simply the strongest postcondition of r program, which is computationally
intractable [8]. Instead, we use a concept of completeness that measures the degree to which the
postcondition distinguishes the reference implementation r from other incorrect implementations.
Inspired by mutation-testing literature (c.f. Jia and Harman [20]) that assigns a score to a test C

based on the fraction of code mutants “killed” or distinguished under C , we assign a measure of
bug-completeness to a postcondition post as the fraction of code mutants that can be distinguished
given the set of tests T . Unlike traditional mutation testing, we parameterize completeness with
a semantically distinct code mutant set CM that are guaranteed to di�er from r (and from each
other) on at least one test in T . In other words, for each 2 ∈ CM , there exists a test input 8 ∈ T that
distinguishes from r (i.e., r (8) ≠ 2 (8)) and (a possibly di�erent) 8 that distinguishes from any other
2′ ∈ CM \ {c} (i.e., 2 (8) ≠ 2′ (8)). Given an example 4 � ⟨nl, r, T ⟩, a correctT postcondition post and
a set of distinct code mutants CM , we de�ne the bug-completeness-score of post as:

bug-completeness-score(post,CM, T) � |{c ∈ CM | ∃i ∈ T : eval(post, (i, c(i))) == false}|/|CM |

That is, bug-completeness-score measures the fraction of distinct code mutants that fail the correct
postcondition (via associated distinct buggy input/output tests). If the bug-completeness-score of a
postcondition is 1, we say that the postcondition is bug-complete. The metric can be lifted to a set of
postconditions P via the union of all code mutants “killed” by all correct postconditions in the set:

bug-completeness-score(P,CM, T) � |
⋃

post∈P

{c ∈ CM | ∃i ∈ T : eval(post, (i, c(i))) == false}|/|CM |

We propose the use of LLMs to sample mutants from the natural distribution of implementations
to the problem described by the natural language intent nl. In other words, we enumerate a set
of likely implementations Impls for nl using a LLM (GPT-3.5), and de�ne CM to be the subset of
Impls that di�er from r on at least one test 8 ∈ T , using the tests in T that are pairwise distinct.
We now discuss why we use a parameterized set of code mutants instead of creating variants of r
by mutating di�erent operators. We believe that such a �xed set of mutation operators does not

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

84:6 M. Endres, S. Fakhoury, S. Chakraborty, S. Lahiri

Fig. 3. Prompt template for generating postconditions from natural language via chat models (including

changes for the simple and no reference variations). We found that the bold text greatly improved postcon-

dition quality: without it, the model tended to return point-based tests or code blocks with side e�ects. While

modified here slightly for clarity, our full prompts are included in our associated materials (see Section 8.)

approximate real-world bugs for two reasons: (a) �rst, since code mutants only di�er from the
reference implementation in one or two operators at a time, it may not cover mutations that are
further away in the edit distance, and (b) it may not cover subtle bugs that a human would write
using di�erent syntactic constructs (e.g., a while loop instead of a for loop) or APIs.

2.2 Prompt Design for LLM-based Postcondition Generation

LLM performance has been shown to be impacted by small changes in prompts for the same
problem task, and designing the optimal prompt is not always straightforward. We explore several
prompt templates, i.e. varied textual representations of the problem description nl, and reference
solution r , optimizing for a number of outcomes. First, the prompts should work with chat-based

models, and the generated postconditions should be symbolic (e.g., not point-wise tests), directly
executable, and side-e�ect free. Also, the prompt should encourage the LLM to produce expressions
that are syntactically and semantically valid while being as programming language agnostic as
possible. Several prompt iterations were considered until we observed satisfactory performance
on a subset of example problems, though we acknowledge further prompt tuning may result in
di�erent outcomes. Figure 3 outlines our prompt template. This template shows four possible
prompt iterations along two orthogonal axes (a) whether the reference r is included, and (b)
requested postcondition complexity. We now discuss each axis in more detail.

Including Reference Code: Our default prompt includes only the nl, not the reference code r . This
is useful for speci�cation-driven AI-based programming scenarios [24] where the user �rst accepts
a few speci�cations that are used to constrain AI generated code suggestions. However, we also
provide a prompt variant that includes the reference code r along with nl. This allows us to assess
if natural language alone can be as e�ective as code in conveying programming intent to an LLM.
Postcondition Complexity: we also consider a simple prompt variation that explicitly instructs

the LLM to generate postconditions that capture an aspect of a function, rather than the whole
function. When using the base prompt, LLMs have a tendency to construct complex postconditions,

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

Can LLMs Transform NL Intent into Formal Method Postconditions? 84:7

Given a string text, replace all spaces in it with underscores, and if a
string has more than 2 consecutive spaces, then replace all consecutive
spaces with - . For example: fix_spaces(“ Example 1”) == “_Example_1”,
fix_spaces(“ Example 2”) == “_Example-2”

(a) Informal natural language specification for problem 12 from HumanEval

1 # Base prompt: postcondition that incorrectly attempts to fully specify the problem

2 assert all(map(lambda x: x == "_" or x == "−", re.split(r'\w+', return_value))) and " " not in

return_value and "__" not in return_value and "−−" not in return_value

3

4 # Simple prompt: postcondition that correctly checks that return_value does not contain any spaces.

5 assert not re.search(r' {1,}', return_value), "The return value contains one or more spaces"

(b) base vs. simple: the base postcondition tries to capture all intended functionality, but does so

incorrectly. The simple postcondition is less complex (capturing less functionality), but is correct.

Fig. 4. Example of how the base and simple prompt variations can impact postcondition construction.

Both postconditions were generated for HumanEval problem 12 using GPT-4.

often approaching a fully functional implementation of the problem. While useful, we observe
these postconditions are likely to be incorrect. To illustrate this, Fig. 4 compares postconditions
produced by the base and simple prompt for a problem from the HumanEval benchmark.
We combine these two prompt variations into four distinct prompts in our evaluation:

(1) Base prompt with only natural language description nl (no reference solution r)
(2) Base prompt with both reference r and natural language description nl

(3) Simple prompt with only natural language description nl (no reference solution r)
(4) Simple prompt with both the reference r and natural language description nl

3 RQ1: HOWWELL DO LLM-GENERATED POSTCONDITIONS FORMALIZE

INFORMAL NATURAL LANGUAGE INTENT?

To assess if LLMs can generate high-quality postconditions that capture and formalize intent, we
report a detailed empirical study of LLM-generated postconditions on a popular benchmark.

3.1 RQ1 Experimental Setup

3.1.1 Evaluation Benchmark. We use the benchmark EvalPlus. It has 164 Python problems, each
with a function stub, natural language description, reference implementation, and validation
tests [30]. EvalPlus updates the popular HumanEval benchmark [6], containing the same problems
but with a more extensive test suite (775 tests per problem on average). We choose EvalPlus because
each example has (a) a descriptive natural language intent, (b) a set of extensive test inputs, and (c)
a reference solution. Using these three components, we can evaluate if a postcondition formalizes
the user intent expressed in the natural langauge, nl, while also satisfying the reference solution.

3.1.2 Large Language Models. We generate postconditions using three chat-based models (both
closed and open-source), that have shown state-of-the-art performance on programming tasks:

• OpenAI: GPT-3.5 and GPT-4 are based on the pre-trained GPT-3 model, which is �ne-tuned
using Reinforcement Learning with Human Feedback (RLHF) [37]. While GPT-3.5 and GPT-4

are not explicitly �ne-tuned for code generation, they have demonstrated strong capabilities on
several related tasks [11, 35]. We use OpenAI APIs for the gpt-3.5-turbo and gpt-4 endpoints.

• The BigCode Project: StarChat. StarCoder [29] is an open-access 16B parameter model pre-
trained on The Stack [23], one trillion tokens sourced from 80+ programming languages, GitHub

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

84:8 M. Endres, S. Fakhoury, S. Chakraborty, S. Lahiri

issues, Git commits, and Jupyter notebook. We use StarChat 2, a StarCoder version �ne-tuned
for helping coding. StarChat is one of the few open-access chat model alternatives to GPT-3.5

and GPT-4, permitting replication of and comparison with our results. This model allows us to
use the same prompt we used for the OpenAI models, rendering a fairer comparison.

3.1.3 Postcondition Generation. For each EvalPlus problem, we generate 10 postconditions for
each of the 4 prompt variants (Section 2.2) per LLM model. We use a temperature of 0.7 as it is the
default for both GPT-3.5 and GPT-4, and has been found to be a reasonable temperature for code
generation tasks.3 As we consider four prompt variants, we generate 40 postconditions per problem
per model. This results in 19,680 postconditions across all variants, models, and EvalPlus problems.

3.1.4 CodeMutant Generation. To generate the set of codemutantsCM needed for bug-completeness,
we use an LLM (GPT-3.5 with temperature 0.9) to generate a set of codes that satisfy the natural
language intent nl. We generate 200 code solutions to each problem and then save only those that
produce a bad output for at least one test in T . We term these bugs as natural unique code mutants,
as they represent natural yet buggy implementations for the problem description. However, we
noticed that for some examples, the number of such natural code mutants is fairly small. To amplify
the set of buggy codes, we generate 100 additional buggy codes by explicitly instructing GPT-3.5

to include an error in its solution. As mentioned in Section 2.1.2, we only retain distinct buggy
codes so that no two mutants fail the same tests in the same way. That is, we only retain mutants
and associated inputs that contribute distinct buggy input/output pairs. The number of unique
buggy codes varies per problem, ranging from 4 to 233 with a median of 55. While we combine the
two bug sources, we also consider the natural mutants alone in our evaluation to see if the source
of the bug impacts the e�cacy of our metrics. We make available the set of mutants for use by the
broader research community and to support the reproducibility of our results.

3.2 RQ1-Results: Do LLM-generated Postconditions Formalize User Intent?

We now discuss the results of our empirical and qualitative evaluations, structured around postcon-
dition correctness, postcondition completeness, and qualitative insights.

3.2.1 Postcondition Correctness. Table 1 has our test-set-correctness (Section 2.1.1) results. Overall,
we �nd that for EvalPlus, LLM-generated postconditions are likely to be test-set correct; in our
best-performing prompt variation, 77% of postconditions were test-set-correct and a test-set-correct
postcondition was generated for 96% of problems (158/164). As we show later in this section, test-
set-correctness on EvalPlus largely corresponds to true correctness. Our results indicate that LLMs
have the potential to reliably generate correct postconditions from natural language speci�cations.
Regardless of the prompt variation, GPT-4 postconditions were the most likely to be correct

(0.63 ≤ accept@1 ≤ 0.77) followed by GPT-3.5 (0.46 ≤ accept@1 ≤ 0.56). StarChat postconditions
were consistently the least correct, with accept@1 between 0.21 and 0.25. While the raw number of
correct StarChat postconditions was low, the number of benchmark problems with at least one
correct postcondition was relatively high, ranging from 77% to 86% depending on the prompt.

As described in section 2.2, we consider both a base postcondition prompt and a simple prompt
for generating simpler postconditions that capture only an aspect of program behavior. Regardless
of LLM model, simple postconditions are more likely to be correct than base postconditions. Using
a paired students C-test [18] between accept@1 ablation pairs where the only di�erence is the
prompt complexity type, simple prompt postconditions are signi�cantly more likely to be correct

2HuggingFace model identi�er HuggingFaceH4/starchat-alpha
3We also considered temperatures of 0.2 and 1.2, �nding high-level trends were the same regardless of temperature.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

https://huggingface.co/HuggingFaceH4/starchat-alpha

Can LLMs Transform NL Intent into Formal Method Postconditions? 84:9

Table 1. Test-set correctness on EvalPlus for three models (GPT-3.5, GPT-4, and StarChat), di�ering

prompt complexities (base vs. simple), and including or omi�ing the reference solution in the prompt.

Darker highlighted cells are more correct. Bolded values are the largest for a specific model.

Model Prompt

Prompt has:
NL Only=✗

ref code=✓
Accept

@ 1
Accept

@ 5
Accept
@ 10

x/164
correct

GPT-3.5 base ✗ 0.46 0.80 0.87 143
GPT-3.5 base ✓ 0.49 0.81 0.88 145

GPT-3.5 simple ✗ 0.55 0.82 0.87 143
GPT-3.5 simple ✓ 0.56 0.82 0.88 144

GPT-4 base ✗ 0.63 0.83 0.88 144
GPT-4 base ✓ 0.71 0.89 0.91 150
GPT-4 simple ✗ 0.77 0.94 0.96 158

GPT-4 simple ✓ 0.76 0.92 0.96 157

StarChat base ✗ 0.21 0.61 0.82 134
StarChat base ✓ 0.20 0.59 0.77 126
StarChat simple ✗ 0.25 0.69 0.85 139
StarChat simple ✓ 0.23 0.67 0.86 141

with ? = 0.008, a large e�ect (standardized Cohen’s 3 = 1.73). This indicates that when prioritizing
correctness, using a prompt that explicitly asks for simpler postconditions improves the result.
We also compared the e�cacy of generating postconditions from natural language alone to

generating when a reference solution is included in the prompt. We did not observe a signi�cant
di�erence in accept@1 between postconditions generated with natural language speci�cations
alone and those including a reference solution (? = 0.42). This indicates that the presence of a
reference solution does not necessarily enhance postcondition correctness when compared to
natural language alone. Therefore, in some situations, it might be feasible to rely solely on natural
language intent (when comprehensive enough) without needing to provide a reference solution.
Correctness False Positives. EvalPlus has more comprehensive tests than its predecessor Hu-

manEval, but it is still possible that the tests do not capture all possible inputs. If so, our test-set
correctness metric may have false positives. We validate our metric for EvalPlus: we �nd only one
problem (# 122) with false positives relating to negative inputs. Overall, only 1.1% of the 900 post-
conditions that we manually annotated were a�ected (see Section 3.2.3 for our annotation process).
In contrast, we also compare our results to the hypothetical results if using HumanEval (which
has the same problems, but many fewer tests). The HumanEval results contain 7% false positives
for accept@10 for GPT-4, much higher than our results. Thus, we �nd that test-set correctness is a
reasonable approximation for true correctness on EvalPlus (but perhaps less so for HumanEval).

RQ1 Summary: Postcondition Correctness on EvalPlus

On EvalPlus, LLMs can produce correct postconditions from informal natural language
speci�cations. All prompt variants generate a correct postcondition for at least 77% and
up to 96% of problems. GPT-4 outperformed GPT-3.5 and StarChat. Asking for simple
postconditions leads to more correct postconditions, but including a reference solution does
not; using (descriptive) natural language alone can be sometimes just as powerful.

3.2.2 Postcondition Completeness. While our test-set correctness results are encouraging, test-set
correctness is necessary but not su�cient for assessing if a postcondition meaningfully captures the
natural language speci�cation. To capture a notion of completeness, we measure bug-completeness

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

84:10 M. Endres, S. Fakhoury, S. Chakraborty, S. Lahiri

Table 2. Table of bug-completeness for EvalPlus. % bug-complete is the % of postconditions that detect all

buggy code mutants. % problems with bug-complete is the % of EvalPlus problems with at least one

bug-complete postcondition. % problems union bug-complete is the % of problemswhere the union of

correct postconditions is bug-complete. The last two columns are the average bug-completeness-score,

a fraction between 0 and 1, for all correct postconditions, normalized by EvalPlus problem. We report this for

both natural and all generated code mutants. Bolded values are the largest value per column per model.

.

Prompt has:
NL Only=✗

ref code=✓

% problems
with bug-
complete

% problems
union bug-
complete

Avg bug-completeness-score
for correct postconditionsModel Prompt

% bug-
complete Natural bugs All bugs

GPT-3.5 base ✗ 15.4 42.1 48.2 0.62 0.72
GPT-3.5 base ✓ 18.5 47.0 49.4 0.70 0.76

GPT-3.5 simple ✗ 8.1 29.3 33.5 0.44 0.55
GPT-3.5 simple ✓ 14.0 37.2 41.5 0.58 0.62

GPT-4 base ✗ 35.1 61.6 62.2 0.81 0.85

GPT-4 base ✓ 34.9 58.0 61.6 0.78 0.82
GPT-4 simple ✗ 9.2 26.2 29.3 0.40 0.52
GPT-4 simple ✓ 8.9 29.3 36.0 0.47 0.56

StarChat base ✗ 0.8 7.3 8.5 0.13 0.24
StarChat base ✓ 1.4 9.1 11.0 0.23 0.30
StarChat simple ✗ 1.5 6.7 7.3 0.16 0.24
StarChat simple ✓ 3.0 17.1 17.7 0.23 0.36

for all test-set correct postconditions (see Section 2.1). Table 2 contains our results. We report
both the percentage of postconditions that are bug-complete (kill all distinct code mutants) and
the average bug-completeness score (fraction of code mutants killed). The results indicate that
GPT-4 postconditions can kill all the code mutants for up to 62.2% of examples in EvalPlus. Over-
all, both GPT-3.5 and GPT-4 generate relatively bug-complete postconditions, with average bug-
completeness scores of up to 0.76 and 0.85 respectively. That is, the average correct postcondition
generated by these models discriminates over three-quarters of distinct buggy codes. The bug-
completeness scores for StarChat were lower but still substantial, catching up to one-third of
mutants. Our bug-completeness results suggest that LLMs, especially larger models like GPT-3.5
and GPT-4, can use natural language to produce postconditions that meaningfully capture desired
aspects of program behavior.

In contrast to the correctness results (Section 3.2.1), base postconditions generally have higher
bug-completeness scores than simple postconditions (up to a 30% di�erence). Thus, the simple
prompt may generate more correct postconditions at the expense of bug-catching power. Even so,
as shown in Fig. 4, simple postconditions still meaningfully capture aspects of program behavior:
correct simple GPT-4 and GPT-3.5 postconditions discriminate over half of unique buggy mutants.

We also compare the bug-completeness of postconditions generated from natural language intent
alone to those generated with a reference solution in the prompt. While the di�erence was not
quite signi�cant, the average bug-completeness score was 5% higher for the case with the reference
code included (? = 0.06). From our qualitative investigation, this seems to be caused by an increase
in the number of postconditions that are functional re-implementations of the reference solution.

Natural vs. Arti�cial bugs. To help validate our proposed bug-completeness metric (see Section 2.1),
we examine the impact of using natural or arti�cial LLM code generation bugs. As shown in Table 2,
our completeness metric was consistently (though not always substantially) lower when only
considering natural bugs; naturally occurring LLM code generation bugs are harder to kill via
nl2postcond than arti�cially seeded bugs. This �nding highlights a potential limitation in using
arti�cially seeded faults to assess postcondition correctness as it may arti�cially in�ate the metric.
However, generating unique natural bugs is more expensive than using arti�cial bugs. To ensure
metric robustness, augmenting the evaluation metric with arti�cial bugs may still be useful.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

Can LLMs Transform NL Intent into Formal Method Postconditions? 84:11

Table 3. Atomic categories of nl2postcond postconditions that are o�en combined by LLMs via && (logical

and). return_val refers to the function’s return value. % test-set correct and bug-completeness columns are

defined in Section 2.1. Example postconditions are adapted from our EvalPlus results, only modified for space.

Category Example Postconditon % Prevalent

Avg. Bug-
complete-score
(Natural/All)

Type Check isinstance(return_val, int) 47.4 0.14 / 0.27

Format Check return_val.startswith("ab") 11.2 0.43 / 0.57
Arithmetic Bounds return_val >= 0 30.8 0.23 / 0.34
Arithmetic Equality return_val[0] == 2 * input_val 17.5 0.82 / 0.89

Container Property len(return_val) > len(input_val) 27.0 0.45 / 0.57
Element Property return_val[0] % 2 == 0 12.6 0.39 / 0.53
Forall-Element Property all(ch.isalpha() for ch in return_val) 8.3 0.23 / 0.44
Implication (return_val==False) if 'A'not in string 12.7 0.58 / 0.64
Null Check return_val is not None 4.4 0.40 / 0.50

Average 0.32 / 0.46

RQ1 summary: Postcondition Completeness on EvalPlus

We �nd that for the benchmark EvalPlus, nl2postcond postconditions generated by GPT-3.5

and GPT-4 canmeaningfully capture program intent especially when using our base prompt:
the average correct postcondition generated by thesemodels can discriminate three-quarters
of unique buggy code mutants depending on the prompt variation.

3.2.3 �alitative Analysis of Generated Postconditions. Evaluating postcondition correctness and
completeness tells us how well LLMs can generate speci�cations that capture program intent,
however it does not give us insight into the kinds of generated speci�cations, and how they di�er
in terms of performance. We ask two questions: 1) Are there patterns within LLM generated

postconditions and 2)How do these categories di�er in terms of correctness and complete-

ness? These insights can help to inform future improvements around LLM generated speci�cations,
and may guide ranking or selection strategies when using generated postconditions in practice.
To determine what program aspects nl2postcond postconditions verify, we conduct a manual

qualitative analysis. We �rst select 230 postconditions generated for 23 EvalPlus problems. We use
the best-performing prompt version for correctness: GPT-4with the simple prompt and no reference
solution. The �rst two authors developed a set of qualitative coding categories for postcondition
structure and jointly labeled all 230 postconditions. The �rst author then used this set of categories
to label an additional 670 postconditions for a total of 900 labeled postconditions from 139 EvalPlus
problems We present these categories in Table 3 and report prevalence and completeness.

We observe that postconditions can take the form of either atomic or conjoined statements. For
example, an LLM may generate a single postcondition that checks several distinct properties about
a program, conjoined with logical && operators. Results of the classi�cation process show that 33%
of LLM-generated postconditions consist of multiple atomic postconditions, conjoined using &&.

We categorize nine basic types of atomic properties. Table 3 contains an example of each, along
with its dataset prevalence and completeness measures. Prevalence is counted across both atomic
and conjoined statements, e.g. if an assertion conjoins speci�cations across two categories, both
are counted. As a result, prevalence adds to over 100%. Type Checks enforce a constraint on the
type of a return value using isinstanace. Format Checks ensure that the return value follows a
certain string format constraint. Arithmetic Bounds and Arithmetic Equality enforce a numeric
bounding or equality constraint against another expression. Container Property checks an aspect

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

84:12 M. Endres, S. Fakhoury, S. Chakraborty, S. Lahiri

of a complex type or object (e.g., the length of an array). Element Property and Forall-Element

Property enforce some constraint on one or all elements of a collection. Implications include
conditional logic, and Null Check ensures that the return value is not None.

We did not observe a signi�cant relation between postcondition type and correctness. However,
we do observe signi�cant di�erences in bug-completeness across categories. For example, post-
conditions labeled as Type Checks, i.e. speci�cations enforcing the type of the return value, were
the weakest, only killing 27% of bugs on average. This di�erence was particularly pronounced for
natural bugs (see Sections 2.1 and 3.1.4), where Type Checkers only killed 14% of bugs on average.
Interestingly, Type Checks are also the most prevalent category, indicating LLM preference to-
wards generating such constraints. Low completeness scores indicate that, for the studied dataset,
type-mismatch errors is not a common bug source. This may be explained by the inclusion of type
hints in the EvalPlus dataset, which appear in function stubs provided to the LLM.

On the other hand, Arithmetic Equality checks, i.e. speci�cations that assert that parts of the
return value must be equivalent to another expression, provide a strong postcondition. On average,
this category of postcondition kills 89% of all bugs and appears in 17.5% of labeled postconditions.
Using our categorization, we can partially explain the lower completeness scores of StarChat

postconditions in section 3.2.2. While we do not perform a systematic qualitative analysis, we
observe that the majority of correct StarChat postconditions are atomic Type Checks, which is
the weakest postcondition type (see Table 3). This hypothesis is also validated by results of GPT-4,
where in contrast, only 16% of generated postconditions are atomic Type Checks alone. Instead,
the majority of Type Checks in GPT-4 are in conjoined statements with other atomic checks, which
may explain the relatively higher average completeness scores between the two models.

RQ1 summary: Qualitative Analysis of Postconditions for EvalPlus

We qualitatively identify nine atomic component categories of LLM-generated postcondi-
tions. While we observe minimal correctness di�erences, bug completeness varied signi�-
cantly; the weakest postcondition type, Type Checks, killed only 14% of natural bugs on
average while the strongest, Arithmetic Equality check, killed 82%, a 6x di�erence.

4 RQ2: CAN NL2POSTCOND HELP CATCH REALWORLD BUGS?

Beyond understanding whether LLMs can capture natural language intent via executable postcon-
ditions, we also want to understand nl2postcond’s real-world potential. To do so, we investigate
the second motivating use case in Section 1.1: �nding bugs in an existing code base. We evaluate
nl2postcond’s bug-catching potential using Defects4J [21], a benchmark of historical Java bugs.

4.1 RQ2–Research Methodology and Experimental Setup

We outline our methodology for evaluating the capabilities of postconditions to catch real-world
bugs: we describe the target benchmark Defects4J , discuss prompt variations for Java, and pro-
vide our criteria for bug-discriminating postconditions. We model our approach after TOGA’s
approach [9], where the goal is to �nd speci�cations/tests that a user could have used to catch a
bug as they fail on the buggy version, and succeed on the �xed version.

4.1.1 Benchmark: Defects4J. We use Defects4J 2.0 [21], a well-known benchmark of 835 manually
curated real-world bugs gathered from 17 Java projects. For each bug, the dataset has a set of
bug-reproducing test cases (trigger tests), and regression test cases which load the class in which
the method under test is contained. Each bug in Defects4J contains buggy and �xed versions of
the code. We consider a postcondition to be test-set-correct if it passes all trigger and regression

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

Can LLMs Transform NL Intent into Formal Method Postconditions? 84:13

tests on the �xed version. As our prompt leverages functional syntax introduced in Java 8 (see the
postcondition in �g. 5c as an example), we only consider the subset pf 525 bugs that are reproducible
when allowing this syntax. Each bug may involve changes to multiple functions, for which we each
generate postconditions. In total 840 functions are modi�ed across the 525 bugs.

4.1.2 Bug Discriminating Postconditions. To evaluate whether LLM-generated postconditions are
capable of catching real-world bugs, we instrument the buggy and �xed function versions with
each associated postcondition. We consider a generated postcondition to be bug-discriminating if it
satis�es the following criteria:

(1) The postcondition passes all the trigger and regression tests, on the �xed version of a function.
(2) The postcondition fails a a trigger test or regression test on the buggy version of a function.

The Defects4J benchmark ensures that the di�erence between the buggy and �xed versions
is minimized to only changes related to the bug-�x. Therefore, assuming a comprehensive test
suite, any discriminating postcondition satisfying the above criteria is related to the change for the
example (bug-related). Finally, similar to our qualitative evaluation for RQ1 (see Section 3.2.1) we
qualitatively analyze bug-discriminating postconditions to gain greater insight.

4.1.3 Prompt Design and Ablations. To generate postcondtions for buggy functions in the dataset,
we use the same prompt as in RQ1 (see �g. 3). Designed as language agnostic, the only change
needed to adapt the prompt for Defects4J is including additional code context. Given that Defects4J
problems are extracted from real-world projects, functions are comparatively more complex than
those in EvalPlus and are often tightly coupledwith other project functions. Our initial investigations
found that without some �le-level context, LLMs rarely generate meaningful postconditions that
also compile. Therefore, we include additional class and type-related context in the prompt. Given
the limited context window of the LLMs used, we greedily include methods in the call graph for
the buggy function (ordered by in-�le placement) until the prompt tokens are exhausted. The call
graph and in-�le dependencies are determined using the Java language binding for Tree-sitter4.

For each buggy function, we combine of function and class-level in-�le comments to formulate a
natural language speci�cation. In practice, this is primarily the buggy function’s JavaDoc. We do
not generate additional natural language (i.e., through code summarization) nor do we use external
documentation: all natural language is pulled directly from the buggy function’s source code �le.

We choose to use only the simple prompt from RQ1, as it had more correct postconditions than
did the base version. Following the approach in RQ1, we report two variants of the prompt: 1) that
only includes the natural language of the function and 2) that includes both the natural language
and the code of the buggy function body. For each variant, we generate 10 postconditions for every
function modi�ed between the buggy and �xed projects (840 functions across 525 unique bugs).
We choose to generate postconditions using two of the three models used in RQ1: GPT-4 and

StarChat. Given that GPT-4 and GPT-3.5 are comparable, closed-access chat models from OpenAI,
we choose to focus on GPT-4 as it shows superior performance in RQ1. We choose to use StarChat
as it is one of the few open-source chat-based models available. In total, we evaluate 33,600
postconditions (2 models * 2 ablations * 10 postconditions * 840 functions).

4.2 RQ2–Results: Can LLM-generated Postconditions Catch Real-World Bugs?

We detail our �ndings on if nl2postcond postconditions are test-set correct, and if they can catch
bugs in real-world industrial-scale projects. We �nd that even with the increased complexity over
EvalPlus, GPT-4 is still able to produce correct postconditions for Defects4J at a high rate. In addition,
both GPT-4 and StarChat are able to generate bug-discriminating postconditions for a subset of

4https://tree-sitter.github.io/tree-sitter/

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

https://tree-sitter.github.io/tree-sitter/

84:14 M. Endres, S. Fakhoury, S. Chakraborty, S. Lahiri

Table 4. Table containing our Defects4J results for postconditions generated for 840 methods across 525

historical bugs. We report the likelihood of generated postconditions to compile, and the accept@k likelihood

that they pass all tests when instrumenting the fixed function (test-set correct columns). # distinguishable bugs

is the number of bugs for which at least one generated postcondition was discriminating (see Section 4.1.2).

Model
Prompt has:
NL Only = ✗

buggy code = ✓

Compiles Test-set correct
Number

distinguishable
bugs@1 @5 @10 @1 @5 @10

GPT-4 ✗ 0.65 0.86 0.89 0.32 0.57 0.66 35
GPT-4 ✓ 0.73 0.90 0.93 0.39 0.66 0.75 47

StarChat ✗ 0.25 0.68 0.83 0.11 0.38 0.55 19
StarChat ✓ 0.29 0.72 0.84 0.12 0.39 0.56 24

Defects4J bugs. Bug-discriminating postconditions were further analyzed via a qualitative analysis
to gain insight into the ability of LLMs to catch bugs via nl2postcond.

4.2.1 Test-set Correctness. Our full test-set correctness results for Defects4J are in table 4. We �nd
that while lower than the results from EvalPlus, GPT-4 still generate a signi�cant number of test-set
correct postconditions with respect to the �xed version of a function (e.g., correct with respect
to programmer intent), achieving accept@1 of up to 0.39 and accept@10 of up to 0.75. StarChat
performs worse, with accept@1 and accept@10 of 0.12 and 0.56 respectively. We note that these
numbers may be higher in practice if postconditions are �ltered by those that compile (see table 4,
Compiles column). In general, including the buggy code in the prompt leads to more test-set correct
postconditions. This contrasts with the results from EvalPlus, where we did not observe a di�erence.
We hypothesize that this is the case because of (a) the comments not being completely descriptive,
and (b) the increased program and object complexity in Defects4J , as supported by the fact that
postconditions are also less likely to compile when the buggy code is omitted from the prompt.

4.2.2 Bug-discriminating Postconditions. We �nd that LLMs can generate postconditions that
distinguish between buggy and �xed code in real-world projects with respect to regression and
trigger tests. As seen in Table 4, GPT-4 was able to generate discriminating postconditions for up to
47/525 (9%) bugs. StarChat caught fewer, but still generated postconditions that distinguished up
to 25 bugs. Across all prompt variants and models, we were able to generate a bug-discriminating
postcondition for 70 buggy methods from 64 unique bugs in Defects4J , 12.2% of all bugs considered.

RQ2 summary: Correctness and Bug Catching Power on Defects4J

We �nd that nl2postcond postconditions are often test-set correct for real-world functions
(accept@10 up to 0.75) and can be powerful enough to catch real-world bugs (nl2postcond
discriminates 70 buggy methods from 64 bugs in Defects4J).

4.2.3 �alitative Analysis of Bug-discriminating Postconditions. We conduct a qualitative evaluation
of the bug-discriminating postconditions to gain insight into how nl2postcond postconditions
discriminate real-world bugs. We observed additional evidence both motivating the potential
usefulness of nl2postcond and examples of why LLMs may be a good tool to solve this problem. To
communicate these �ndings, we detail two cases.

The �rst case is a historical bug from the Apache Commons CLI project.5 As shown in �g. 5, the
program should render multi-line text such that 1) white space padding is added at the beginning of
every line after the �rst one and 2) that no line length exceeds a speci�ed width. The requirement

5Project page: https://commons.apache.org/proper/commons-cli/, Bug: https://issues.apache.org/jira/browse/CLI-151

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

https://commons.apache.org/proper/commons-cli/
https://issues.apache.org/jira/browse/CLI-151

Can LLMs Transform NL Intent into Formal Method Postconditions? 84:15

1 /** Render the text and return the rendered Options in a StringBuffer.

2 * @param width The number of characters to display per line

3 * @param nextTab The position on the next line for the first tab.

4 * @param text The text to be rendered.*/
5 StringBuffer renderWrappedText(StringBuffer sb, int width, int nextTab, String text);

(a) Buggy function stub and javadoc.

The method... has couple of bugs in the way that it deals with the
[nextTab] variable. This causes it to format every line beyond the first
line by [nextTab] too many characters beyond the specified width.

(b) Bug report indicating that the function sometimes erroneously renders text with more than width

characters per line, behavior that directly conflicts with the javadoc.

1 // Checks if the rendered text does not exceed the specified width per line

2 assert rVal.toString().lines().allMatch(line −> line.length() <= width);

(c) Bug catching nl2postcond postcondition generated by GPT-4. rVal is the function return value. This

postcondition was generated without the buggy function code in the prompt.

1 public void test27() throws Throwable {

2 HelpFormatter helpFormatter0 = new HelpFormatter();

3 MockPrintWriter mockPrintWriter0 = new MockPrintWriter("−");

4 helpFormatter0.printUsage((PrintWriter) mockPrintWriter0, 0, "[Options: [sh6ort "); }

(d) Bug-catching test prefix from TOGA where TOGA expects this test prefix to throw a

RuntimeException. While this catches the bug, it is semantically removed from the bug’s root cause.

Fig. 5. Example from Defects4J (Cli project, bug 8) where the bug can be caught via nl2postcond . Cli 8 is a bug

in the implementation for calculating the width of lines when wrapping output text. The natural language

function description specifically says that each line must be at most width characters long. GPT-4 translates

this intent into the provided postcondition, which correctly catches the bug.

that each line should be width characters long is clearly speci�ed in the Javadoc. However, the
program sometimes incorrectly rendered lines longer than width due to a bug in the white space
padding implementation. In our evaluation, GPT-4 generated multiple postconditions that catch
this bug, including the example in 5c. These bug-catching postconditions were generated by both
prompt variations. This example evidences both that 1) informal natural language can meaningfully
telegraph code bugs and 2) modern LLMs, such as GPT-4, can su�ciently formalize natural language
intent to capture the disagreement. Overall, this example shows the potential of nl2postcond to
unearth coding inconsistencies solely from informal natural language documentation.

For our second example, we refer to one of our initial motivating examples in Section 1.1, �g. 2.
This example was adapted from Defects4J , and consists of a historical bug in another popular
Apache library project, Commons Math.6 In this bug, a method returning a reversed instance of a
mathematical Line object does not retain su�cient precision in its internal state. GPT-4 is able to
generate multiple postconditions that correctly detect this bug: both examples in �g. 2 are actual
postconditions from our evaluation generated using the prompt with the buggy code included.
This example also demonstrates the potential of LLMs to generate postconditions powerful enough
to capture real-world bugs. In addition, it provides evidence that LLMs in particular are helpful
for realizing nl2postcond. Both postconditions detect the bug by leveraging general mathematical
knowledge about the properties of a reversed line. The second postcondition in particular exempli�es
the ability of LLMs to dynamically combine methods such as dotProduct from the project �le’s
context with algebraic world knowledge that is external to the project’s code.

6Project page: https://commons.apache.org/proper/commons-math/, Bug: https://issues.apache.org/jira/browse/MATH-938

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

https://commons.apache.org/proper/commons-math/
https://issues.apache.org/jira/browse/MATH-938

84:16 M. Endres, S. Fakhoury, S. Chakraborty, S. Lahiri

4.3 Baseline Comparison: TOGA, Daikon

We provide an empirical and qualitative comparison of the e�ectiveness of nl2postcond with respect
to two other popular methods of inferring test oracles and invariant speci�cations. We choose a
state-of-the-art technique for each: (a) TOGA [9], a neural approach to generating test oracles, and
(b) Daikon [10], a popular technique to infer program invariants (including method postconditions)
from multiple dynamic executions. There exists related e�orts on generating unit tests neurally
such as AthenaTest [51], but no public release exists for evaluating it for our setup.7 We focus our
comparison on Defects4J : to the best of our knowledge, neither TOGA nor Daikon support Python
(and thus are not compatible with EvalPlus).

4.3.1 TOGA. TOGA is a neural approach to generating test oracles for a method. Given a test
pre�x, TOGA generates an assertion or expected exception that the test pre�x is expected to satisfy.
Although both can generate assertions that may not agree with the implementation of a method,
there are fundamental di�erences between test oracle generation (as in TOGA) and speci�cation
generation (as in nl2postcond). nl2postcond infers method postconditions that are expected to hold
for all inputs. These can not only be checked during testing, but also at runtime on unseen inputs
and trigger assertion failures instead of producing corrupted values; TOGA assertions can only be
applied at testing time, since the assertions apply to the speci�c test pre�x that reaches the buggy
location. However, there are (algebraic) speci�cations that are best expressed over multiple method
calls (e.g., s.pop(s.push(5)) == 5 for a stack s); expressing such a speci�cation as a method
postcondition (for either s.pop or s.push for even a single value 5) will require adding auxiliary
ghost variables. Finally, test oracle assertions are often equalities (to match the expected output
value on the speci�c input), whereas method postcondition assertions can be arbitrary Boolean
expressions to capture all possible output values (see Table 3 for examples).

Setup. We compare nl2postcond’s results on Defects4J with the results reported on TOGA [9].
To enable TOGA to catch bugs without access to the failing trigger test, Dinella et al. integrated
TOGA with EvoSuite [13], a popular automated testing tool. We used the set of 57 bugs found by
TOGA (by reproducing their experimental setup released as a docker), each accompanied by a
EvoSuite-generated test pre�x and the corresponding test oracle. Of the 57 bugs reported by TOGA,
15 bugs were excluded from our nl2postcond evaluation due to Java limitations (Section 4.1.1).

Evaluation Results. Overall, we �nd that the bug �nding capabilities of TOGA and nl2postcond
are complementary. Of the 101 distinct bugs caught by at least one approach, only 5 are caught
by both nl2postcond and TOGA.8 37 are only caught by TOGA, while 59 are only caught by
nl2postcond. To better understand the di�erences between the two techniques, we conduct a
qualitative evaluation of bugs caught by at least one approach. We note the following observations:

• A majority of nl2postcond-caught bugs (52/64) could not be found by TOGA, due to the lack
of any EvoSuite generated test pre�x that reaches the bug location. This includes Math 9, one
of the two Defects4J bugs we use to motivate nl2postcond (see �g. 2). This demonstrates the
usefulness of nl2postcond’s ability to be checked at runtime on unseen inputs.

• Most TOGA-caught bugs are “exceptional” bugs where the code either throws an unexpected ex-

ception or fails to throw an expected exception. Since we do not model exceptional postconditions
in nl2postcond, we fail to �nd most such bugs. Fig. 6 shows how leveraging a model predicting
exceptional postconditions helps TOGA catch bugs that nl2postcond does not. Incorporating
exceptional postconditions into nl2postcond is an intriguing direction for future work. Beyond

7Personal communication with the author of AthenaTest.
8The 5 in common are Cli 8, Cli 32, JacksonCore 8, Jsoup 88, and Math 99.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

Can LLMs Transform NL Intent into Formal Method Postconditions? 84:17

1 public void test16() throws Throwable {

2 byte[] byteArray0 = new byte[179];

3 ByteArrayInputStream inputStream0 = new ByteArrayInputStream(byteArray0);

4 ArchiveStreamFactory archiveStreamFactory0 = new ArchiveStreamFactory();

5 try {

6 archiveStreamFactory0.createArchiveInputStream((InputStream) inputStream0);

7 fail("Expecting exception: Exception");

8 } catch(Exception e) {

9 verifyException("org.apache.commons.compress.archivers.ArchiveStreamFactory", e);

10 }}

(a) TOGA test oracle that catches Compress 11. TOGA finds the bug by simulating a small file and then

explicitly catching the resulting exception.

1 \old(in.getClass().getName()) == java.io.BufferedInputStream.class.getName()

(b) Daikon postcondition that catches Compress 11. It does so as the buggy function involves a using a

ArchiveStream factory function that can change the class name of the Input Stream class.

Fig. 6. TOGA test oracle and Daikon postcondition for a historical bug caught by both TOGA and Daikon,

but not by nl2postcond (Compress 11). This bug involves incorrectly processing files less than 512 bytes as tar

archives, and it was fixed by throwing an exception.

exceptional postconditions, we also �nd that TOGA can model test pre�xes that involve objects
from di�erent classes and methods (similar to the stack example with push and pop).

• For the 5 common bugs, we observe that TOGA and nl2postcond �nd the same underlying bug
with di�erent means. For example, one of our motivating examples for nl2postcond, Cli 8, is
also caught by a TOGA test oracle. While both are helpful, nl2postcond’s assertion directly
captures the semantics of the root cause of the bug (useful for both fault localization and
patch construction). TOGA, however, provides a higher-level end-to-end test that is more
removed from the buggy method, necessitating the developer spend additional time for root
cause analysis. We present both bug catches for Cli 8 in �g. 5d.

4.3.2 Daikon. Daikon [10] uses multiple program runs to dynamically infer program invari-
ants, including postconditions. Unlike nl2postcond, Daikon invariants are always implementation-
consistent (it only retains expressions that are true across tested executions) and can only be
generated from testable code (e.g., can not be generated from natural language alone).

Setup. We used Daikon to generate likely postconditions from running the set of regression tests
(without any failing trigger tests) on the buggy version. We then check if these speci�cations are
bug-discriminating. We run Daikon using standard parameters for each buggy method to generate
a set of likely postconditions. Due to challenges integrating Daikon with several of the projects in
Defects4J , we scope our evaluation to the 101 bugs found by either nl2postcond or TOGA.

Results. Overall, we �nd that while Daikon generates many postconditions that are consistent
with all tests, bug-discriminating postconditions are rare. Daikon generated postconditions for
an associated buggy method for the majority of tested bugs (78/101). For the rest, Daikon either
failed to generate any method postconditions on the buggy version using just the regression tests
(17/101), or timed out after 10 minutes (6/101). The number of postconditions generated for any
given method varied widely. However, we observed only three instances of a Daikon-generated
postcondition that is bug-discriminating. Daikon �nds one bug that is not found by nl2postcond,
but the other two speci�cations are incorrect. Fig. 6b shows the case where Daikon is able to catch
a bug that nl2postcond does not, by detecting a class name change instigated through a factory
function. For the remaining two cases, the bug-discriminating postcondtions over�t the regression

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

84:18 M. Endres, S. Fakhoury, S. Chakraborty, S. Lahiri

1 // Checks if the returnValue is greater than or equal to zero

2 assert returnValue >= 0;

(a) Example bug-catching post conditions generated by nl2postcond which correctly asserts that the

domain of a continuous distribution function should be greater than or equal zero. This postcondition

catches a large number of bug-triggering inputs for this method.

1 daikon.Quant.fuzzy.eq(\result, 1.000020000400008) || daikon.Quant.fuzzy.eq(\result, 1.5)

(b) Daikon postcondition that distinguishes Math 9, but overfi�s to the regression tests.

1 /** Access the initial domain value, based on <code>p</code>, used to

2 * bracket a CDF root. This method is used by

3 * {@link #inverseCumulativeProbability(double)} to find critical values.

4 * @param p the desired probability for the critical value

5 * @return initial domain value */
6 protected double getInitialDomain (double p) {

7 double ret = 1.0 ;

8 double d = getDenominatorDegreesOfFreedom();

9 if (d > 2.0) {

10 ret = d / (d − 2.0);

11 }

12 return ret; }

(c) Math 95 from Defects4J: This function returns a domain for use by an Inverse Cumulative Probability

function. The buggy version did not have su�icient bounds on getDenominatorDegreesOfFreedom,

leading to a potential negative domain (impossible for a cumulative Probability function) or a division

by zero error. Highlighted tokens are those that were added for the fixed version.

Fig. 7. Comparison of nl2postcond , TOGA, and Daikon on Math 95.

tests and do not hold for all inputs. For example, the speci�cation for Math 95 in Fig. 7b) states that
a return value should be close to one of two values {1.0, 1.5}. However, the �xed program admits
many more positive return values; this is correctly re�ected by the nl2postcond postcondition in
Fig. 7a. In general, we observe that Daikon generated invariants are either very weak (e.g., a �eld is
not modi�ed), or are incorrect (do not generalize to all inputs). To the best of our understanding of
Defects4J , this is in contrast to the majority of bug-discriminating nl2postcond postconditions.

Baseline Comparison with TOGA and Daikon

Compared to two other approaches, we �nd that nl2postcond postconditions are either more
widely applicable or �nd more bugs. We also note that the bugs found via nl2postcond are
largely non-overlapping with those found by TOGA, indicating that the two approaches may
be complementary. nl2postcond �nds many more bugs compared to Daikon, which often
generates invariants that are not bug-discriminating or over�t the observed executions.

5 RELATED WORK

Speci�cation Generation. A speci�cation provides a comprehensive description of a program’s
intended behavior, encompassing the functional relationships between inputs and outputs, as well
as the internal state dynamics. Speci�cations may vary in formality, ranging from informal descrip-
tions such as API documentation to formal representations like test cases or runtime assertions.
The applications of program speci�cations are extensive, and include bug identi�cation [1, 19],
veri�cation [5, 32], speci�cation-driven development [27, 36, 41], and code comprehension [4]. Our

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

Can LLMs Transform NL Intent into Formal Method Postconditions? 84:19

goal is to generate formal and functional speci�cations in the form of postconditions, articulating
the desired input-output relationship of a code given the informal natural language description.
There has been a long line of work for automatically inferring speci�cations using static analy-
sis [44], abstract interpretation [7], dynamic analysis [10], and so on. While most of these existing
works rely on a code implementation inferring the speci�cation of existing code, our approach is
to infer the desired behavior of the code from natural language. Similar to us, several approaches
attempted to generate speci�cation by analyzing API documentation or code comments using
di�erent natural language processing techniques such as named pattern matching [38, 47–49], text
normalization [3], entity recognition [57], natural language parsing [59], etc. Being dependent on
mostly hand-crafted rules and heuristics, most of these techniques only work on the semi-structured
natural language format of the input and are not easily extensible across di�erent programming
languages and domains. In contrast, our technique relies on LLMs for world knowledge and our
experiment shows the extensibility of our technique in two di�erent languages – Python and Java.

Machine Learning for Speci�cations. Machine Learning approaches for speci�cation generation
have shown promise in several directions, including synthesizing test oracles [9, 31, 52], improving
test coverage [28], generating unit tests [24, 50]. Depending on the scenario, the speci�cations
generated by these approaches are dependent on di�erent inputs. AthenaTest [50] generates
both the input and the oracle of a unit test from the implementation of the focal method (recall
TOGA only generates test oracle). Closer to our work, TiCoder [24] leverages LLM to generate
test input and output to formalize the user intent. While these approaches focus on generating
concrete test cases (and potentially oracles), our approach is geared toward generating abstract
functional relationships between the input and output of a procedure, which allows us to reason
about a range of inputs. Similar to our work, EvoSpex [33] generates functional relationships of
input-output with evolutionary learning. While their approach is aimed at summarizing existing
program behavior (and therefore cannot be used to �nd bugs), our approach contributes towards
generating formal speci�cations of desired input-output behavior. Recent work by Vikram et al. [53]
proposes to leverage LLM for generating property-based tests (PBTs). Speculyzer [22] uses LLMs to
enumerate likely properties and inputs similar to PBT, but use them as heuristics to improve code
generation. Unlike our work, they do not seek to evaluate the correctness and completeness of
these speci�cations. In addition to the input-output speci�cation generation, machine learning has
been applied to generate intermediate speci�cations of code such as invariants, using traditional
machine learning [14, 43], deep learning [42, 56], and LLMs [39].

6 LIMITATIONS AND THREATS TO VALIDITY

LLM-Related Approach Limitations. We note that there are several inherent weaknesses of our
approach relating to the use of LLMs. In particular, we note that as we are using popular LLMs as a
black box, the underlying model is not well understood. This can lead to a lack of interpretability of
the results, as well as raise questions regarding result generalizability. In addition, due to the quickly
evolving AI landscape, the results may become obsolete quickly. We consider speci�c instances of
these limitations.
Data Leakage. One potential concern to generalizability is the use of the benchmarks EvalPlus

and Defects4J which are included in The Stack [23], the dataset used to train StarChat, and may
have been included as part of training datasets for both GPT-3.5 and GPT-4. The risk of data leakage
could pose a threat to the internal validity of our study. Nevertheless, this concern is partially
mitigated by the target task: the use of models to produce postconditions. To our knowledge,
postconditions have not been previously generated as part of any public-facing dataset.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

84:20 M. Endres, S. Fakhoury, S. Chakraborty, S. Lahiri

Stability of Models’ Output. Two of the models used in the experiments are accessed using
OpenAI web APIs. OpenAI models are not open-access and are often updated or deprecated. This
poses a threat to the replicability of our study. To mitigate this threat, we make available all
postconditions generated by the closed-access models. We also use the open-access StarChat,
and share all generated artifacts. In addition, we report results using the widely adopted metric
accept@k, which accounts for the stochasticity of model output.
Generalization of Findings. Given the relatively small number of bugs (525) considered in the

Defects4J benchmark, our �ndings may not generalize to arbitrary bugs across di�erent languages
and repositories. We partially mitigate this threat by using real-world bugs from open-source
projects and evaluating the capabilities of LLMs on both Python and Java benchmarks. In addition,
the proposed taxonomy of postconditions (Section 3.2.3) is representative of only the programs in
the EvalPlusbenchmark and may not generalize across languages or program complexities.

Measure of Postcondition Completeness. Our metric for postcondition completeness relies on a set
of generated code mutants. The code mutants are generated to cover the space of possible bugs in
the target function, however, the set of code mutants generated per problem will never represent a
comprehensive set of possible bugs. Therefore, our measure of completeness is dependent on the
range and quality of bugs covered in the set of mutants. This poses a threat to the internal validity
of our study. To mitigate this threat we maximize the diversity of bugs by retaining only distinct
mutants and associated distinct tests, and generate up to 233 buggy codes per problem.

7 CONCLUSION

In this paper, we introduce and de�ne nl2postcond as the problem of translating natural language
comments into programmatically checkable postconditions via LLMs. Our work proposes and
validates metrics for assessing the correctness and completeness of postconditions derived from
natural language, o�ering an initial step in systematizing the nl2postcond problem. Through an
empirical and qualitative evaluation on two benchmarks, we �nd that LLMs are adept at translating
natural language descriptions to formulate non-trivial postconditions that accurately capture
programming intent. Our study also �nds that LLM-generated postconditions can exhibit high
discriminative power: we generate postconditions via nl2postcond that are able to discriminate
64 real-world historical bugs from industrial-scale Java projects. These �ndings underscore the
feasibility and promise of leveraging natural language documentation into executable speci�cations.
Our research highlights the possibility of LLMs acting as a bridge between informal language
descriptions and formal code speci�cations, such that natural language comments can be used
e�ectively to improve software validation and bug detection.

8 DATA AVAILABILITY

Our code and artifacts will be publicly available at http://github.com/microsoft/nl-2-postcond.
This package contains our postcondition generation scripts and prompts, EvalPlus postcondition
evaluation harness, and our qualitative codebook. We also make all generated postconditions
available. Finally, we include the unique natural and arti�cial LLM-generated mutants for EvalPlus.

REFERENCES

[1] Andrea Arcuri. 2008. On the automation of �xing software bugs. In 30th International Conference on Software Engineering

(ICSE 2008), Leipzig, Germany, May 10-18, 2008, Companion Volume, Wilhelm Schäfer, Matthew B. Dwyer, and Volker

Gruhn (Eds.). ACM, 1003–1006. https://doi.org/10.1145/1370175.1370223

[2] Amazon AWS. 2023. Amazon CodeWhisperer. Accessed September 27, 2023. https://aws.amazon.com/codewhisperer/.

[3] Arianna Blasi, Alberto Go�, Konstantin Kuznetsov, Alessandra Gorla, Michael D. Ernst, Mauro Pezzè, and Sergio Del-

gado Castellanos. 2018. Translating code comments to procedure speci�cations. In Proceedings of the 27th ACM SIGSOFT

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

http://github.com/microsoft/nl-2-postcond
https://doi.org/10.1145/1370175.1370223
https://aws.amazon.com/codewhisperer/

Can LLMs Transform NL Intent into Formal Method Postconditions? 84:21

International Symposium on Software Testing and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018,

Frank Tip and Eric Bodden (Eds.). ACM, 242–253. https://doi.org/10.1145/3213846.3213872

[4] Jonathan P Bowen, Peter T Breuer, and Kevin C Lano. 1993. Formal speci�cations in software maintenance: From code

to Z++ and back again. Information and Software Technology 35, 11-12 (1993), 679–690. https://doi.org/10.1016/0950-

5849(93)90083-F

[5] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. 2005. Beyond assertions: Advanced speci�cation and

veri�cation with JML and ESC/Java2. In Formal Methods for Components and Objects, 4th International Symposium,

FMCO 2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised Lectures (Lecture Notes in Computer Science,

Vol. 4111), Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever (Eds.). Springer, 342–363.

https://doi.org/10.1007/11804192_16

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards,

Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating large language models trained on code. arXiv

preprint arXiv:2107.03374 (2021).

[7] Patrick Cousot, Radhia Cousot, Francesco Logozzo, and Michael Barnett. 2012. An abstract interpretation framework

for refactoring with application to extract methods with contracts. In Proceedings of the 27th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2012, part of SPLASH

2012, Tucson, AZ, USA, October 21-25, 2012, Gary T. Leavens and Matthew B. Dwyer (Eds.). ACM, 213–232. https:

//doi.org/10.1145/2384616.2384633

[8] Edsger W. Dijkstra and Carel S. Scholten. 1990. Predicate Calculus and Program Semantics. (1990). https://doi.org/10

.1007/978-1-4612-3228-5

[9] Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K. Lahiri. 2022. TOGA: A Neural Method for Test

Oracle Generation. In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA,

USA, May 25-27, 2022. ACM, 2130–2141. https://doi.org/10.1145/3510003.3510141

[10] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 1999. Dynamically Discovering Likely

Program Invariants to Support Program Evolution. In Proceedings of the 1999 International Conference on Software

Engineering, ICSE’ 99, Los Angeles, CA, USA, May 16-22, 1999, Barry W. Boehm, David Garlan, and Je� Kramer (Eds.).

ACM, 213–224. https://doi.org/10.1145/302405.302467

[11] Sarah Fakhoury, Saikat Chakraborty, MadanMusuvathi, and Shuvendu K Lahiri. 2023. Towards Generating Functionally

Correct Code Edits from Natural Language Issue Descriptions. arXiv preprint arXiv:2304.03816 (2023).

[12] Sarah Fakhoury, Aaditya Naik, Georgios Sakkas, Saikat Chakraborty, and Shuvendu K. Lahiri. 2024. LLM-based

Test-driven Interactive Code Generation: User Study and Empirical Evaluation. (2024). arXiv:2404.10100 [cs.SE]

[13] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation for object-oriented software. In

SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-19) and ESEC’11:

13th European Software Engineering Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011, Tibor Gyimóthy and

Andreas Zeller (Eds.). ACM, 416–419. https://doi.org/10.1145/2025113.2025179

[14] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. 2016. Learning invariants using decision trees and

implication counterexamples. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar

(Eds.). ACM, 499–512. https://doi.org/10.1145/2837614.2837664

[15] GitHub. 2023. GitHub Copilot. Accessed September 27, 2023. https://github.com/features/copilot/.

[16] Alberto Go�, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Automatic generation of oracles for

exceptional behaviors. In Proceedings of the 25th International Symposium on Software Testing and Analysis, ISSTA

2016, Saarbrücken, Germany, July 18-20, 2016, Andreas Zeller and Abhik Roychoudhury (Eds.). ACM, 213–224. https:

//doi.org/10.1145/2931037.2931061

[17] Hao He. 2019. Understanding source code comments at large-scale. In Proceedings of the ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,

Tallinn, Estonia, August 26-30, 2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo (Eds.). ACM,

1217–1219. https://doi.org/10.1145/3338906.3342494

[18] Henry Hsu and Peter A Lachenbruch. 2014. Paired t test. Wiley StatsRef: statistics reference online (2014).

[19] Daniel Jackson. 1992. Aspect, a formal speci�cation language for detecting bugs. Ph. D. Dissertation. Citeseer.

[20] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of Mutation Testing. IEEE Trans. Software

Eng. 37, 5 (2011), 649–678. https://doi.org/10.1109/TSE.2010.62

[21] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: a database of existing faults to enable controlled

testing studies for Java programs. In International Symposium on Software Testing and Analysis, ISSTA ’14, San Jose, CA,

USA - July 21 - 26, 2014, Corina S. Pasareanu and Darko Marinov (Eds.). ACM, 437–440. https://doi.org/10.1145/261038

4.2628055

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

https://doi.org/10.1145/3213846.3213872
https://doi.org/10.1016/0950-5849(93)90083-F
https://doi.org/10.1016/0950-5849(93)90083-F
https://doi.org/10.1007/11804192_16
https://doi.org/10.1145/2384616.2384633
https://doi.org/10.1145/2384616.2384633
https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1145/302405.302467
https://arxiv.org/abs/2404.10100
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2837614.2837664
https://github.com/features/copilot/
https://doi.org/10.1145/2931037.2931061
https://doi.org/10.1145/2931037.2931061
https://doi.org/10.1145/3338906.3342494
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055

84:22 M. Endres, S. Fakhoury, S. Chakraborty, S. Lahiri

[22] Darren Key, Wen-Ding Li, and Kevin Ellis. 2022. I speak, you verify: Toward trustworthy neural program synthesis.

arXiv preprint arXiv:2210.00848 (2022).

[23] Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jernite,

Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. 2022. The stack: 3 tb of permissively licensed source code. arXiv

preprint arXiv:2211.15533 (2022).

[24] Shuvendu K Lahiri, Aaditya Naik, Georgios Sakkas, Piali Choudhury, Curtis von Veh,Madanlal Musuvathi, Jeevana Priya

Inala, Chenglong Wang, and Jianfeng Gao. 2022. Interactive code generation via test-driven user-intent formalization.

arXiv preprint arXiv:2208.05950 (2022).

[25] Andrew K. Lampinen, Ishita Dasgupta, Stephanie C. Y. Chan, Kory Matthewson, Michael Henry Tessler, Antonia

Creswell, James L. McClelland, Jane X. Wang, and Felix Hill. 2022. Can language models learn from explanations in

context? arXiv:2204.02329 [cs.CL]

[26] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Veri�er for Functional Correctness. In Logic for Programming,

Arti�cial Intelligence, and Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010,

Revised Selected Papers (Lecture Notes in Computer Science, Vol. 6355), Edmund M. Clarke and Andrei Voronkov (Eds.).

Springer, 348–370. https://doi.org/10.1007/978-3-642-17511-4_20

[27] Andreas Leitner, Ilinca Ciupa, Manuel Oriol, Bertrand Meyer, and Arno Fiva. 2007. Contract driven development

= test driven development - writing test cases. In Proceedings of the 6th joint meeting of the European Software

Engineering Conference and the ACM SIGSOFT International Symposium on Foundations of Software Engineering,

2007, Dubrovnik, Croatia, September 3-7, 2007, Ivica Crnkovic and Antonia Bertolino (Eds.). ACM, 425–434. https:

//doi.org/10.1145/1287624.1287685

[28] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen. 2023. CodaMosa: Escaping Coverage

Plateaus in Test Generation with Pre-trained Large Language Models. In 45th IEEE/ACM International Conference on

Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE, 919–931. https://doi.org/10.1109/ICSE48

619.2023.00085

[29] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennigho�, Denis Kocetkov, Chenghao Mou, Marc Marone,

Christopher Akiki, Jia Li, Jenny Chim, et al. 2023. StarCoder: may the source be with you! arXiv preprint arXiv:2305.06161

(2023).

[30] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is Your Code Generated by ChatGPT Really

Correct? Rigorous Evaluation of Large Language Models for Code Generation. 37th cconference on Neural Information

processing Systems (NeurIPS), 2023 (2023). https://arxiv.org/abs/2305.01210

[31] Antonio Mastropaolo, Nathan Cooper, David Nader-Palacio, Simone Scalabrino, Denys Poshyvanyk, Rocco Oliveto,

and Gabriele Bavota. 2023. Using Transfer Learning for Code-Related Tasks. IEEE Trans. Software Eng. 49, 4 (2023),

1580–1598. https://doi.org/10.1109/TSE.2022.3183297

[32] B Mike, K Rustan M Leino, and S Wolfram. 2004. The Spec# programming system: An overview. In Construction

and Analysis of Safe, Secure, and Interoperable Smart devices (CASSIS)” volume 3362 of Lecture Notes in Computer

Science.

[33] Facundo Molina, Pablo Ponzio, Nazareno Aguirre, and Marcelo F. Frias. 2021. EvoSpex: An Evolutionary Algorithm for

Learning Postconditions. In 43rd IEEE/ACM International Conference on Software Engineering, ICSE 2021, Madrid, Spain,

22-30 May 2021. IEEE, 1223–1235. https://doi.org/10.1109/ICSE43902.2021.00112

[34] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong. 2022.

Codegen: An open large language model for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474

(2022).

[35] Theo X Olausson, Jeevana Priya Inala, ChenglongWang, Jianfeng Gao, and Armando Solar-Lezama. 2023. Demystifying

GPT Self-Repair for Code Generation. arXiv preprint arXiv:2306.09896 (2023).

[36] Jonathan S. Ostro�, David Makalsky, and Richard F. Paige. 2004. Agile Speci�cation-Driven Development. In Extreme

Programming and Agile Processes in Software Engineering, 5th International Conference, XP 2004, Garmisch-Partenkirchen,

Germany, June 6-10, 2004, Proceedings (Lecture Notes in Computer Science, Vol. 3092), Jutta Eckstein and Hubert

Baumeister (Eds.). Springer, 104–112. https://doi.org/10.1007/978-3-540-24853-8_12

[37] Long Ouyang, Je�rey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini

Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language models to follow instructions with human feedback.

Advances in Neural Information Processing Systems 35 (2022), 27730–27744.

[38] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit M. Paradkar. 2012. Inferring method

speci�cations from natural language API descriptions. In 34th International Conference on Software Engineering, ICSE

2012, June 2-9, 2012, Zurich, Switzerland, Martin Glinz, Gail C. Murphy, and Mauro Pezzè (Eds.). IEEE Computer Society,

815–825. https://doi.org/10.1109/ICSE.2012.6227137

[39] Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. 2023. Can Large Language Models Reason

about Program Invariants? 202 (2023), 27496–27520. https://proceedings.mlr.press/v202/pei23a.html

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

https://arxiv.org/abs/2204.02329
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/1287624.1287685
https://doi.org/10.1145/1287624.1287685
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE48619.2023.00085
https://arxiv.org/abs/2305.01210
https://doi.org/10.1109/TSE.2022.3183297
https://doi.org/10.1109/ICSE43902.2021.00112
https://doi.org/10.1007/978-3-540-24853-8_12
https://doi.org/10.1109/ICSE.2012.6227137
https://proceedings.mlr.press/v202/pei23a.html

Can LLMs Transform NL Intent into Formal Method Postconditions? 84:23

[40] Rolf-Helge Pfei�er. 2020. What constitutes Software?: An Empirical, Descriptive Study of Artifacts. In MSR ’20: 17th

International Conference on Mining Software Repositories, Seoul, Republic of Korea, 29-30 June, 2020, Sunghun Kim,

Georgios Gousios, Sarah Nadi, and Joseph Hejderup (Eds.). ACM, 481–491. https://doi.org/10.1145/3379597.3387442

[41] Richard Rutledge, Sheryl Duggins, Dan Lo, and Frank Tsui. 2014. Formal speci�cation-driven development. In

Proceedings of the International Conference on Software Engineering Research and Practice (SERP). The Steering Committee

of The World Congress in Computer Science, Computer . . . , 1.

[42] Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui Gu, and Suman Jana. 2020. CLN2INV: Learning Loop Invariants

with Continuous Logic Networks. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,

Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.net/forum?id=HJlfuTEtvB

[43] Rahul Sharma and Alex Aiken. 2016. From invariant checking to invariant inference using randomized search. Formal

Methods Syst. Des. 48, 3 (2016), 235–256. https://doi.org/10.1007/S10703-016-0248-5

[44] Sharon Shoham, Eran Yahav, Stephen Fink, and Marco Pistoia. 2007. Static speci�cation mining using automata-

based abstractions. In Proceedings of the ACM/SIGSOFT International Symposium on Software Testing and Analysis,

ISSTA 2007, London, UK, July 9-12, 2007, David S. Rosenblum and Sebastian G. Elbaum (Eds.). ACM, 174–184. https:

//doi.org/10.1145/1273463.1273487

[45] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang. 2011. Secure

Distributed Programming with Value-Dependent Types. In Proceedings of the 16th ACM SIGPLAN International

Conference on Functional Programming (Tokyo, Japan) (ICFP ’11). Association for Computing Machinery, New York,

NY, USA, 266–278. https://doi.org/10.1145/2034773.2034811

[46] Tabnine. 2023. Tabnine Code Completion. Accessed September 27, 2023. https://www.tabnine.com/.

[47] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /*icomment: bugs or bad comments?*/. In Proceedings

of the 21st ACM Symposium on Operating Systems Principles 2007, SOSP 2007, Stevenson, Washington, USA, October 14-17,

2007, Thomas C. Bressoud and M. Frans Kaashoek (Eds.). ACM, 145–158. https://doi.org/10.1145/1294261.1294276

[48] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. 2011. aComment: mining annotations from comments and code to

detect interrupt related concurrency bugs. In Proceedings of the 33rd International Conference on Software Engineering,

ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, Richard N. Taylor, Harald C. Gall, and Nenad Medvidovic

(Eds.). ACM, 11–20. https://doi.org/10.1145/1985793.1985796

[49] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tComment: Testing Javadoc Comments to

Detect Comment-Code Inconsistencies. In Fifth IEEE International Conference on Software Testing, Veri�cation and

Validation, ICST 2012, Montreal, QC, Canada, April 17-21, 2012, Giuliano Antoniol, Antonia Bertolino, and Yvan Labiche

(Eds.). IEEE Computer Society, 260–269. https://doi.org/10.1109/ICST.2012.106

[50] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundaresan. 2020. Unit Test Case

Generation with Transformers and Focal Context. https://doi.org/10.48550/ARXIV.2009.05617

[51] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundaresan. 2021. Unit Test Case

Generation with Transformers and Focal Context. arXiv:2009.05617 [cs.SE]

[52] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, and Neel Sundaresan. 2022. Generating Accurate Assert Statements

for Unit Test Cases using Pretrained Transformers. In IEEE/ACM International Conference on Automation of Software

Test, AST@ICSE 2022, Pittsburgh, PA, USA, May 21-22, 2022. ACM/IEEE, 54–64. https://doi.org/10.1145/3524481.3527220

[53] Vasudev Vikram, Caroline Lemieux, and Rohan Padhye. 2023. Can Large Language Models Write Good Property-Based

Tests? arXiv preprint arXiv:2307.04346 (2023).

[54] Jason Wei, Yi Tay, Rishi Bommasani, Colin Ra�el, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma,

Denny Zhou, Donald Metzler, et al. 2022. Emergent Abilities of Large Language Models. Transactions on Machine

Learning Research (2022).

[55] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou.

2023. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL]

[56] Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, and Ronghui Gu. 2020. Learning nonlinear loop invariants with

gated continuous logic networks. In Proceedings of the 41st ACM SIGPLAN International Conference on Programming

Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak

(Eds.). ACM, 106–120. https://doi.org/10.1145/3385412.3385986

[57] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. 2009. Inferring Resource Speci�cations from Natural Language API

Documentation. In ASE 2009, 24th IEEE/ACM International Conference on Automated Software Engineering, Auckland,

New Zealand, November 16-20, 2009. IEEE Computer Society, 307–318. https://doi.org/10.1109/ASE.2009.94

[58] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier

Bousquet, Quoc Le, and Ed Chi. 2023. Least-to-Most Prompting Enables Complex Reasoning in Large Language Models.

arXiv:2205.10625 [cs.AI]

[59] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and Harald C. Gall. 2017. Analyzing APIs

documentation and code to detect directive defects. In Proceedings of the 39th International Conference on Software

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

https://doi.org/10.1145/3379597.3387442
https://openreview.net/forum?id=HJlfuTEtvB
https://doi.org/10.1007/S10703-016-0248-5
https://doi.org/10.1145/1273463.1273487
https://doi.org/10.1145/1273463.1273487
https://doi.org/10.1145/2034773.2034811
https://www.tabnine.com/
https://doi.org/10.1145/1294261.1294276
https://doi.org/10.1145/1985793.1985796
https://doi.org/10.1109/ICST.2012.106
https://doi.org/10.48550/ARXIV.2009.05617
https://arxiv.org/abs/2009.05617
https://doi.org/10.1145/3524481.3527220
https://arxiv.org/abs/2201.11903
https://doi.org/10.1145/3385412.3385986
https://doi.org/10.1109/ASE.2009.94
https://arxiv.org/abs/2205.10625

84:24 M. Endres, S. Fakhoury, S. Chakraborty, S. Lahiri

Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, Sebastián Uchitel, Alessandro Orso, and Martin P.

Robillard (Eds.). IEEE / ACM, 27–37. https://doi.org/10.1109/ICSE.2017.11

Received 2023-09-28; accepted 2024-04-16

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 84. Publication date: July 2024.

https://doi.org/10.1109/ICSE.2017.11

	Abstract
	1 Introduction
	1.1 Motivating Examples
	1.2 Overview
	1.3 Contributions

	2 nl2postcond: Overall Approach
	2.1 Problem Formulation and Metrics
	2.2 Prompt Design for LLM-based Postcondition Generation

	3 RQ1: How well do LLM-generated postconditions formalize informal natural language intent?
	3.1 RQ1 Experimental Setup
	3.2 RQ1-Results: Do LLM-generated Postconditions Formalize User Intent?

	4 RQ2: Can nl2postcond help catch real world bugs?
	4.1 RQ2–Research Methodology and Experimental Setup
	4.2 RQ2–Results: Can LLM-generated Postconditions Catch Real-World Bugs?
	4.3 Baseline Comparison: TOGA, Daikon

	5 Related Work
	6 Limitations and Threats to Validity
	7 Conclusion
	8 Data Availability
	References

