
A CIL Tutorial

Using CIL for language extensions and program analysis

Author:
Zachary Anderson
zanderso@acm.org

Systems Group
Department of Computer Science

ETH Zürich

January 7, 2013

Copyright c©2013 Zachary Anderson

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/.

The source code snippets listed in this work are licensed under the BSD 3-Clause license, whose details

can be found in the LICENSE �le of the source code repository at

http://bitbucket.org/zanderso/cil-template/.

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://bitbucket.org/zanderso/cil-template/

Contents

Preface 4

Introduction 5

0 Overview and Organization 8

0.1 Source �le to AST . 8
0.2 tut0.ml . 9

1 The AST 11

1.1 tut1.ml . 12
1.2 Printing the AST . 13
1.3 test/tut1.c . 13

2 Visiting the AST 16

2.1 tut2.ml . 16
2.2 test/tut2.c . 18
2.3 Exercises . 19

3 Data�ow Analysis 21

3.1 tut3.ml . 22
3.2 test/tut3.c . 32
3.3 Exercises . 33
3.4 Further Reading . 34

4 Instrumentation 36

4.1 tut4.ml . 36
4.2 tut4.c . 40
4.3 test/tut4.c . 40
4.4 Exercises . 41

5 Interpreted Constructors 42

5.1 tut5.ml . 42
5.2 test/tut5.c . 45

1

CONTENTS 2

6 Overriding Functions 47

6.1 tut6.ml . 47
6.2 Overriding Library Calls . 47
6.3 tut6.c . 48
6.4 test/tut6.c . 49
6.5 Further Reading . 50

7 Type Quali�ers 52

7.1 tut7.ml . 52
7.2 test/tut7.c . 56
7.3 Exercises . 57
7.4 Further Reading . 57

8 Dependant Type Quali�ers 59

8.1 tut8.ml . 60
8.2 test/tut8.c . 68
8.3 Exercises . 69
8.4 Further Reading . 69

9 Type Quali�er Inference 71

9.1 tut9.ml . 71
9.2 test/tut9.c . 78
9.3 Exercises . 79
9.4 Further Reading . 79

10 Adding a New Kind of Statement 81

10.1 tut10.ml . 81
10.2 tut10.c . 83
10.3 Exercises . 89
10.4 Further Reading . 89

11 Program Veri�cation 91

11.1 tut11.ml . 92
11.2 test/tut11.c . 101
11.3 Exercises . 102
11.4 Further Reading . 103

12 Comments 105

12.1 tut12.ml . 105
12.2 test/tut12.c . 108
12.3 Further Reading . 108

CONTENTS 3

13 Whole-program Analysis 110

13.1 tut13.ml . 110
13.2 Example . 111
13.3 Exercises . 113
13.4 Further Reading . 113

14 Implementing a simple DSL 114

14.1 tut14.ml . 114
14.2 test/tut14.c . 123

15 Automated Test Generation 125

15.1 Background . 127
15.2 Organization . 127
15.3 test/tut15.c . 129

Preface

The collection of techniques and code examples in this tutorial were developed over several years
during my Ph.D. at Berkeley, and during my postdoctoral studies in the Systems Group at ETH
Zürich. At ETH I used this tutorial and the accompanying project template to bring students
up-to-speed in using CIL for their projects. I found that it was suitable for this purpose not only
for students beginning their MS thesis work, but also for advanced undergrads in a course I taught
on program analysis and transformation during the Spring semester of 2012.

My hope in sharing this tutorial is that it will help students of program analysis and program-
ming language design have a quicker and smoother beginning toward building interesting and useful
tools.

Good Luck,
Zachary Anderson
Zürich, Switzerland
January 7, 2013

4

Introduction

The C Intermediate Language(CIL) [8] is a source-to-source compiler for C. Since CIL is written in
OCaml [6], and since it performs a number of simplifying transformations to the C AST, it is very
well suited for use in rapid-prototyping new static and dynamic analyses, and for designing and
trying out new language extensions. The purpose of this tutorial is to show how CIL can be used
to construct a compiler front-end that performs additional analysis, or implements new language
extensions. Through a series of examples, we will cover the basics of CIL's AST, its data�ow
analysis framework, its facilities for instrumenting programs, the ease of extending C's type system,
and how to employ a theorem prover in the compilation process. In the later chapters, the tutorial
will scratch the surface of some more advanced techniques. These examples will hopefully point in
the direction of full-�edged implementations of these advanced techniques, and serve as a template
and starting point for your future projects.

Alternatives

Similar results could certainly be achieved by working directly with gcc or Clang/LLVM [1, 5],
however the learning curve for these tools is much steeper, and the coding burden much higher.
Furthermore, with Clang/LLVM in particular, there is no easy way to add custom statements to C,
to make deep changes to its type-system, or to make changes at the level of the AST. Indeed, using
Clang/LLVM, language extensions are typically written by interpreting new #pragma directives, e.g.
in [9]; and new types are added by extending a complicated class hierarchy designed for speed rather
than for ease of understanding or rapid prototyping. As we will see in this tutorial, with CIL, making
these sorts of changes is straightforward. However, there is at least one downside with CIL: unlike
working directly with gcc, or with Clang/LLVM, there is no support for C++. Language researchers
and analysis designers must consider this trade-o� when deciding on a compiler framework.

How to read this tutorial

This tutorial is written in the style of Literate Programming [4]. The source �les in the src, ciltut-
lib, and test directories may be compiled with the OCaml or C compilers as appropriate, and may
be processed by ocamlweb [3] (in the case of OCaml code) and pygmentize [2] (in the case of C
code) to produce the LATEX code that de�nes this document. In the �template� version of this source
tree, the comments that generate this document are omitted.

5

CONTENTS 6

Each section begins with a brief introduction that explains the result to be achieved and the
overall organization of the source code. This is followed by a heavily commented code listing. Oc-
casionally, repetitive or obvious bits of code are omitted. In the source code, these omissions are
indicated with ellipsis dots inside an OCaml comment, i.e. (*...*). Interspersed with the com-
ments are OCaml style tips, and suggestions for exercises and projects. The exercises and projects
are intended to highlight how one might take the code in the tutorials and extend it to improve
completeness or to add new features. Finally, at the end of some tutorials there is a bibliography
with suggested further reading. The papers and books mentioned will either explain concepts from
the tutorial in greater depth, or describe projects that have applied CIL using techniques from the
tutorial.

We use the following textual conventions when referring to �les, programs, modules, and vari-
ables. On �rst mention, �les in the tutorial tree are referred to using their full path, e.g. src/main.ml.
On �rst mention, �les in the CIL tree are referred to using their full path rooted in the cil directory,
e.g. cil/src/cil.ml. Program names are set as, e.g., gcc. Module names and variable names are
typeset according to the conventions of ocamlweb.

Other Resources

The documentation in this tutorial is not intended as the sole source of information about CIL.
In particular, we try to avoid duplicating information already contained in the o�cial documen-
tation [7], and the comments in the core CIL module in cil/src/cil.mli. Rather, this tutorial
attempts to give hints about how to structure code, how to achieve some higher-level goals, and a
few handy tricks that we have acquired in our own work while using CIL. Thus, if something seems
ill-de�ned or unclear, please refer to CIL's o�cial documentation.

Finally, the source code mentioned in this tutorial is available in a mercurial repository, and can
be acquired by issuing the command:

$ hg clone https://bitbucket.org/zanderso/cil-template

The code in that repository can be viewed as a template for your own projects. It and CIL are
both released under the BSD license.

References

[1] clang: a C language family frontend for LLVM, December 2011. http://clang.llvm.org/.

[2] Georg Brandl. Pygments�python syntax highlighter, December 2012. http://pygments.org/.

[3] Jean-Christophe Filliâtre and Claude Marché. ocamlweb: A literate programming tool for
Objective caml, December 2011. http://www.lri.fr/~filliatr/ocamlweb/.

[4] Donald E. Knuth. Literate Programming. CSLI Lecture Notes Number 27. 1992.

[5] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program Anal-
ysis & Transformation. In Proceedings of the 2004 International Symposium on Code Generation
and Optimization (CGO'04), Palo Alto, California, Mar 2004.

[6] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jéròme Vouil-
lon. The OCaml system: release 3.12, July 2011. http://caml.inria.fr.

[7] George C. Necula. CIL API documentation. http://www.cs.berkeley.edu/~necula/cil.

[8] George C. Necula, Scott McPeak, and Westley Weimer. CIL: Intermediate language and tools
for the analysis of C programs. In CC'04, pages 213�228. http://cil.sourceforge.net/.

[9] Prakash Prabhu, Soumyadeep Ghosh, Yun Zhang, Nick P. Johnson, and David I. August. Com-
mutative set: a language extension for implicit parallel programming. In Proceedings of the
32nd ACM SIGPLAN conference on Programming language design and implementation, PLDI
'11, pages 1�11, New York, NY, USA, 2011. ACM.

7

http://clang.llvm.org/
http://pygments.org/
http://www.lri.fr/~filliatr/ocamlweb/
http://caml.inria.fr
http://www.cs.berkeley.edu/~necula/cil

Chapter 0

Overview and Organization

Overall, this tutorial is organized as an OCaml program that uses CIL as a library. A Perl script
sits in front of the resulting OCaml program to make the result resemble various o�-the-shelf C
compilers as much as possible. The code accompanying this tutorial provides nearly all of the
necessary boilerplate, and will let you dive right in and start analyzing and manipulating the AST.

0.1 Source �le to AST

Day-to-day, it is generally not needed to know how this boilerplate code produces an AST that we
can work with in our OCaml program. It is good to understand how it works, though, in case your
project requires you to modify the compilation process in some way, for example to force linking
against a custom runtime library.

By default, CIL operates on one source �le at a time (whole-program analysis is discussed by
Chapter 13). The result of parsing a preprocesssed source �le is a data-structure of type Cil.file.
This structure contains a list of C de�nitions and declarations at global scope.

The details of parsing are handled in two places. Firstly in the Perl script mentioned above. It
is called cil/lib/Cilly.pm, and is part of the CIL installation. For a project that uses the CIL
library, like this one, we use our own Perl script, lib/Ciltut.pm, that derives from, overrides, and
extends Cilly.pm to specialize it to our purposes1. This Perl script also takes care of running the
preprocessor on the source �le, interpreting some of the compiler �ags, and performing the �nal link.
Secondly, the OCaml program mentioned above reads in the preprocessed source �le and passes it
to Frontc.parse with cabs, which parses the �le, and turns it into a Cil.file.

The details of the Cil.file instance are covered in Chapter 1. For now it should su�ce to
mention that the boilerplate code in src/main.ml takes care of setting up CIL's internal data-
structures and options, parsing the input source �le, and later on, emitting the .cil.c �le that the
perl script passes to gcc, or whatever your favorite C compiler happens to be.

Everything that happens in between parsing the input and emitting the output happens in source
�les like src/tut0.ml. Here, we write a function that takes a Cil.file, analyzes it, performs some

1This is where we could provide additional command line �ags to the back-end compiler or to force linking with

a custom runtime library, see the comments in that source �le for details.

8

CHAPTER 0. OVERVIEW AND ORGANIZATION 9

modi�cations to it, and optionally returns a result up to the caller in main.ml. We include this
source �le in the build by adding it to the list CILTUT SRC in CMakeLists.txt.

Functions, like tut0 below, that do this sort of work should be called from processOneFile in
main.ml.

0.2 tut0.ml

The �rst step in writing an OCaml module that uses the CIL library is to open the Cil module (or
bind it to an alias, like we do with the Errormsg module). The CMakeLists.txt �le provided with
this tutorial ensures that the CIL library is correctly found and linked assuming that it has been
correctly installed. From now on, in the following chapters, the code to open modules and create
aliases will be included only for the �rst mention of a module.

open Cil (∗ The CIL library ∗)
module E = Errormsg (∗ CIL's error message library ∗)

tut0 is a dummy function that doesn't do anything. However, there is certainly nothing preventing
it from inspecting f and making changes to its mutable �elds if it really wanted to.

let tut0 (f : file) : unit =
E.log "I'n in tut0 and I could change %s if I wanted to!\n" f.fileName;
()

When the compiler front-end embodied by this tutorial is built and installed, the code in this
module may be run by providing the --enable-tut0 command line switch, like so:

$ ciltutcc --enable-tut0 -o program program.c

I'm in tut0 and I could change program.i if I wanted to!

Finally, if ciltutcc fails due to an unhandled exception, a stack trace may be obtained by
re-executing the command as follows:

OCaml Style Note: Types are inferred, so you don't have to write them
all the time. However, if you want to remember what your code does a month
from now, writing in some of the types is a Good Idea.

CHAPTER 0. OVERVIEW AND ORGANIZATION 10

$ OCAMLRUNPARAM=b ciltutcc --bytecode ...

Chapter 1

The AST

The Concrete Syntax of a program, is the textual representation of the program. An Abstract Syntax
Tree(AST) is the in-memory data-structure that represents the parsed program. Parsing turns the
concrete syntax into an AST. Parsing, the speci�cation of grammars, and the various algorithms
for lexical analysis and parsing, are covered in detail in many traditional textbooks on compilers.
The textbooks by Appel [2] and Muchnick [3] are good starting points.

This chapter of the tutorial explains the structure of CIL's AST for C. The AST is de�ned in
the Cil module in cil/src/cil.ml between lines 130 and 850. It might seem pretty complex at
�rst glance, but you will �nd that it is very well documented, and the names of types, �elds and
constructors are logically assigned. Also, if you are familiar with other C or C++ front-ends, this
AST is refreshingly straightforward. Finally, one of the key advantages to using CIL is that it makes
a number of transformations that simplify analysis and instrumentation. Biggest among these is the
absence of side-e�ects in expressions. Function calls and assignments are all lifted out of expressions
into the Cil.instr nodes.

In this example code, we go digging through the AST looking for a function called target, when
we �nd it, we �lter out assignments to a global variable called deleted. In src/tut2.ml we'll see
how to do this a bit more elegantly.

Coding Hint: When working with CIL, have two windows of source on your
screen. One window is the project you are hacking on. The other window
is cil.ml, so you can refer quickly to the AST type de�nitions and utility
functions.

11

CHAPTER 1. THE AST 12

1.1 tut1.ml

The function tut1FixInstr returns false if the instruction i is an assignment to a global vari-
able called deleted. Otherwise it returns true. We'll be using this function as an argument to
List.filter.

let tut1FixInstr (i : instr) : bool =
match i with

| Set((Var vi, NoOffset), , loc)
when vi.vname = "deleted" ∧ vi.vglob →

E.log "%a: Deleted assignment: %a\n" d loc loc d instr i;
false

| → true

The tut1FixStmt function inspects a statement. If the statement is a list of instructions, it over-
writes the mutable skind �eld of the statement with a list of instructions �ltered by tut1FixInstr.
Otherwise, it recursively descends into sub-statements.

let rec tut1FixStmt (s : stmt) : unit =
match s.skind with

| Instr il →
s.skind ← Instr(List.filter tut1FixInstr il)
| If(, tb, fb,) →
tut1FixBlock tb;
tut1FixBlock fb

(∗ and so forth.∗)
| → ()

and tut1FixBlock (b : block) : unit = List.iter tut1FixStmt b.bstmts

let tut1FixFunction (fd : fundec) : unit = tut1FixBlock fd.sbody

Now that we have de�ned a set of functions for traversing the AST of a function de�nition, we can
write a function for the entry point into this module that iterates over all of the globals of a �le.
When we �nd the function called �target� we invoke tut1FixFunction.

let tut1 (f : file) : unit =
List.iter (fun g →
match g with

| GFun (fd, loc) when fd.svar.vname = "target" →
tut1FixFunction fd

| → ())
f.globals

CHAPTER 1. THE AST 13

1.2 Printing the AST

The function tut1FixInstr also uses CIL's logging and pretty-printing features. The call to E.log
causes messages to be printed to stdout. It is similar to Printf.printf from the OCaml stan-
dard library with a few di�erences that are documented in cil/ocamlutil/errormsg.mli. Most
importantly, you can print elements of the CIL AST by using the %a format speci�er. Then, corre-
sponding to that format you must supply two arguments: a function (unit→ α → doc), and such
an α that you want to print. Functions like this for the AST elements are de�ned in cil.ml (e.g.
Cil.d exp for Cil.exp's). Functions for building objects of type doc are available in the Pretty

module documented in cil/ocamlutil/pretty.mli.

1.3 test/tut1.c

The module tut1.ml deletes writes inside functions named �target� to global variables named
�deleted�. Thus, the function target below will return 37.

../test/tut1.c
include <stdio.h>

int deleted = 37;

int target()

{

int l;

deleted = 0;

l = deleted;

return l;

}

int main()

{

int r;

r = target();

printf("r = %d\n", r);

return 0;

}

We can build this �le with the following command:

$ ciltutcc --enable-tut1 -o tut1 test/tut1.c

test/tut1.c:14: Deleted assignment: #line 14 "test/tut1.c"

deleted = 0;

Using the log message emitted by tut1FixInstr, ciltutcc informs us that it has removed an
assignment to deleted. Now, we can run the resulting program:

CHAPTER 1. THE AST 14

$./tut1

r = 37

As expected, the assignment of 0 to deleted has been removed from the function target, and
the program prints the original value.

References

[1] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge University Press, 1998.

[2] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

15

Chapter 2

Visiting the AST

This chapter explains the use of the visitor pattern [1] for traversing and modifying the CIL AST.
The Visitor pattern de�ned incil.ml takes care of the boilerplate code for traversing the AST,
meaning that we don't have to write a bunch of mutually recursive functions every time we want
to walk the AST like we did in Chapter 1.

The visitor pattern in CIL uses the O(bjective) features of OCaml. We inherit from nopCilVisitor,
which simply walks the AST without doing anything. To do something other than that, we override
the base class's methods.

In this example, we want to pull out assignments to a global variable, which is given as a
parameter to tut2, from a function, which is also given as a parameter to tut2. Thus, we override
the vinst (�visit instruction�) method.

The result of one of the methods of the visitor class tells the visitor how to proceed next. There
are four options for the result of a visitor method:

• SkipChildren � Stops the visitor from recursing into child AST nodes

• DoChildren � Directs the visitor to recurse into child AST nodes

• ChangeTo x � Replaces the AST node with x

• ChangeDoChildrenPost(x, f) � Like ChangeTo x, but runs f on the result of rebuilding x

with the result of the visitor running on x's children.

For ChangeTo x and ChangeDoChildrenPost(x, f), check nopCilVisitor in cil.ml for the cor-
rect types for x and f. Further, note the following important di�erence between ChangeTo x and
ChangeDoChildrenPost(x, f): The visitor does not recurse into new nodes added with ChangeTo x.
The visitor does however recurse into new nodes added with ChnageDoChildrenPost(x, f), and
additionally you can give a function(f) to apply to the result.

2.1 tut2.ml

In this module, we will �rst subclass CIL's default AST visitor, which simply returns DoChildren
from every method. Then, we'll run the visitor over every function de�nition in the Cil.file.

16

CHAPTER 2. VISITING THE AST 17

open Tututil (∗ for |> and onlyFunctions ∗)

assignRmVisitor is an OCaml class parameterized by the name of the variable whose assignment
we are removing. The class inherits from nopCilVisitor as described above. assignRmVisitor

overrides the vinst method. In our vinst method, we do case analysis on the incoming instruction.
If it is an assignment (i.e. a Set) whose destination is the global variable that we're looking for,
we use ChangeTo to replace the instruction with an empty list of instructions. If the instruction is
any other assignment, a function call, or inline assembly, we leave it be with either SkipChildren
or DoChildren.

class assignRmVisitor (vname : string) = object(self)
inherit nopCilVisitor (∗ Inherit the default visitor, which does nothing ∗)
method vinst (i : instr) = (∗ Override the method for visiting instructions ∗)
match i with

| Set((Var vi, NoOffset), , loc) when vi.vname = vname ∧ vi.vglob →
E.log "%a: Assignment deleted: %a\n" d loc loc d instr i;
ChangeTo [] (∗ Remove the Set instruction ∗)
| → SkipChildren (∗ Don't care, could also say DoChildren here. ∗)

end

Now, the processFunction function is parameterized by the target function and variable names. If
the function is the one we're looking for, we create an instance of assignmRmVisitor parameterized
by the target variable name, and invoke the function visitCilFunction from cil.ml.

let processFunction ((tf, tv) : string × string) (fd : fundec) (loc : location) : unit =
if fd.svar.vname 6= tf then () else begin

let vis = new assignRmVisitor tv in

ignore(visitCilFunction vis fd)
end

tut2 is the external interface to this module. In a larger project, it would be appropriate to create
a .mli �le referring only to tut2. The function takes a pair of strings which are the target function
and variable names along with the Cil.file to transform. The functions used to write tut2 are
described in detail below.

• iterGlobals is de�ned in cil.ml. It applies the function given by the �rst argument to every
global in the �le given by the second argument.

• onlyFunctions is de�ned in src/tututil.ml. It does nothing to globals that are not GFun's,
and passes the fundec and loc of GFun's on to the function given by its argument.

CHAPTER 2. VISITING THE AST 18

Coding Hint: The in�x function |> has type (α → (α →
β) → β). The code in tut2 is another way of writing
iterGlobals f (onlyFunctions (processFunction funvar)) but with-
out all the extra parenthesis. |> is included in the F# standard library,
but since it isn't in OCaml's we de�ne it in Tututil. You can read it as
�expression on the left is passed to function on right�, and we can chain them
up like I have in tut2 without writing lots of extra parenthesis.

let tut2 (funvar : string × string) (f : file) : unit =
funvar | > processFunction | > onlyFunctions | > iterGlobals f

2.2 test/tut2.c

In main.ml tut2 in tut2.ml is called with argument ("foo","bar") meaning that assignments to
global variables called bar should be removed from functions called foo. Thus, when the code below
is compiled with tut2 enabled, the program should print 37 and exit.

../test/tut2.c
include <stdio.h>

int bar = 37;

int foo()

{

int l;

bar = 0;

l = bar;

return l;

}

int main()

{

int r;

r = foo();

printf("r = %d\n", r);

return 0;

}

As with test/tut1.c, we can build this �le with the following command:

CHAPTER 2. VISITING THE AST 19

$ ciltutcc --enable-tut2 -o tut2 test/tut2.c

test/tut2.c:16: Deleted assignment: #line 16 "test/tut2.c"

bar = 0;

Again, using the E.log function above, ciltutcc informs us that it has removed an assignment
to bar on line 16. Now, we can run the resulting program:

$./tut2

r = 37

As expected, the assignment of 0 to bar has been removed from the function foo, and the
program prints the original value.

2.3 Exercises

1. Take a look at the methods available for use in a visitor class. Rewrite this example without
using iterGlobals. That is, use only the visitor class to do all the work.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1995.

20

Chapter 3

Data�ow Analysis

Data�ow Analyses can be used to calculate an abstraction of the program state at each program
location. Data�ow analysis is a �ow-sensitive analysis, meaning that, unlike �ow-insensitive analysis,
the order of the statements in the program is taken into account when calculating the abstraction
of the state.

Traditionally, compiler writers use data�ow analyses extensively in performing compiler opti-
mizations. For example, an available expressions data�ow analysis can eliminate redundant compu-
tation. Most compiler textbooks discuss data�ow analysis in detail [2, 3]. A more formal treatment
can be found in the textbook by Nielson et al. [4].

CIL has a number of useful data�ow analyses built-in, which you can �nd in the directory
cil/src/ext. They include a liveness analysis, an available expressions analysis, a reaching de�ni-
tions analysis, and others. The utility of even a simple liveness analysis cannot be underestimated.
Consider the following code snippet:

int *x = calloc(n, sizeof int);

f(x);

// x is never mentioned again

Since x does not escape the function, and since it is not live after the call to f, even a simple liveness
analysis can conclude that f is taking ownership of the memory allocated on the �rst line.

In this tutorial we explore CIL's data�ow analysis features. In particular, we employ the follow-
ing functor from CIL's Dataflow module found in cil/src/ext/dataflow.ml:

module ForwardsDataFlow (T : ForwardsTransfer) = struct ...,

which yields a module containing only a function called compute, which performs the data�ow analy-
sis using the standard worklist algorithm. The functor is documented in detail in cil/src/ext/dataflow.mli
and in the CIL documentation.

In order to use this functor, we must create an OCaml module implementing the ForwardsTransfer
signature, which de�nes operations over the abstract state along with the transfer functions for the

21

CHAPTER 3. DATAFLOW ANALYSIS 22

static analysis. Now is a good time to take a look in dataflow.mli at the signature of the module
that we'll be implementing, and what the functions of the module mean. Additionally, the Dataflow
module is well documented in the main CIL documentation.

3.1 tut3.ml

The data�ow analysis here is a common textbook example for abstract interpretation, an even/odd
analysis. First, we'll de�ne types and operations over the abstract state of the program. Then, we'll
apply the functor. Following this, we'll write some boilerplate code for accessing the results of the
analysis in an AST visitor. It should be straightforward to repurpose the code in this tutorial for
many other kinds of data�ow analysis, so feel free to use it as a starting point. For data�ow analysis
in the backwards direction, there is also a BackwardsDataFlow functor in the Dataflow module.

module IH = Inthash (∗ An int → α hashtable library ∗)
module DF = Dataflow (∗ CIL's data�ow analysis library ∗)

When debug is true, the data�ow library emints out lots of debugging information.

let debug = ref false

3.1.1 Type De�nitions

The abstract state for the analysis is a mapping from local variables of integral type to one of the
oekind constructors. When a variable is mapped to one of these kinds, it has the following meaning:

• Top � The variable could be either odd or even.

• Even � The variable is an even integer.

• Odd � The variable is an odd integer.

• Bottom � The variable is uninitialized.

type oekind = Top | Odd | Even | Bottom

We'll use association lists to represent the mapping. An element of the mapping for a variable
vi : varinfo is like: (vi.vid, (vi, kind)). We'll also need some utility functions for examining
and manipulating the mappings.

CHAPTER 3. DATAFLOW ANALYSIS 23

Coding Hint: Whenever you de�ne a new type t, write a string of t func-
tion, and if it makes sense, a t of string function as well. Here, we have to
in order to implement one of the functions we need for the ForwardsTransfer
signature, but it's also a good idea in general for at least two reasons. First,
they come in handy for debugging, and second, they give you a sense of how
easy the types you've de�ned will be to program with.

type varmap = int × (varinfo × oekind)
let id of vm (vm : varmap) : int = fst vm

let vi of vm (vm : varmap) : varinfo = vm | > snd | > fst

let kind of vm (vm : varmap) : oekind = vm | > snd | > snd

3.1.2 Functions for pretty printing the state

One of the functions we'll need to de�ne for the ForwardsDataFlow functor is a function to pretty-
print the abstract state. In particular, we must de�ne a function that turns the abstract state into
an instance of type Pretty.doc. Functions for constructing objects of this type are de�ned in the
module Pretty in pretty.ml. For now, though, we'll just turn our abstract state into an OCaml
string, and then use the function Pretty.text : string → doc to obtain a doc.

let string of oekind (k : oekind) : string =
match k with

| Top → "Top"

| Odd → "Odd"

| Even → "Even"

| Bottom → "Bottom"

The string of varmap function converts a varmap tuple to a string:

let string of varmap (vm : varmap) : string =
let vi = vi of vm vm in

"("�vi.vname�", "�(vm | > kind of vm | > string of oekind)�")"

The string of varmap list converts a list of varmaps into a comma-separated list:

let string of varmap list (vml : varmap list) : string =
vml

|> L.map string of varmap

|> String.concat ", "

CHAPTER 3. DATAFLOW ANALYSIS 24

The function varmap list pretty uses the functions string of varmap list and Pretty.text
to convert a varmap list to a doc:

let varmap list pretty () (vml : varmap list) =
vml | > string of varmap list | > text

3.1.3 Functions for manipulating kinds and states

Now, we must de�ne some functions that manipulate lists of varmaps, culminating in the functions
varmap list combine and varmap list replace. varmap list combine �nds the least-upper-
bound of two varmap lists. This function is responsible for determining the abstract state of the
program at a join point. varmap list replace adds or replaces a mapping from the varmap list.
It is used in the transfer function for assignments.

The function oekind neg gets the opposite kind:

let oekind neg (k : oekind) : oekind =
match k with

| Even → Odd

| Odd → Even

| → k

The function varmap equal checks if two varmap's are exactly the same:

let varmap equal (vm1 : varmap) (vm2 : varmap) : bool =
(id of vm vm1) = (id of vm vm2) ∧
(kind of vm vm1) = (kind of vm vm2)

The function varmap list equal checks that two varmap lists are exactly the same. We sort the
lists �rst because order doesn't matter.

let varmap list equal (vml1 : varmap list) (vml2 : varmap list) : bool =
let sort = L.sort (fun (id1,) (id2,) → compare id1 id2) in
list equal varmap equal (sort vml1) (sort vml2)

The function oekind includes de�nes the partial order for our lattice:

• Bottom, Odd, Even < Top

• Bottom < Odd, Even

• But Even <> Odd

CHAPTER 3. DATAFLOW ANALYSIS 25

let oekind includes (is this : oekind) (in this : oekind) : bool =
match is this, in this with

| , Top → true

| Bottom, → true

| , → false

The function oekind combine de�nes the least-upper-bound(LUB) operation for the lattice: Any-
thing joined with Top gives Top. Even joined with Odd also gives Top. Odd joined with itself or
Bottom gives Odd, and likewise with Even. Bottom joined with Bottom gives Bottom.

let oekind combine (k1 : oekind) (k2 : oekind) : oekind =
match k1, k2 with

| Top, | , Top | Odd, Even | Even, Odd → Top

| Odd, | , Odd → Odd

| Even, | , Even → Even

| Bottom, Bottom → Bottom

The function varmap combine �nds the LUB of two varmaps. It is unde�ned if the varmaps are not
for the same variable. In that case, we return None.

let varmap combine (vm1 : varmap) (vm2 : varmap) : varmap option =
match vm1, vm2 with

| (id1,), (id2,) when id1 6= id2 → None

| (id1, (vi1, k1)), (, (, k2)) → Some(id1, (vi1, oekind combine k1 k2))

The function varmap list combine one �nds the LUB of a varmap list with a single varmap. The
function forceOption : α option → α returns the object wrapped up in a Some constructor, and
throws an exception when passed None. However, we know that varmap combine will return Some

since we know that vm and vm' have the same id.

let varmap list combine one (vml : varmap list) (vm : varmap) : varmap list =
let id = id of vm vm in

if L.mem assoc id vml then

let vm' = (id, L.assoc id vml) in
let vm� = forceOption (varmap combine vm vm') in
vm� :: (L.remove assoc (id of vm vm) vml)

else vm :: vml

The function varmap list combine Finds the LUB of two varmap lists for a join point in the
program.

CHAPTER 3. DATAFLOW ANALYSIS 26

let varmap list combine (vml1 : varmap list) (vml2 : varmap list) : varmap list =
L.fold left varmap list combine one vml1 vml2

The function varmap list replace replaces the entry for a variable in the state, e.g. for an
assignment.

let varmap list replace (vml : varmap list) (vm : varmap) : varmap list =
vm :: (L.remove assoc (id of vm vm) vml)

3.1.4 The oekind of an expression

These functions determine the oekind of CIL expressions by recursing over their sub-expressions.
We also use CIL's built-in constant folding to obtain constants for some expressions, e.g. SizeOf.

The function kind of int64 determine whether concrete integers are Odd or Even

let kind of int64 (i : Int64.t) : oekind =
let firstbit = Int64.logand i Int64.one in

if firstbit = Int64.one then Odd else Even

Depending on the abstract state, determine whether an expression e is for an Odd or Even inte-
ger. The function oekind of exp uses CIL's constant folding function to deal with things like
sizeof(type). Mutually recursive functions descend into unary and binary operations. Non-integer
constants, addresses, and complex lvalues are translated as Top.

let rec oekind of exp (vml : varmap list) (e : exp) : oekind =
match e with

| Const(CInt64(i, ,)) → kind of int64 i

| Lval(Var vi, NoOffset) → vml | > L.assoc vi.vid | > snd

| SizeOf | SizeOfE | SizeOfStr | AlignOf | AlignOfE →
e | > constFold true |> oekind of exp vml

| UnOp(uo, e, t) → oekind of unop vml uo e

| BinOp(bo, e1, e2, t) → oekind of binop vml bo e1 e2

| CastE(t, e) → oekind of exp vml e

| → Top

The function oekind of unop determines whether the result of unary operation is Odd or Even. If
the analysis were more clever, we could have said something about the LNot case, but for now we'll
just say Top.

CHAPTER 3. DATAFLOW ANALYSIS 27

and oekind of unop (vml : varmap list) (u : unop) (e : exp) : oekind =
match u with

| Neg → oekind of exp vml e

| BNot → e | > oekind of exp vml | > oekind neg

| LNot → Top

The function oekind of binop determines whether the result of a binary operation is Odd or Even.
In this example we are handling only the cases for addition, subtraction, and multiplication, but it
is also possible to handle other cases.

and oekind of binop (vml : varmap list) (b : binop) (e1 : exp) (e2 : exp) : oekind =
let k1, k2 = oekind of exp vml e1, oekind of exp vml e2 in

match b with

| PlusA → begin

match k1, k2 with

| Even, Even → Even

| Odd, Odd → Even

| Even, Odd → Odd

| Odd, Even → Odd

| , → Top

end

(∗ ... ∗)
| → Top

If there is a write to memory or a function call, we must destroy anything we knew about a local
variable whose address has been taken. In the case of a function call, if the analysis were to also
handle global variables, it would also have to clear their state even if their addresses haven't been
taken (but a global whose address hasn't been taken would still be safe from a memory write.) The
function varmap list kill moves the state of variables whose address has been taken to Top in
the resulting varmap.

let varmap list kill (vml : varmap list) : varmap list =
L.map (fun (vid, (vi, k)) →
if vi.vaddrof then (vid, (vi, Top)) else (vid, (vi, k)))

vml

The function varmap list handle inst implements the transfer function for our data�ow analysis.
That is it looks at an instruction and a state, and calculates what the state should be after the
instruction is run. On a simple assignment to a local variable, we replace its mapping in the input
state with the oekind of the right-hand-side of the assignment. On memory writes, and function
calls, we use varmap list kill to move the a�ected variables to Top.

CHAPTER 3. DATAFLOW ANALYSIS 28

let varmap list handle inst (i : instr) (vml : varmap list) : varmap list =
match i with

| Set((Var vi, NoOffset), e, loc) when ¬(vi.vglob) ∧ (isIntegralType vi.vtype) →
let k = oekind of exp vml e in

varmap list replace vml (vi.vid, (vi, k))
| Set((Mem ,), ,)
| Call → varmap list kill vml (∗ Kill vars with vaddrof set ∗)
| → vml (∗ Not handling inline assembly. Ignoring writes to struct �elds ∗)

The module OddEvenDF implements the ForwardsTransfer signature, and is the input module
to the DF.ForwardsDataFlow functor. The meanings of its members are documented in detail in
dataflow.mli. We include here only the interesting members. The function combinePredecessors

is used to determine when the analysis should terminate. If newly calculated incoming state fails to
change the old value, then it returns None, otherwise it calculates the join of the states and returns
the result. The function doInstr calls our transfer function varmap list handle inst to obtain
the state after an instruction given the incoming state ll.

module OddEvenDF = struct

(∗...∗)
let combinePredecessors (s : stmt) �(old : t) (ll : t) =
if varmap list equal old ll then None else

Some(varmap list combine old ll)
let doInstr (i : instr) (ll : t) =
let action = varmap list handle inst i in

DF.Post action

(∗...∗)
end

Other members of the ForwardsTransfer signature may also be implemented to implement a more
sophisticated analysis.

We �nally invoke the functor to obtain the module OddEven, which contains the function
compute, which performs the data�ow analysis.

module OddEven = DF.ForwardsDataFlow(OddEvenDF)

3.1.5 Running the analysis

The collectVars function determines the initial abstract state (Bottom) on entry to the �rst state-
ment of a function.

CHAPTER 3. DATAFLOW ANALYSIS 29

let collectVars (fd : fundec) : varmap list =
(fd.sformals @ fd.slocals)
|> L.filter (fun vi → isIntegralType vi.vtype)
|> L.map (fun vi → (vi.vid, (vi, Bottom)))

Here, the function computeOddEven calls the compute function of the OddEvenmodule. First though,
use CIL's Cfg module to compute the control-�ow graph for the function. Then, we grab the �rst
statement of the function and add it to the stmtStartData hash with a state indicating that on
entry to the function the state for every variable is Bottom, which we get from the collectVars

function. In practice, this code should be placed in a try...with block, to handle cases where, e.g.
the function is empty.

let computeOddEven (fd : fundec) : unit =
Cfg.clearCFGinfo fd;
ignore(Cfg.cfgFun fd);
let first stmt = L.hd fd.sbody.bstmts in

let vml = collectVars fd in

IH.clear OddEvenDF.stmtStartData;
IH.add OddEvenDF.stmtStartData first stmt.sid vml;
OddEven.compute [first stmt]

3.1.6 Using the results

The function getOddEvens returns the state on entry to a statement by looking it up in the hash
table OddEvenDF.stmtStartData, which is �lled in by OddEven.compute.

let getOddEvens (sid : int) : varmap list option =
try Some(IH.find OddEvenDF.stmtStartData sid)
with Not found → None

The function instrOddEvens calculates the states that exist on entry to each of a list of instructions.
In addition to the list of instructions, it takes as input the state on entry to the �rst instruction in
the list.

CHAPTER 3. DATAFLOW ANALYSIS 30

let instrOddEvens (il : instr list) (vml : varmap list) : varmap list list =
let proc one hil i =
match hil with

| [] → (varmap list handle inst i vml) :: hil

| vml' :: rst as l → (varmap list handle inst i vml') :: l

in

il | > L.fold left proc one [vml]
|> L.tl

|> L.rev

Now that we can get the state on entry to statements and instructions, we can make a special visitor
class such that when we inherit from it, the resulting visitor will have the current OddEven state
available in every method.

The vmlVisitorClass class inherits from nopCilVisitor. When visiting a statement, if the
statement is a list of instructions, it uses instrOddEvens to store the entry states into a mutable
instance �eld state list. If the statement is not an instruction list, it uses getOddEvens to put
the state on entry to the statement into another mutable instance �eld current state. When
an instruction is visited, it takes the head of state list, writes it to current state, and re-
moves the �rst state of state list. The visitor also adds a method get cur vml(), which returns
current state.

Inheriting from this visitor will cause the state found by the analysis on entry to a statement or an
instruction to be available in the vstmt and vinst methods of the inheriting class. Classes inheriting
from vmlVisitorClass must call super#vstmt and super#vinst if they override vstmt or vinst
respectively. To get the current state, inheriting classes can call self#get cur vml. Additionally,
when passing an inheritor of vmlVisitorClass to a function requiring a nopCilVisitor, we must
do an up-cast because of the additional method get cur vml(). See the function evenOddAnalysis

below.

class vmlVisitorClass = object(self)
inherit nopCilVisitor

val mutable sid = − 1
val mutable state list = []
val mutable current state = None

method vstmt stm =
sid ← stm.sid;
begin match getOddEvens sid with

| None → current state ← None

| Some vml → begin

match stm.skind with

| Instr il →
current state ← None;
state list ← instrOddEvens il vml

| → current state ← None

end end;

CHAPTER 3. DATAFLOW ANALYSIS 31

DoChildren

method vinst i =
try let data = L.hd state list in

current state ← Some(data);
state list ← L.tl state list;
DoChildren

with Failure "hd" → DoChildren

method get cur vml () =
match current state with

| None → getOddEvens sid

| Some vml → Some vml

end

The class varUseReporterClass inherits from vmlVisitorClass. Whenever it visits a variable use,
it emits the oekind it �nds for it in the current state as given by super#get cur vml().

class varUseReporterClass = object(self)
inherit vmlVisitorClass as super

method vvrbl (vi : varinfo) =
match self#get cur vml () with
| None → SkipChildren

| Some vml → begin

if L.mem assoc vi.vid vml then begin

let vm = (vi.vid, L.assoc vi.vid vml) in
E.log "%a: %a\n" d loc (!currentLoc) varmap list pretty [vm]

end;
SkipChildren

end

end

The function evenOddAnalysis computes the OddEven analysis. It then invokes the varUseReporter
visitor. Note that we have to coerce our visitor to a nopCilVisitor because we added the
get cur vml() method.

let evenOddAnalysis (fd : fundec) (loc : location) : unit =
computeOddEven fd;
let vis = ((new varUseReporterClass) :> nopCilVisitor) in
ignore(visitCilFunction vis fd)

The tut3 function is the entry point to this module. It applies evenOddAnalysis to all functions.

let tut3 (f : file) : unit =
iterGlobals f (onlyFunctions evenOddAnalysis)

CHAPTER 3. DATAFLOW ANALYSIS 32

3.2 test/tut3.c

The result of the analysis in tut3.ml will be to print a message to the console for each variable of
integral type wherever it is used indicating whether it is even or odd at that program point. We
consider the results of the analysis on the code below:

../test/tut3.c
include <stdio.h>

int main()

{

int a,b,c,d;

a = 1; b = 2; c = 3; d = 4;

a += b + c;

c *= d - b;

b -= d + a;

if (a % 2) a++;

printf("a = %d, b = %d, c = %d, d = %d\n", a, b, c, d);

return 0;

}

We build this source with the data�ow analysis enabled by doing:

$ ciltutcc --enable-tut3 -o tut3 test/tut3.c

test/tut3.c:14: (a, Bottom)

test/tut3.c:14: (b, Bottom)

test/tut3.c:14: (c, Bottom)

test/tut3.c:14: (d, Bottom)

test/tut3.c:15: (a, Odd)

test/tut3.c:15: (a, Odd)

test/tut3.c:15: (b, Even)

test/tut3.c:15: (c, Odd)

test/tut3.c:16: (c, Odd)

test/tut3.c:16: (c, Odd)

test/tut3.c:16: (d, Even)

test/tut3.c:16: (b, Even)

test/tut3.c:17: (b, Even)

test/tut3.c:17: (b, Even)

test/tut3.c:17: (d, Even)

test/tut3.c:17: (a, Even)

test/tut3.c:18: (a, Even)

test/tut3.c:18: (a, Even)

test/tut3.c:18: (a, Even)

test/tut3.c:19: (a, Top)

test/tut3.c:19: (b, Even)

CHAPTER 3. DATAFLOW ANALYSIS 33

test/tut3.c:19: (c, Even)

test/tut3.c:19: (d, Even)

Since the program is small, we can check by inspection that the results of the analysis are correct.
Note, however, that for the variable a at line 19, the result is Top. This occurs because the analysis
made no attempt to interpret the guard of the if-statement on that line. Thus, at the join point
after the if-statement, as far as this analysis knows, a could be either Even or Odd.

3.3 Exercises

1. Create an option in src/ciltutoptions.ml that controls whether debugging information for
the analysis is printed.

2. We could represent the mapping from variables to oekinds many other ways. If the analysis
had to be super-fast, we could use bitsets. Then, the abstract state would be four bitsets,
one for each oekind, with each local variable of integral type belonging to exactly one of the
bitsets. Note the Bitmap module in cil/ocamlutil/bitmap.ml.

3. In oekind of unop for the LNot case, there are two cases e = 0 and e 6= 0. If we know
that e will be zero, then !e will be 1 and therefore Odd. If we know that e will be non-zero,
then !e will be zero and therefore Even. If we don't know anything about e, then !e is Top as
we have here. Modify this analysis to also track whether variables are zero or non-zero. (Such
an analysis can have wider applications. Think about pointers.)

4. There are a number of other binary operations. Figure out how to handle them in oekind of binop.

item Modify the analysis to handle not only local variables, but also global variables. What
should their initial state be? How would the analysis change in the presence of multiple
threads?

5. Implement the doGuard function of OddEvenDF so that the analysis may conclude that a is
Even at line 19.

Project: Add another layer of generalization on top of CIL's Dataflow func-
tors so that one must only de�ne the functions operating on the abstract state
(and possibly also a function for giving the initial state for a function.) One
should then get a function for invoking the analysis and a visitor class for vis-
iting the AST with the results of the analysis. (Essentially everything from
the module OddEvenDF and down to the end of vmlVisitorClass, except for
collectVars, should be automatic).

CHAPTER 3. DATAFLOW ANALYSIS 34

3.4 Further Reading

The analysis described above for CIL works only within a single procedure, but it can be very
valuable to analyze a program across function calls. Without making approximations, the cost of
adding context-sensitivity to an analysis can be very high. Thus, researchers are always coming
up with clever new schemes to retain precision, while still performing the inter-procedural analysis
e�ciently. For a recent example see [1]. There is more in this tutorial on whole-program analysis
with CIL in Chapter 13.

References

[1] Aws Albarghouthi, Rahul Kumar, Aditya V. Nori, and Sriram K. Rajamani. Parallelizing top-
down interprocedural analyses. In Proceedings of the 33rd ACM SIGPLAN conference on Pro-
gramming Language Design and Implementation, PLDI '12, pages 217�228, New York, NY,
USA, 2012. ACM.

[2] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge University Press, 1998.

[3] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

[4] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

35

Chapter 4

Instrumentation

In Chapters 1 and 2, we saw how to use the AST visitor to modify the program by removing
an instruction. It was probably easy to see how to change that example to add statements and
instructions, instead. However, adding function calls is a bit trickier. In particular, the Call

constructor of the type Cil.instr requires a Cil.exp expression for the function. We can build an
expression for the function out of a varinfo for the function, which we can �nd simply by iterating
over the globals of a Cil.file. In this example we'll look at some handy patterns for accomplishing
that, and for getting the instrumentation calls into the code.

It almost goes without saying that the ability insert function calls is imensely useful in the
dynamic analysis of programs and the implementation of new language runtime features.

4.1 tut4.ml

First, we'll add calls to functions that will do some pro�ling of loops. At the end of each loop, the
instrumented program will print the source location of the loop and the number of iterations that
ran. First, we'll set up a quick way to refer to the instrumentation calls. Then, we'll write a visitor
to wrap the calls around loops.

4.1.1 Setup of instrumentation calls

It isn't strictly necessary to wrap up the varinfos for the instrumentation calls in a record type.
They could just be global variables of this module, but I �nd this helps me stay a bit more organized.
Also, if you add a new �eld to the record, the OCaml compiler gives you error messages if you forget
some part of the initialization.

Additionally, in larger projects, I tend to put all of this set-up code in its own module, but in
this small example we should be okay.

36

CHAPTER 4. INSTRUMENTATION 37

type functions = {
mutable begin loop : varinfo;
mutable end loop : varinfo;

}

A dummy varinfo that we can use to initialize the functions record

let dummyVar = makeVarinfo false " tut foo" voidType

tutfuns is an instance of the record type functions that lets us quickly refer to the varinfos for
our instrumentation functions.

let tutfuns = {
begin loop = dummyVar;
end loop = dummyVar;

}

We set up some variables for the names of the instrumentation functions so that we only have one
string to change if the name of the functions changes in the C code.

let begin loop str = "tut begin loop"

let end loop str = "tut end loop"

We may wish subsequent passes over the code to ignore calls to instrumentation that we have added.
To make that easier, we de�ne a list of the function names, tut function names, and a function
isTutFun that tells if a function is an instrumentation call.

let tut function names = [
begin loop str;
end loop str;

]
let isTutFun (name : string) : bool =
L.mem name tut function names

The function mkFunTyp is a helper function for making simple function types. It can be used when
arguments and the function type itself have no attributes.

let mkFunTyp (rt : typ) (args : (string × typ) list) : typ =
TFun(rt, Some(L.map (fun a → (fst a, snd a, [])) args), false, [])

The function initTutFunctions initializes the tutfuns record. It does this by calling the Cil

function:

CHAPTER 4. INSTRUMENTATION 38

findOrCreateFunc : file → string → typ → varinfo.

If the function is found, the varinfo for it is returned, otherwise a prototype for the function is
added to the �le, and the varinfo for it is returned.

let initTutFunctions (f : file) : unit =
let focf : string → typ → varinfo = findOrCreateFunc f in

let bl type = mkFunTyp voidType ["f", charConstPtrType; "l", intType] in
let el type = mkFunTyp voidType ["f", charConstPtrType; "l", intType; "c", intType;] in
tutfuns.begin loop ← focf begin loop str bl type;
tutfuns.end loop ← focf end loop str el type

4.1.2 Loop instrumentation

The function makeInstrStmts creates four statements that we'll add to loops. In the returned tuple,
the �rst statement calls the loop begin instrumentation function. The second statement initializes
the iteration counter to zero. The third statement increments the iteration counter, and the fourth
statement calls the loop end instrumentation function.

In makeInstrStmts we use some shorthand. mkString turns an OCaml string into a Cil.exp
constant expression. The integer function does the same for OCaml ints. The v2e function creates
an exp out of a varinfo. The var function creates an lval from a varinfo, and the i2s function
creates a stmt from an instr. All these can be found in Tututil or Cil.

let makeInstrStmts (counter : varinfo) (loc : location)
: stmt × stmt × stmt × stmt =

let f, l = mkString loc.file, integer loc.line in

i2s (Call(None, v2e tutfuns.begin loop, [f; l], loc)),
i2s (Set(var counter, zero, loc)),
i2s (Set(var counter, BinOp(PlusA, v2e counter, one, counter.vtype), loc)),
i2s (Call(None, v2e tutfuns.end loop, [f; l; v2e counter], loc))

The class loopInstrumenterClass is a visitor that uses makeInstrStmts to instrument loops. In
vstmt we update the statement s by writing to the mutable skind �eld instead of rebuilding a
whole new statement so that we don't have to worry about copying over all the other �elds, which
we'd like to remain the same. In particular, it is very easy to forget about statement labels.

Further, we use ChangeDoChildrenPost because there might be nested loops. Remember:
ChangeDoChildrenPost recurses into s's children before handling s. That way, we have no in�-
nite loops due to turning s into a statement that contains the original s.

class loopInstrumenterClass (fd : fundec) = object(self)
inherit nopCilVisitor

CHAPTER 4. INSTRUMENTATION 39

method vstmt (s : stmt) =
let action s =
match s.skind with

| Loop(b, loc, co, bo) →
let counter = makeTempVar fd intType in

let ss, cis, is, es = makeInstrStmts counter loc in

b.bstmts ← is :: b.bstmts;
let nb = mkBlock [ss; cis; mkStmt s.skind; es] in
s.skind ← Block nb;
s

| → s

in

ChangeDoChildrenPost(s, action)
end

The function processFunction applies the loopInstrumenterClass to a function.

let processFunction (fd : fundec) (loc : location) : unit =
let vis = new loopInstrumenterClass fd in

ignore(visitCilFunction vis fd)

The function tut4 is the entry point in the module. It applies processFunction to every function
in a file.

let tut4 (f : file) : unit =
initTutFunctions f;
iterGlobals f (onlyFunctions processFunction)

Now we have added a bunch of function calls to the code. Several questions remain:

• Where are these functions de�ned? � In ciltut-lib/src/tut4.c

• How does that �le get built? � We use cmake to con�gure and build the library libciltut.
The build of the library can be adjusted by modifying the CMakeLists.txt �les under the
ciltut-lib directory. The Makefile generated by cmake is invoked from the root Makefile
when ciltutcc is built.

• How does that library get linked in to something that ciltutcc is building? � There is a
Perl script in lib/Ciltut.pm that wraps up this OCaml program to make it look like gcc

(and a couple other compilers). It has a function called processArguments where we add the
library to a list in @{$self→ {CILTUTLIBS}}. When this Perl script detects that it is being
used for the link stage of a build, it adds libciltut.a to the list of object �les to link in.

CHAPTER 4. INSTRUMENTATION 40

4.2 tut4.c

In this C �le, we de�ne the two functions added by src/tut4.ml. tut begin loop currently does
nothing, but a more sophisticated analysis may wish to do some bookkeeping before each loop, so
we include it as a placeholder. tut end loop simply outputs the number of iterations that a loop
completed. We use c-1 because the counter is incremented at the top of the loop before the exit
test.

../ciltut-lib/src/tut4.c
include <stdio.h>

void tut_begin_loop(const char *f, int l) {}

void tut_end_loop(const char *f, int l, int c)

{

printf("loop: %s:%d - %d times\n", f, l, c - 1);

fflush(stdout);

return;

}

4.3 test/tut4.c

We can test the instrumentation on the small example below. At the end of each loop the instru-
mented code will print a message stating how many iterations there were. Thus, we should get 10
messages for the inner loop stating that there were 5 iterations, and one message for the outer loop
stating that there were 10 iterations.

../test/tut4.c
include <stdio.h>

int main()

{

int i, j;

int c = 1;

for (i = 0; i < 10; i++) {

for (j = 0; j < 5; j++) {

c *= i;

}

}

return 0;

}

Now, we can build the test program by doing the following:

CHAPTER 4. INSTRUMENTATION 41

$ ciltutcc --enable-tut4 -o tut4 test/tut4.c

Then, when we run tut4, we get the following output:

$./tut4

loop: test/tut4.c:18 - 5 times

loop: test/tut4.c:18 - 5 times

loop: test/tut4.c:18 - 5 times

loop: test/tut4.c:18 - 5 times

loop: test/tut4.c:18 - 5 times

loop: test/tut4.c:18 - 5 times

loop: test/tut4.c:18 - 5 times

loop: test/tut4.c:18 - 5 times

loop: test/tut4.c:18 - 5 times

loop: test/tut4.c:18 - 5 times

loop: test/tut4.c:17 - 10 times

which is what we expected.

4.4 Exercises

1. Count the number of times: a variable is read/written, a particular instruction or statement
is executed, how many times a branch is taken one way or the other, etc.

Chapter 5

Interpreted Constructors

CIL has support for interpreted constructors. That is, instead of building up new AST nodes using
the OCaml-language constructors, we can write something that looks almost like C. Then, CIL will
parse it, and generate the AST for us. This is particularly useful when you want to add for-loops to
code. The o�cial CIL documentation explains interpreted constructors in detail, but this complete
working example might better show how they are useful.

5.1 tut5.ml

In this example, we'll add code to the top of a function that will initialize pointers to NULL, including
pointers in stack-allocated structs, and arrays of those structs. But, since we don't want to slow
the program down too much, we only want to write the pointer �elds, so we can't use memset, or
bzero.

We begin by de�ning a set of mutually recursive functions that traverse a type and generate a
list of statements that NULL out pointers in an instance of that type. When we come to array types
in the function zeroArray, we'll use one of CIL's interpreted constructors to make the loop over
the array.
Assuming that blv is of composite type, compinfoOfLval returns the coresponding compinfo. Since
the function should only ever be called on lvals of composite type, if it is not, we emit a bug message,
and halt compilation by raising an exception with E.s.

let compinfoOfLval (blv : lval) : compinfo =
match unrollType(typeOfLval blv) with
| TComp (ci,) → ci

| → E.s(E.bug "Expected TComp for type of %a" d lval blv)

The function zeroPtr makes a one-instruction statement for NULLing out a pointer. The caller must
check that blv is of pointer type.

42

CHAPTER 5. INTERPRETED CONSTRUCTORS 43

Show-stopping Errors and Bugs: The function Errormsg.s ignores its ar-
gument and throws the exception Errormsg.Error, which is only caught in
main.ml. Thus, executing E.s(E.bug ...) or E.s(E.error ...) has the e�ect of
stopping compilation with the given error message. If compilation could con-
tinue despite the problem�and a sensible value with the correct type could be
generated�then E.bug and E.error could be used without E.s. Then, compi-
lation will continue, possibly generating further error messages.

let zeroPtr (fd : fundec) (blv : lval) : stmt list =
[i2s (Set(blv, CastE(voidPtrType, zero), locUnknown))]

The function zeroType is the entry point for NULLing out pointers found by traversing the lvalue
blv. If blv is a pointer, we NULL it out. If it is an array, we loop over the array NULLing any pointers
found in traversing the base type. If it is a struct type, we NULL any pointers found in traversing
the �elds.

let rec zeroType (fd : fundec) (blv : lval) : stmt list =
match unrollType(typeOfLval blv) with
| TPtr → zeroPtr fd blv

| TArray → zeroArray fd blv

| TComp → zeroComp fd blv

| → []

The function zeroComp NULLs out the pointer �elds of blv assuming blv has a TComp type. If the
type of blv is a union, we just NULL out the �rst pointer �eld.

and zeroComp (fd : fundec) (blv : lval) : stmt list =
let ci = compinfoOfLval blv in

let sl =
ci.cfields

|> L.map (zeroField fd blv)
|> L.concat

in

if ci.cstruct then sl

else if sl 6= [] then [L.hd sl]
else []

The function zeroField is used by zeroComp when iterating over the �elds of a compinfo. It tacks
the �eld onto blv using the Cil function addOffsetLval and NULLs out any pointers in it by calling
zeroType.

CHAPTER 5. INTERPRETED CONSTRUCTORS 44

and zeroField (fd : fundec) (blv : lval) (fi : fieldinfo) : stmt list =
zeroType fd (addOffsetLval (Field(fi, NoOffset)) blv)

zeroArray NULLs out pointers in the array blv. We �rst make a temporary variable i, and generate
the body of the loop by calling zeroType on blv[i]. Further, we create an lvalue, first that refers
to the �rst element of the array. We'll need this in order to calculate the number of elements of the
array. Next, we write the interpreted constructor following the grammer in the CIL documentation.

and zeroArray (fd : fundec) (blv : lval) : stmt list =
let i = makeTempVar fd intType in

let inits = zeroType fd (addOffsetLval (Index(v2e i, NoOffset)) blv) in
let first = addOffsetLval (Index(zero, NoOffset)) blv in

Formatcil.cStmts

"

%l:i = sizeof(%l:arr) / sizeof(%l:first) - 1;

while (%l:i >= 0) {

{ %S:inits }

%l:i -= 1;

}

"

(fun n t → makeTempVar fd �name : n t) locUnknown
[("i", Fl(var i));
("arr", Fl blv);
("first", Fl first);
("inits", FS inits);]

processFunction iterates over the local variables of a function and adds the statements that result
from applying zeroType to each of them to the start of the function.

let processFunction (fd : fundec) (loc : location) : unit =
let ini stmts =
fd.slocals

|> L.map var

|> L.map (zeroType fd)
|> L.concat

in

fd.sbody.bstmts ← ini stmts @ fd.sbody.bstmts

Finally, the entry point tut5 iterates over the functions applying processFunction to each of them.

let tut5 (f : file) : unit =
iterGlobals f (onlyFunctions processFunction)

CHAPTER 5. INTERPRETED CONSTRUCTORS 45

5.2 test/tut5.c

In this example, we de�ne a few structure types containing pointers. Then in the main function,
we declare an array of 37 struct baz's. The e�ect of the code in tut5.ml should be to generate a
loop that NULLs out all the pointer �elds in the struct baz array. We will verify this by looking at
the output of ciltutcc before it goes to the back-end compiler.

../test/tut5.c
struct foo {

int *a, b, *c;

};

struct bar {

struct foo f;

int *a, b;

};

struct baz {

struct bar b;

int a, *c;

};

int main()

{

struct baz b[37];

int i;

for (i = 0; i < 37; i++) {

b[i].a = 3;

}

return 0;

}

Now, we can run the compiler:

$ ciltutcc --enable-tut5 --save-temps -o tut5 test/tut5.c

The �save-temps �ag instructs ciltutcc to retain its intermediate results. In particular, the
instrumented code is placed in the �le tut5.cil.c in the directory where the compiler was invoked.
Looking in this �le, we see that the following code has been generated to initialize the pointer �elds
of b, and added to the main function:

CHAPTER 5. INTERPRETED CONSTRUCTORS 46

../test/tut5.out.c
__cil_tmp3 = sizeof(b) / sizeof(b[0]) - 1;

while (__cil_tmp3 >= 0) {

b[__cil_tmp3].b.f.a = (void *)0;

b[__cil_tmp3].b.f.c = (void *)0;

b[__cil_tmp3].b.a = (void *)0;

b[__cil_tmp3].c = (void *)0;

__cil_tmp3 --;

}

Chapter 6

Overriding Functions

When performing a dynamic analysis, it happens frequently that we would like to intercept calls to
the C Library, or to system calls. We can accomplish this using the dynamic linker 1.

Using the dynamic linker is preferable to using CIL to replace calls to these library functions.
If you use CIL, the call is only replaced in the code that CIL touches. Other code that is linked
into the program will use the original version. This will either have strange e�ects or render your
dynamic analysis unsound. Thus, if you want to override a library or system call, don't use CIL;
instead, use the dynamic linker as shown below.

6.1 tut6.ml

There's nothing going on here in the OCaml module corresponding to this tutorial because all of
the action happens in ciltut-lib/src/tut6.c.

6.2 Overriding Library Calls

Instead, we'll take this opportunity to discuss a few ways that overriding library calls can be useful.

• You can override pthread create to keep extra state for threads spawned by the application
you are analyzing.

• You can override malloc and friends to analyze and pro�le memory allocation.

• You can override system calls that request resources from the Operating System, like cores,
or memory, or I/O bandwidth, in order to shape the demands placed on the system.

• ...and many others.

1Intercepting system calls can be a bit more complicated than intercepting library calls. Applications may directly

use the syscall system call instead of the C Library interface. Luckily, one may still wrap this call, with a bit more

work.

47

CHAPTER 6. OVERRIDING FUNCTIONS 48

open Cil

let tut6 (f : file) : unit = ()

6.3 tut6.c

In tut6.c, we demonstrate how to use the dynamic linker to override library functions. In particular,
we wrap calls to pthread mutex lock and pthread mutex unlock. We'll do this by calling dlsym

found in dlfcn.h with the �ag RTLD NEXT, which fetches a pointer to the original function we are
overriding. Below are the includes we'll need.

../ciltut-lib/src/tut6.c
define _GNU_SOURCE // Needed for RTLD_NEXT

include <stdio.h> // For printf

include <dlfcn.h> // for RTLD_NEXT

include <pthread.h> // for pthread_*

include <ciltut.h> // for checked_dlsym

First, we set up function pointers at global scope to point at the original versions of the functions,
which we'll call from inside of our wrappers.

../ciltut-lib/src/tut6.c
static int (*pthread_mutex_lock_orig) (pthread_mutex_t *m) = NULL;

static int (*pthread_mutex_unlock_orig)(pthread_mutex_t *m) = NULL;

We'll also declare a �ag so that we can enable and disable lock tracing.

../ciltut-lib/src/tut6.c
static int enable_lock_tracking = 0;

With the pointers to the original functions declared, we can now write the wrappers. The wrappers
have the same name as the original functions. This way, calls to the functions will be routed to these
versions. The �rst thing that the wrapper functions do is set up the pointers to the original calls
using checked dlsym. checked dlsym will abort the program if the function named by the string
does not exist. After ensuring that the original functions exist, the wrappers may then execute
whatever actions are needed to implement their purpose, and to call the original functions.

CHAPTER 6. OVERRIDING FUNCTIONS 49

../ciltut-lib/src/tut6.c
int pthread_mutex_lock(pthread_mutex_t *m)

{

int res;

if (!pthread_mutex_lock_orig)

pthread_mutex_lock_orig = checked_dlsym(RTLD_NEXT, "pthread_mutex_lock");

res = pthread_mutex_lock_orig(m);

if (enable_lock_tracking) {

printf("thread: %d - pthread_mutex_lock(%p)\n", gettid(), m);

fflush(stdout);

}

return res;

}

int pthread_mutex_unlock(pthread_mutex_t *m)

{

int res;

if (!pthread_mutex_unlock_orig)

pthread_mutex_unlock_orig = checked_dlsym(RTLD_NEXT, "pthread_mutex_unlock");

if (enable_lock_tracking) {

printf("thread: %d - pthread_mutex_unlock(%p)\n", gettid(), m);

fflush(stdout);

}

res = pthread_mutex_unlock_orig(m);

return res;

}

void toggle_lock_tracking()

{

enable_lock_tracking = !enable_lock_tracking;

}

6.4 test/tut6.c

In this test, we simply declare a lock at global scope, then acquire and release it in the main function.
We do this simply to test that the wrapper functions we wrote in ciltut-lib/src/tut6.c are
correctly run whenever we call the lock and unlock functions.

CHAPTER 6. OVERRIDING FUNCTIONS 50

../test/tut6.c
include <pthread.h>

include <ciltut.h>

int counter = 0;

pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

int main()

{

toggle_lock_tracking();

pthread_mutex_lock(&mtx);

counter++;

pthread_mutex_unlock(&mtx);

return 0;

}

Now, we can compile this test by doing:

$ ciltutcc --enable-tut6 -lpthread -o tut6 test/tut6.c

Then, when we run tut6, we should get something similar to the following output:

$./tut6

thread: 32646 - pthread mutex lock(0x602180)

thread: 32646 - pthread mutex unlock(0x602180)

6.5 Further Reading

Many researchers have studied overriding memory allocation calls (along with the instrumentation
of some memory accesses) with the goal of catching memory management errors. Examples are
Libsafe [2], LibsafePlus [1], and HeapShield [3] (which is a part of DieHard [4]).

The Trickle [5] userspace bandwidth shaper operates by using the dynamic linker to override IO
calls with ones that track the number of bytes sent per unit time. Then, it puts the calling process
to sleep when the sending or receiving rate exceeds a user given limit.

References

[1] Kumar Avijit, Prateek Gupta, and Deepak Gupta. TIED, libsafeplus: tools for runtime bu�er
over�ow protection. In Proceedings of the 13th conference on USENIX Security Symposium -
Volume 13, SSYM'04, pages 4�4, Berkeley, CA, USA, 2004. USENIX Association.

[2] A. Baratloo, N. Singh, and T. Tsai. Transparent run-time defense against stack smashing attacks.
In Proceedings of the 2000 USENIX Annual Technical Conference, USENIX'00, 2000.

[3] Emery D. Berger. Heapshield: Library-based heap over�ow protection for free. Technical Report
UMass CS TR 06-28, Department of Computer Science, University of Massachusetts, 2006.

[4] Emery D. Berger and Benjamin G. Zorn. Diehard: probabilistic memory safety for unsafe
languages. In Proceedings of the 2006 ACM SIGPLAN conference on Programming language
design and implementation, PLDI '06, pages 158�168, New York, NY, USA, 2006. ACM.

[5] Marius A. Eriksen. Trickle: A userland bandwidth shaper for unix-like systems. In Proceedings
of the USENIX 2005 Annual Technical Conference, FREENIX Track, USENIX'05, pages 61�70,
2005.

51

Chapter 7

Type Quali�ers

Over the next three chapters, we'll explore how to make changes to C's type-system. This will be
achieved by adding type-quali�ers to C's types, and by performing some extra type-checking. In
this section, we'll write a very basic type-checker for types that may be quali�ed by one or more
of the following colors: red, green, or blue. In the exercises, you'll �nd suggestions about how to
complete it. In the next section, we'll look at interpreting dependent type quali�ers. Finally, in
Chapter 9, we'll see how to do some basic type quali�er inference.

7.1 tut7.ml

In tut7.ml, �rst we'll write functions to extract quali�ers from types. Then, we'll perform our
additional type-checking.

7.1.1 Quali�er Types

We'll de�ne some OCaml types representing the C type quali�ers. Then, from C types, we'll extract
a possibly empty list of the quali�ers.

type color = Red | Blue | Green

We'll set up some global constants for the string representation of the quali�ers, and use them
everywhere instead of the strings, in case we want to change them later on.

let redStr = "red"

let blueStr = "blue"

let greenStr = "green"

Putting the strings in a list will help a bit later on.

52

CHAPTER 7. TYPE QUALIFIERS 53

let color strings = [redStr; blueStr; greenStr;]

As mentioned in a previous chapter, it is useful to have functions that convert a type to and from
a string. The function string of color returns redStr, blueStr, or greenStr as appropriate.

let string of color (c : color) : string =
match c with

| Red → redStr

| Blue → blueStr

| Green → greenStr

The function color of string returns the color corresponding to the string cs it gets as input.

let color of string (cs : string) : color =
match S.lowercase cs with

| s when s = redStr → Red

| s when s = blueStr → Blue

| s when s = greenStr → Green

| → E.s(E.bug "Expected a color string, got: %s" cs)

The function isColorType returns true when a type is quali�ed by a particular color attribute. The
function isTypeColor the same with the order of the arguments reversed. The next three functions
tell if a type is quali�ed by a particular color. These functions to largely similar things, but they'll
be useful in di�erent situations.

isColorType is written with the function hasAttribute, which comes from the core Cilmodule.
It returns true when a list of attributes contains an attribute with the given name. typeAttrs

extracts the attributes from a type. Attributes are one of the extensions to C accepted by gcc. CIL
parses these attributes, even custom attributes not understood by gcc, and includes them in its
AST attached to types, �elds, functions, formal parameters, and blocks of code. All we care about
for now, though, is whether or not a type is quali�ed by one of the colors.

let isColorType (cs : string) (t : typ) : bool =
hasAttribute cs (typeAttrs t)

let isTypeColor (t : typ) (cs : string) : bool = isColorType cs t

let isRedType : typ → bool = isColorType redStr

let isBlueType : typ → bool = isColorType blueStr

let isGreenType : typ → bool = isColorType greenStr

The function colors of type takes a type and returns a list of colors that qualify the type.

CHAPTER 7. TYPE QUALIFIERS 54

let colors of type (t : typ) : color list =
color strings

|> L.filter (isTypeColor t)
|> L.map color of string

7.1.2 Type-checking

Now that we can extract the quali�ers we care about from a type, we can check that two types are
compatible. First we de�ne a type codifying the results of comparing two types, typecheck result.
Then, we'll write a function that performs the comparison, checkColorTypes. TypesMismatch and
ColorsMismatch are parameterized by the types that didn't match. This is to enable writing better
error and warning messages.

type typecheck result =
| TypesOkay
| TypesMismatch of typ × typ

| ColorsMismatch of typ × typ

The function colorTypesCompat �rst ensures that two types have the same colors before descending
recursively into the structure of a type. That is, we check that pointer types have the same colors
before checking that the pointed-to types also have the same colors. We'll leave as exercises the
correct handling of function types, and also make some suggestions about how to modify this code
to make it more general-purpose.

let rec colorTypesCompat (t1 : typ) (t2 : typ) : typecheck result =
let cl1 = colors of type t1 in

let cl2 = colors of type t2 in

if cl1 6= cl2 then ColorsMismatch(t1, t2) else begin

match t1, t2 with

| TVoid , TVoid → TypesOkay

| TPtr(t1,), TPtr(t2,)
| TArray(t1, ,), TArray(t2, ,) → colorTypesCompat t1 t2

| TFun , TFun → TypesOkay (∗ See the exercise below ∗)
(∗ ... ∗)

| , → TypesMismatch(t1, t2)
end

The function warning for tcres generates warning messages for the various kinds of typecheck results.
In certain situations, some mismatches may be okay. To handle that, one would extend this function
with a second parameter that indicates which mismatches are okay in a particular situation.

CHAPTER 7. TYPE QUALIFIERS 55

let warning for tcres (tcr : typecheck result) : unit =
match tcr with

| TypesMismatch(t1, t2) →
E.warn "%a: type mismatch: %a <> %a" d loc (!currentLoc) d type t1 d type t2

| ColorsMismatch(t1, t2) →
E.warn "%a: color mismatch: %a <> %a" d loc (!currentLoc) d type t1 d type t2

| TypesOkay → ()

Now, we'll visit the AST looking for places where we must check type compatibility. We must check
compatibility at assignments, casts, and parameter passing. In the case for casts, we allow constants
to be cast to a quali�ed type. Without this exception, it would be impossible to initialize variables
with quali�ed types without an error or warning. The case for function calls is left as an exercise.

class colorCheckVisitor = object(self)
inherit nopCilVisitor

method vinst (i : instr) =
match i with

| Set(lv, e, loc) →
let tcres = colorTypesCompat (typeOfLval lv) (typeOf e) in
warning for tcres tcres;
DoChildren

| Call(rlvo, fe, args, loc) → DoChildren (∗ See exercise ∗)
| → DoChildren

method vexpr (e : exp) =
match e with

| CastE(t, e) when ¬(isConstant e) →
let tcres = colorTypesCompat t (typeOf e) in
warning for tcres tcres;
DoChildren

| → DoChildren

end

The function checkColorTypes invokes the visitor colorCheckVisitor on a function.

let checkColorTypes (fd : fundec) (loc : location) : unit =
let vis = new colorCheckVisitor in

ignore(visitCilFunction vis fd)

Since gcc doesn't understand the color type attributes, we must use the colorEraserVisitor to
remove them from the program before passing the code on to it. We do this by overriding the vattr
method of the nopCilVisitor and �ltering out the color attributes.

CHAPTER 7. TYPE QUALIFIERS 56

class colorEraserVisitor = object(self)
inherit nopCilVisitor

method vattr (a : attribute) =
match a with

| Attr(s,) when L.mem s color strings → ChangeTo []
| → DoChildren

end

The function eraseColors invokes the visitor colorEraserVisitor on a �le.

let eraseColors (f : file) : unit =
let vis = new colorEraserVisitor in

visitCilFile vis f

The tut7 function is the entry point for this module. It checks the color types in all functions.

let tut7 (f : file) : unit =
iterGlobals f (onlyFunctions checkColorTypes);

eraseColors f

7.2 test/tut7.c

In this test, we declare a global blue integer b, and a local green integer g. We initialize g using
the AddColor macro, which is de�ned in ciltut.h. It simply casts the constant in the second
argument to the given color. Then, we attempt to assign g to b, which should elicit a warning from
the compiler.

../test/tut7.c
include <ciltut.h>

int blue b;

int main()

{

int green g = AddColor(green, 5);

b = g;

return 0;

}

Now, when we attempt to compile this test, we get a warning:

CHAPTER 7. TYPE QUALIFIERS 57

$ ciltutcc �enable-tut7 -o tut7 test/tut7.c

Warning: test/tut7.c:16: color mismatch: int attribute ((blue)) <> int

attribute ((green))

Which is what we expected.

7.3 Exercises

1. Modify typecheck result and colorTypesCompat to give more information when types do
not match. For example, instead of returning TypesMismatch, colorTypesCompat might re-
turn PtrIntMismatch when t1 is a TPtr and t2 is a TInt (but the colors still match).

2. Corret the rule for function types in colorTypesCompat. Possibly add (a) new constructor(s)
to typecheck result for the case when function types do not match.

3. In combination with the above two exercises. Generalize the type checking code in colorTypesCompat.
Instead of checking the color quali�ers, however, colorTypesCompat would accept a function
argument for deciding whether the set of type attributes on t1 and t2 are compatible.

4. Write the Call case in colorCheckVisitor#vinst. Extract the type of the function from
fe. Check the return type of the function against the destination of the return value (rlvo).
Check the types of the actual arguments (args) against the types of the formal parameters.
Note that there might be more actuals than formals if it is a variable argument function!

5. The attribute syntax in the warning message above could be cleaned up by inheriting
from Cil's defaultCilPrinterClass and overriding the methods for printing attributes.

7.4 Further Reading

Researchers have added �ow-sensitive [3], and insensitive type-quali�ers [2], type-quali�er inference,
and type-quali�er polymorphism [1] to languages such as C and Java [4].

In particular, the CCured [5] tool used �ow-insensitive type-quali�er inference to determine the
kind of fat pointer needed to check the correctness of pointer arithmetic in C, among other purposes.

References

[1] Je�rey S. Foster, Manuel Fähndrich, and Alexander Aiken. A theory of type quali�ers. In
Proceedings of the ACM SIGPLAN 1999 conference on Programming language design and im-
plementation, PLDI '99, pages 192�203, New York, NY, USA, 1999. ACM.

[2] Je�rey S. Foster, Robert Johnson, John Kodumal, and Alex Aiken. Flow-insensitive type qual-
i�ers. ACM Trans. Program. Lang. Syst., 28(6):1035�1087, November 2006.

[3] Je�rey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type quali�ers. In Proceedings
of the ACM SIGPLAN 2002 Conference on Programming language design and implementation,
PLDI '02, pages 1�12, New York, NY, USA, 2002. ACM.

[4] David Green�eldboyce and Je�rey S. Foster. Type quali�er inference for java. In Proceedings
of the 22nd annual ACM SIGPLAN conference on Object-oriented programming systems and
applications, OOPSLA '07, pages 321�336, New York, NY, USA, 2007. ACM.

[5] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer.
Ccured: type-safe retro�tting of legacy software. ACM Trans. Program. Lang. Syst., 27(3):477�
526, May 2005.

58

Chapter 8

Dependant Type Quali�ers

Of course, there are more colors than just red, green, and blue. Furthermore, the color of a type
might depend on some other data in the program. In this example we introduce type quali�ers
parameterized by arbitrary C expressions. Since types may depend on runtime data, type-checking
must happen partially at runtime, which we will accomplish by instrumenting the code with the
appropriate checks. Furthermore, the information we know about the color of a type may be
imprecise, or rather, for example, a function may accept a range of colors rather than only one
exact color. We introduce type quali�ers for expressing this.

First, we'll de�ne OCaml types for representing the type quali�ers. Then, we'll de�ne functions
for extracting these quali�ers from C type attributes. This will involve keeping a typing context
that maps strings to expressions so that the identi�ers in type attributes may be translated into
CIL variables. With the ability to extract colors from types, we will then be able to perform type
checking as in the previous example. However, instead of generating a compile-time answer about
correct typing, we must generate a list of instructions that test type compatibility at runtime.

It will be possible to determine at compile time that some of these checks will always succeed.
Writing an optimization pass to remove these checks is left as an exercise.

OCaml Style Note: It would be better style to put each of these parts in
separate OCaml modules: one for de�ning OCaml types; one for compiling the
color quali�ers in type attributes into CIL expressions; one for setting up the
runtime checks; and one containing the visitors used for type checking.

59

CHAPTER 8. DEPENDANT TYPE QUALIFIERS 60

8.1 tut8.ml

The module SM is constructed using the functorial interface to the OCaml standard library Map

module. With string as the key type, we'll use it as the context when translating attribute
parameters to expressions.

module SM = Map.Make(struct
type t = string

let compare = Pervasives.compare

end)

8.1.1 Types and printing

Here, we de�ne a type to represent the color type quali�er. There are three constructors. One
identi�es an exact color, and the other two represent upper and lower bounds on the color of a type.
A type can have either one exact color, or at most one upper and one lower bound.

type rgb = exp × exp × exp

A color quali�er can be an exact color (ExactRGB), a lower bound (LowerRGB), or an upper bound
(UpperRGB). The quali�ers are parameterized by three CIL expressions representing the amounts of
red, blue, green, and blue that are a part of each color.

type color =
| ExactRGB of rgb

| LowerRGB of rgb

| UpperRGB of rgb

type colors = color list

As in Chapter 7 it is useful to de�ne global variables for string constants, as well as a list of the
strings.

OCaml Style Note: It may be good to think of having a personal upper
limit for the arity of tuple types. After some point, remembering the meanings
of the elements becomes di�cult, and it becomes more readable to de�ne record
types. The tuple rgb is a triple of three expressions: the amounts of red, green,
and blue�hopefully easy enough to remember, so we don't make a record type
for it.

CHAPTER 8. DEPENDANT TYPE QUALIFIERS 61

let exactRGBStr = "ExactRGB"

let lowerRGBStr = "LowerRGB"

let upperRGBStr = "UpperRGB"

let color strings = [exactRGBStr; lowerRGBStr; upperRGBStr;]

The next four functions, leading up to string of colors assist in turning a list of colors into a
string. The function rgb of color returns the rgb tuple used in a color.

let rgb of color (c : color) : rgb =
match c with

| ExactRGB(r, g, b)
| LowerRGB(r, g, b)
| UpperRGB(r, g, b) → r, g, b

The function string of rgb uses triplemap (de�ned in Tututil) to convert the elements of an
rgb tuple to Pretty.docs, and then to strings with Pretty.sprint.

let string of rgb (t : rgb) : string =
let t =
t | > triplemap (d exp ())
|> triplemap (sprint �width : 80)

in

"("�(fst3 t)�", "�(snd3 t)�", "�(thd3 t)�")"

The function string of color uses string of rgb to convert a color to a string

let string of color (c : color) : string =
let k =
match c with

| ExactRGB → exactRGBStr

| LowerRGB → lowerRGBStr

| UpperRGB → upperRGBStr

in

k�(c | > rgb of color | > string of rgb)

The function string of colors converts a list of colors into a comma separated string.

let string of colors (c : colors) : string =
c

|> L.map string of color

|> S.concat ", "

CHAPTER 8. DEPENDANT TYPE QUALIFIERS 62

8.1.2 Context for compiling type quali�ers

We would like to allow our color type quali�ers to refer to C expressions. Therefore, in order
to interpret them, and to compile them into our OCaml type (color), we require a context to
translate names into CIL expressions. Instances of the ctxt type simply map strings to CIL
expressions. Here, we'll also write some functions for looking up strings in the context, adding
variables, expressions, and �elds to a context, and extending a context so that type quali�ers may
refer to global varialbes, local variables, and structure �elds. We also include a function so that the
types of formal parameters may refer to other formal parameters.

type ctxt = exp SM.t

let exp of string (c : ctxt) (s : string) : exp = SM.find s c

let ctxt add var (c : ctxt) (vi : varinfo) : ctxt = SM.add vi.vname (v2e vi) c
let ctxt add exp (c : ctxt) (s : string) (e : exp) : ctxt = SM.add s e c

let ctxt add field (blv : lval) (c : ctxt) (fi : fieldinfo) : ctxt =
SM.add fi.fname (Lval(addOffsetLval (Field(fi, NoOffset)) blv)) c

The function context for globals generates a fresh context containing mappings for the global
variables. It does this by folding over the list of globals in f.globals and using ctxt add var when
encountering a global variable declaration or de�nition.

let context for globals (f : file) : ctxt =
L.fold left (fun c g →
match g with

| GVarDecl(vi,) → ctxt add var c vi

| GVar(vi, ,) → ctxt add var c vi

| → c)
SM.empty f.globals

The function context for locals extends a context with mappings for local variables and function
parameters.

let context for locals (c : ctxt) (fd : fundec) : ctxt =
L.fold left ctxt add var c (fd.slocals @ fd.sformals)

Used at a call site, the function context for call extends a context with mappings from for-
mal parameters to actual parameters. Since there may be more actuals than formals, we use
list take de�ned in Tututil to limit the mapped actuals to the number of formals. Then, we
map ctxt add exp over the lists. It is used for resolving function argument types at a call site,
which may refer to the other function arguments.

CHAPTER 8. DEPENDANT TYPE QUALIFIERS 63

let context for call (c : ctxt) (fe : exp) (args : exp list) : ctxt =
match typeOf fe with

| TFun(, Some stal, ,) →
let formals = L.map fst3 stal in

let actuals = list take (L.length stal) args in

L.fold left2 ctxt add exp c formals actuals

| → c

When compiling a �eld access, the function context for struct extends a context with mappings
from �eld names to expressions accessing those �elds through the given lval. It is used for compiling
the type of a structure �eld, which may refer to other �elds of the same structure.

let context for struct (c : ctxt) (loc : location) (lv : lval) : ctxt =
let blv, off = removeOffsetLval lv in

match off with

| NoOffset | Index → c

| Field(fi, NoOffset) → L.fold left (ctxt add field blv) c fi.fcomp.cfields

| → E.s(E.bug "%a: Expected field w/o offset: %a" d loc loc d lval lv)

8.1.3 Compiling type quali�ers

Now that we can build a context for compiling the type quali�ers, we can go ahead with the actual
compilation. In particular, we need to translate a CIL attribute parameter into an CIL expression.

Once we have compiled the type quali�ers, we'll be able to enforce rules about what sorts of
color combinations can be on the same type. In particular, a type can have either no color, an exact
color, or at most one lower bound and one upper bound.

Below, the function exp of ap translates attrparams into CIL exps in a given context. If the
attrparam uses a name not mapped in the context, we print an error and stop compilation.

let rec exp of ap (c : ctxt) (loc : location) (ap : attrparam) : exp =
let eoap = exp of ap c loc in

match ap with

| AInt i → integer i

| AStr s → mkString s

| ACons(s, []) → begin

try exp of string c s

with Not found →
E.s (E.error "%a: %s not in context for %a"

d loc loc s d attrparam ap)
end

| AUnOp(uop, ap) →
let e = eoap ap in

CHAPTER 8. DEPENDANT TYPE QUALIFIERS 64

UnOp(uop, e, typeOf e)
(∗ And so forth.... ∗)
| →
E.s (E.error "%a: exp of ap: Attribute parameter is not an expression: %a"

d loc loc d attrparam ap)

The function make colorqual creates the di�erent varieties of colors depending on the string k.

let make colorqual (k : string) (loc : location) (et : rgb) : color =
match k with

| s when s = exactRGBStr → ExactRGB et

| s when s = lowerRGBStr → LowerRGB et

| s when s = upperRGBStr → UpperRGB et

| → E.s (E.bug "%a: Expected an RGBStr got %s" d loc loc k)

The function colorqual of type uses exp of ap and make colorqual to compile the three com-
ponents of the C attributes on a type. It uses the Cil library function filterAttributes to
select the color attribute, compiles the components of the attribute (rap, gap, bap), and then calls
make colorqual to assemble the right color. If there is a syntax error in the attribute, we ignore
the attribute and issue a warning.

let colorqual of type (k : string) (c : ctxt) (loc : location) (t : typ)
: colors

=
match filterAttributes k (typeAttrs t) with
| (Attr(, [rap; gap; bap])) :: rst→
if rst 6= [] then
E.warn "%a: Type with multiple %s qualifiers. Keeping only the first: %a"

d loc loc k d type t;
[(rap, gap, bap)
|> triplemap (exp of ap c loc)
|> make colorqual k loc]

| (Attr) :: →
E.warn "%a: Malformed color attribute: %a"

d loc loc d type t;
[]
| → []

The three functions extractRGB of type, lowerRGB or type, and upperRGB of type use colorqual of type

to extrac the given color quali�er.

let exactRGB of type = colorqual of type exactRGBStr

let lowerRGB of type = colorqual of type lowerRGBStr

let upperRGB of type = colorqual of type upperRGBStr

CHAPTER 8. DEPENDANT TYPE QUALIFIERS 65

The function colors of type is our entry point for the type checking phase. Given a context,
it returns the colors for a type after enforcing the requirements for a well-formed type mentioned
above.

let colors of type (c : ctxt) (loc : location) (t : typ) : colors =
let exact = exactRGB of type c loc t in

let lower = lowerRGB of type c loc t in

let upper = upperRGB of type c loc t in

match exact, lower, upper with

| e, [], [] → e

| [], l, u → l @ u

| →
E.error ("%a: At most one exact, or one upper"��

"and one lower bound allowed: %a")
d loc (!currentLoc) d type t;

[]

8.1.4 Runtime type-checking functions

Now that we can pull colors out of a type, we need to make available the functions we'll use to do
the runtime component of the type-checking. This code is very similar to the code in Chapter 4.
The important functions are mkColorEqInst, and mkColorLeInst, which generate instructions that
check color equality and inclusion.

let mkColorEqInst () = mkColorInst color funcs.color eq

let mkColorLeInst () = mkColorInst color funcs.color le

8.1.5 Comparing colors

With colors extracted from types, and with functions for comparing the runtime values in the colors,
we can now generate the necessary calls for for checking that two types are compatible.

The function color includes checks whether one color is �included� in another. An ExactRGB

de�nes a particular point, whereas LowerRGB and UpperRGB de�ne ranges. So, we can just check
inclusions for points and ranges.

CHAPTER 8. DEPENDANT TYPE QUALIFIERS 66

let color includes (loc : location)
(is this : color) (in this : color)
: instr list

=
match is this, in this with

| ExactRGB c1, ExactRGB c2 → [mkColorEqInst () loc c1 c2]
| ExactRGB c1, LowerRGB c2

| LowerRGB c1, LowerRGB c2 → [mkColorLeInst () loc c2 c1]
| ExactRGB c1, UpperRGB c2

| UpperRGB c1, UpperRGB c2 → [mkColorLeInst () loc c1 c2]
| → E.error "%a: color inclusion test will always fail" d loc (!currentLoc);

[]

The function colors includes checks that every color of is this is included in every color of
in this. Notice how the nested List.map functions perform this all-pairs check, and builds the
resulting list of instructions with List.concat

let colors includes (loc : location)
(is this : colors) (in this : colors)
: instr list

=
if (is this = [] ∧ in this 6= []) ∨ (is this 6= [] ∧ in this = []) then
(∗ Either both have colors or neither do ∗)
E.error "%a: color mismatch" d loc loc;

L.concat (
L.map (fun c1 →
L.concat(L.map (color includes loc c1) in this)

) is this

)

8.1.6 Type-checking

Now, we can write the visitor that performs type-checking. First, we de�ne two functions that
extract colors from lvals and exps using colors of type. The function colors of lval adds
mappings to the context using context for struct in the case that lv accesses a structure �eld.
colors of exp �rst checks whether the expression is for an lval, and if so uses colors of lval

function. Otherwise it simply extracts the type of the expression and uses colors of type.

let colors of lval (c : ctxt) (loc : location) (lv : lval) : colors =
colors of type (context for struct c loc lv) loc (typeOfLval lv)

CHAPTER 8. DEPENDANT TYPE QUALIFIERS 67

let colors of exp (c : ctxt) (loc : location) (e : exp) : colors =
match e with

| Lval lv → colors of lval c loc lv

| → colors of type c loc (typeOf e)

colorCheckVisitor visits a function with a context c that contains mappings for the local variables
and formal parameters. At assignments and function calls, it inserts function calls that the type
of the destination lvalue or formal parameter includes the type of the right-hand-side or actual
parameter.

These instructions are inserted using self#queueInstr. This is yet another mechanism with
which one can modify the AST. self#queueInstr can be called from any visitor method. Instruc-
tions queued up with self#queueInstr are dequeued (i.e. inserted) at the latest possible point
before the AST node currently being visited. So, if we queue up an instruction while visiting an
instruction, the new instruction will be inserted immediately before the one currently being visited.

The case for checking function calls is ommitted because of its length, but it is a very useful
pattern, and might help with one of the exercises from a previous chapter.

class colorCheckVisitor (c : ctxt) = object(self)
inherit nopCilVisitor

method vinst (i : instr) =
match i with

| Set(lv, e, loc) →
let lvc = colors of lval c loc lv in

let ec = colors of exp c loc e in

self#queueInstr (colors includes loc ec lvc);
DoChildren

| → DoChildren

end

The function checkColorTypes invokes the visitor colorCHeckVisitor on function fd using context
c.

let checkColorTypes (c : ctxt) (fd : fundec) (loc : location) : unit =
let c = context for locals c fd in

let vis = new colorCheckVisitor c in

ignore(visitCilFunction vis fd)

The function tut8 is the entry point to the code in this tutorial. It �rst initializes our dynamic
type-checking functions (tut8 init), then builds a global context for compiling type attributes
(context for globals), performs the type-check, and �nally erases the color attributes.

CHAPTER 8. DEPENDANT TYPE QUALIFIERS 68

let tut8 (f : file) : unit =
tut8 init f;
let c = context for globals f in

c | > checkColorTypes | > onlyFunctions | > iterGlobals f;
eraseColors f

8.2 test/tut8.c

In this test we de�ne a structure type in which the type of one of the �elds depends on the values of
the other �elds, and two functions in which the type of one of the formal parameters depends on the
values to be bound to the other formal parameters at each call site. The test demonstrates the type
safe initialization of the �elds of the structure (i.e. �elds whose type depends on the other �elds are
initialized last.) Also, we check that the compiler catches a call with poorly-typed parameters (i.e.
the call to bar).

../test/tut8.c
include <ciltut.h>

struct bar {

int r, g, b;

int ExactRGB(r,g,b) c;

};

void foo(int LowerRGB(r,g,b) c, int r, int g, int b) {return;}

void bar(int UpperRGB(r,g,b) c, int r, int g, int b) {return;}

int main()

{

struct bar B;

B.r = 50;

B.g = 50;

B.b = 50;

B.c = AddRGB(50,50,50,50);

foo(B.c, B.r, B.g, B.b);

bar(B.c, 10, 10, 10);

return 0;

}

We compile this example:

CHAPTER 8. DEPENDANT TYPE QUALIFIERS 69

$ ciltutcc --enable-tut8 -o tut8 test/tut8.c

which completes successfully, but when we run it:

$./tut8

test/tut8.c:40 Bad color coercion: (50,50,50) > (10,10,10)

a runtime type-check assertion fails at the call to bar, as expected.

8.3 Exercises

1. The visitor does not check casts, though this is another obvious place to check color com-
patibility. Add code to the visitor for checking casts, but change the static and runtime
type-checks so that only a warning is emitted if colors for a cast are not compatible. (If the
programmer is adding an explicit cast, maybe they know what they're doing.)

2. In Chapter 7 we recursively descended into types, checking color compatibility at all levels.
Extend this code to do similar checking.

3. When a variable is the target of an assignment, then all types that reference it are changed.
The new types must be included in the corresponding old types. In order to capture all cases
in which an assignment may change a type, we must place restrictions on the expressions
that may appear in types. What are these restrictions? Modify this code to enforce those
restrictions, and to place appropriate runtime checks when an assignment may change a type
(i.e. inclusion checks for the types pre- and post-assignment).

4. Create an optimization visitor or data�ow analysis that removes checks that we can be sure
will always succeed.

8.4 Further Reading

Deputy [2] is an extension to C's type-system that adds dependent type-quali�ers that track the
length of memory bu�ers. In performing type-checking, the compiler adds runtime checks to the
program whenever pointer arithmetic is performed (or any variable mentioned in a type-quali�er
may be modi�ed), since doing so may alter a type.

Shoal [1] is also an extension to C's type-system that adds dependent type-quali�ers that allow
the compiler to track membership of an object in a pointer-based data-structure. In particular, the
type of an external pointer into a data-structure may be quali�ed by a pointer to a distinguished
member of the data-structure (i.e. the root of a tree). This has the result that the number of
external pointers into a data-structure can be tracked simply by counting the number of pointers
quali�ed by pointers to the distinguished member. In Shoal this is used to check the safety of
converting pointer data-structures from thread-private to thread-shared and back again.

References

[1] Zachary Anderson, David Gay, and Mayur Naik. Lightweight annotations for controlling sharing
in concurrent data structures. In Proceedings of the 2009 ACM SIGPLAN conference on Pro-
gramming language design and implementation, PLDI '09, pages 98�109, New York, NY, USA,
2009. ACM.

[2] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and George Necula. Dependent
types for low-level programming. In ESOP'07.

70

Chapter 9

Type Quali�er Inference

In the previous two sections, we saw how to add type-quali�ers to the language, and how to do
any extra type-checking that they might require. In this section, we'll see how one can begin to do
type-quali�er inference. This might be useful, for example, if we wish to make our changes to C
more unobtrusive. That is, we would like to add expressiveness to the language and type-system
without thrusting a large annotation burden onto the programmer. One way to accomplish this is
by inferring as many type quali�ers as possible. Additionally, analyses like this one, which push type
quali�ers around, can be used for purposes aside from type-inference. For example, type quali�er
inference can be used to perform an imprecise (though still very useful) thread-escape analysis.

9.1 tut9.ml

We'll use the following method to infer type quali�ers. First, we'll place a numeric IDs on each
type node in the AST. Then we'll build a graph with these numeric IDs on each node and directed
edges given by the relationships between types that we �nd in the program. Next, we iterate over
the nodes until we reach a �x-point that satis�es the relationships encoded by the graph edges.
Following that, we add the inferred type quali�ers to the program. If an inferred type quali�er
doesn't match the one that the programmer has given explicitly, we emit a compile-time warning.
This inference pass is intended to be followed by a type-checking phase as in one of the previous
sections. Therefore, it is important that we don't infer anything that won't type-check!
We'll need the standard library Queue module, and a few things from Chapter 7, in particular the
de�nition of the color type.

module Q = Queue

module T = Tut7

type colors = T.color list

Even though we are borrowing some OCaml types and functions from Tut7, the C type system for
this analysis is slightly di�erent. In Tut7 for two types to be compatible, their colors had to match
exactly. In this tutorial, we use the same colors, with a di�erent restriction: type A is {included

71

CHAPTER 9. TYPE QUALIFIER INFERENCE 72

in, a subtype of, etc...} type B when the colors of type A are a subset of the colors of type B. For
example, a Red int is also a Red Blue int. Thus, the subset lattice of the colors de�nes the subtype
relation of our type system, and we can use it to �nd the least-upper-bound of two types, which
will be important for the inference algorithm below.

9.1.1 Mark types with node IDs

First we'll introduce two visitors and two functions that run the visitors over �les. The �rst visitor
marks each type node in the AST with a unique numeric ID held in an attribute. The second visitor
removes these marks, which we must do before we pass the code on to gcc. The function nodeAttr

creates an attribute called "Node" parameterized by an integer node ID.

let nodeStr = "Node"

let nodeAttr (id : int) : attributes = [Attr(nodeStr, [AInt id])]

The function node of type returns the integer node ID of a type. Since, we are adding the "Node"
attributes ourselves, it is a bug if one is malformed. Hence, we use E.bug. If there is no "Node"

attribute, this implies that t is the result of calling typeOf on a constant. We group all of these
types at node 0 in the graph. Later, we'll see that this node is unreachable, and so we won't try to
infer a type quali�er for it.

let node of type (t : typ) : int =
match filterAttributes nodeStr (typeAttrs t) with
| [(Attr(, [AInt id]))] → id

| [] → 0
| → E.s (E.bug "%a: Malformed node id on %a" d loc (!currentLoc) d type t)

The visitor typeNodeMarker visits every typ node in the AST and assigns them unique node IDs
by placing a "Node" attribute on them.

class typeNodeMarker (node count : int ref) = object(self)
inherit nopCilVisitor

method vtype (t : typ) =
let action t =
if ¬(hasAttribute nodeStr (typeAttrs t)) then begin

let attr = nodeAttr (!node count) in
incr node count;
typeAddAttributes attr t

end else t

in

ChangeDoChildrenPost(t, action)
end

The function addNodeMarks invokes the typeNodeMarker visitor on a �le and returns the largest ID
assigned by the visitor. This will be the number of nodes we need in our graph.

CHAPTER 9. TYPE QUALIFIER INFERENCE 73

let addNodeMarks (f : file) : int =
let cntr = ref 1 in

let vis = new typeNodeMarker cntr in

visitCilFile vis f;
!cntr

9.1.2 Build a graph

We'll use an adjacency list representation for the graph. We de�ne a node type, which is just two
lists, one with edges to us (incoming), and the other with edges from us (outgoing). Later, we'll
add colors to the graph nodes.

type node = {
mutable ncolors : colors;
mutable incoming : int list;
mutable outgoing : int list;

}

The function newNode creates a new node with no edges incoming or outgoing.

let newNode (id : int) : node =
{ncolors = []; incoming = []; outgoing = []}

A graph is just an array of nodes. We can use an array because the number of nodes is �xed, and
we can get that number from the addNodeMarks function above.

type graph = node array

The function graphCreate creates an array of nodes with no edges.

let graphCreate (n : int) : graph = A.init n newNode

The function graphAddEdge adds a directed edge to the graph.

let graphAddEdge (g : graph) (from node : int) (to node : int) : unit =
if ¬(L.mem to node g.(from node).outgoing) then
g.(from node).outgoing ← to node :: g.(from node).outgoing;

if ¬(L.mem from node g.(to node).incoming) then
g.(to node).incoming ← from node :: g.(to node).incoming

CHAPTER 9. TYPE QUALIFIER INFERENCE 74

OCaml Pitfall: In graphCreate you might be tempted to say:
A.make n {ncolors = []; ...}. However this would be problematic. The ar-
ray would be initialized, not with copies of the given node record, but rather
with references to a single node because the record literal would be evaluated
before being passed to A.make. On the other hand, the newNode function is
called for each array element, allocating a fresh node for each one.

The function typesAddEdge places an edge in the graph from the node for type from type to the
node for type to type.

let rec typesAddEdge (g : graph) (from type : typ) (to type : typ) : unit =
let from id = node of type from type in

let to id = node of type to type in

graphAddEdge g from id to id

Before de�ning the visitor that will build the graph, we de�ne a couple of functions that will make
handling function calls a bit easier. The function addEdgesForCallArgs adds edges arising from
the assignment of actuals to formals at function call sites.

let addEdgesForCallArgs (g : graph) (fe : exp) (aes : exp list) : unit =
let fts = fe | > function elements | > snd | > L.map snd3 in

let ats = aes | > list take (L.length fts) | > L.map typeOf in

L.iter2 (typesAddEdge g) ats fts

The function addEdgesForCallRet adds edges for the assignment of return values at call sites.

let addEdgesForCallRet (g : graph) (fe : exp) (rlvo : lval option) : unit =
match rlvo with

| None → ()
| Some rlv →
let rt, = function elements fe in

typesAddEdge g rt (typeOfLval rlv)

The visitor graphBuilder adds edges to the graph. Edges encode constraints on type quali�ers.
We place an edge from node A to node B when the type of A must be included in the type of
B. Thus, if we have an assignment lv = e the type of lv has to be �big enough� to handle the
type of e. That is, the type of e must be included in the type of lv. Then, we can just think of
casts, parameter passing, and the return statements as di�erent ways of doing assignments, and
add edges for them the same way.

CHAPTER 9. TYPE QUALIFIER INFERENCE 75

class graphBuilder (g : graph) (fd : fundec) = object(self)
inherit nopCilVisitor

method vinst (i : instr) =
match i with

| Set(lv, e, loc) →
typesAddEdge g (typeOf e) (typeOfLval lv);
DoChildren

(∗ ... ∗)
end

The function functionBuildGraph invokes the visitor graphBuilder on function fd, building the
graph in the mutable array g.

let functionBuildGraph (g : graph) (fd : fundec) (loc : location) : unit =
let vis = new graphBuilder g fd in

ignore(visitCilFunction vis fd)

The function fileBuildGraph simply calls the functions we de�ned above, �rst for marking the
AST with "Node" type attributes, and second building the graph. The function returns the resulting
graph.

let fileBuildGraph (f : file) : graph =
let g = f | > addNodeMarks | > graphCreate in

functionBuildGraph g

|> onlyFunctions

|> iterGlobals f;
g

9.1.3 Inferene Algorithm

The inference algorithm must be seeded somehow. In this example, the nodeColorFinder visitor
takes any type quali�ers that the programmer added explicitly to the program, and puts them into
our graph. However, in a di�erent application, depending on the meanings of the type quali�ers, it
may be possible to deduce some of the missing type quali�ers before the inference stage begins.

class nodeColorFinder (g : graph) = object(self)
inherit nopCilVisitor

method vtype (t : typ) =
let id = node of type t in

let c = T.colors of type t in

g.(id).ncolors ← c;
DoChildren

end

CHAPTER 9. TYPE QUALIFIER INFERENCE 76

The function findColorNodes invokes the nodeColorFinder visitor on the �le f with the graph g.

let findColoredNodes (f : file) (g : graph) : unit =
let vis = new nodeColorFinder g in

visitCilFile vis f

The function colors equal ensures that every color of c1 is somewhere in c2 and that every color
of c2 is somewhere in c1. That is it checks that the lists have the same elements.

let colors equal (c1 : colors) (c2 : colors) : bool =
L.for all (fun c → L.mem c c2) c1 ∧
L.for all (fun c → L.mem c c1) c2

Now that the graph has been seeded by a few type quali�ers, we can see where else in the graph
they must �ow. We'll accomplish this by doing the following. First, we put all the nodes in the
graph into a queue. Then, for each node that we pop o� the queue, we'll �nd the least-upper-bound
of the quali�er on the node itself along with the quali�ers on the nodes for incoming edges; these are
the types that it must include. If the least-upper-bound quali�er is di�erent, we'll assign the new
quali�er to the node, and then add the nodes on outgoing edges to the end of the queue. When the
quali�er lattice has �nite height, as it does here, we can be sure that the algorithm will terminate.

The function enqueueNodes places each of the nodes in our graph on a queue and returns the
queue.

let enqueueNodes (g : graph) : int Q.t =
let q = Q.create () in
A.iteri (fun i → Q.add i q) g;
q

The function processNode folds over the incoming edges of a node, computing the least-upper-
bound of the types on the origin nodes. If the result is di�erent from the starting type, it adds the
new type to the graph and return true. Otherwise it returns false.

let processNode (g : graph) (id : int) : bool =
let c' =
L.fold left (fun c id' → list union c g.(id').ncolors)
g.(id).ncolors g.(id).incoming

in

if ¬(colors equal g.(id).ncolors c') then begin

g.(id).ncolors ← c';
true

end else false

The function processQueue applies processNode to each node of the graph g on queue q. If
processNode for some node returns true, it adds the destinations of the node's outgoing edges to
the end of the queue.

CHAPTER 9. TYPE QUALIFIER INFERENCE 77

let processQueue (g : graph) (q : int Q.t) : unit =
while ¬(Q.is empty q) do
let id = Q.pop q in

if processNode g id then begin

L.iter (fun id' → Q.add id' q) g.(id).outgoing
end

done

The function attr of color builds a new type attribute from the color c.

let attr of color (c : T.color) : attribute = Attr(T.string of color c, [])

Once the inference algorithm is �nished, we can add its results to the types in the program. If an
inferred type quali�er disagrees with one that the programmer has added explicitly, we keep the
programmer's annotation, but issue a warning.

The visitor colorAdder visits typ nodes in the AST. It reads the inferred color type using the
typ's "Node" attribute, and adds it to the typ, respecting the above policy.

class colorAdder (g : graph) = object(self)
inherit nopCilVisitor

method vtype (t : typ) =
let oc = T.colors of type t in

let ic = (t | > node of type | > A.get g).ncolors in

if oc 6= [] ∧ ¬(colors equal ic oc) then DoChildren

else if list equal (=) ic oc then DoChildren else

let nattr = L.map attr of color ic in

ChangeTo (typeAddAttributes nattr t)
end

The function addInferredColors invokes the visitor colorAdder on the �le f using the inference
results in graph g.

let addInferredColors (f : file) (g : graph) : unit =
let vis = new colorAdder g in

visitCilFile vis f

Finally, we tie everything together with the function tut9, which is the entry point into the module.
We must also remember to remove the node attributes we added for building the graph. We leave the
inferred colors since these will need to be checked by a type-checking pass like the one in Chapter 7.

CHAPTER 9. TYPE QUALIFIER INFERENCE 78

let tut9 (f : file) : unit =
let g = fileBuildGraph f in

let q = enqueueNodes g in

findColoredNodes f g;
processQueue g q;
addInferredColors f g;
eraseNodeMarks f

9.2 test/tut9.c

This test demonstrates type qualifer inference. In particular, the types of the parameters r and g

of function foo will be inferred.
../test/tut9.c

include <ciltut.h>

struct bar {

int red * red r;

int green g;

int red green blue c;

};

void foo(int blue c, int r, int g)

{

return;

}

int main()

{

struct bar B;

int red r = 50;

B.r = &r;

B.g = 50;

B.c = AddColor(blue, 50);

foo(B.c, *B.r, B.g);

foo(B.g, r, r);

return 0;

}

When we build this test by doing:

CHAPTER 9. TYPE QUALIFIER INFERENCE 79

$ ciltutcc --enable-tut9 --save-temps -o tut9 test/tut9.c

We recieve a number of warnings because we have not erased our custom type quali�ers from the
source. We did this so that we could examine the results of type quali�er inference. In particular,
since we passed --save-temps to ciltutcc, we can look at the results in tut9.cil.c.

When we do so, we can note the inferred types of the parameters r and g of foo:

void foo(int blue c, int red r, int red green g) ...

Since the type of parameter c was declared explicitly, its type quali�er is not inferred to be
anything else. Since only red ints were passed as parameter r, it is in�ered to be a red int.
Finally, since both red and green ints were passed as parameter g, it is inferred to be both red

and green.

9.3 Exercises

1. Modify typesAddEdge to recursively descend into types, adding edges as appropriate. Since
this is just the inference stage, it is okay to ignore typing errors unless the problem is somehow
catastrophic.

9.4 Further Reading

As mentioned in earlier chapters, Deputy and CCured use type-quali�er inference to infer how
pointers are used, and thus what sort of safety checks their use requires.

Additionally, SharC [1] is an extension to C's type system and language runtime that enforces
programmer written type-quali�ers describing how data may be shared among threads. As an
optimization it uses a �ow-insensitive type-quali�er inference algorithm as a thread-escape analysis.
In particular, if the compiler can determine that an object is thread-private, then there is no need
to check accesses to it at runtime for data-races. The inference algorithm is seeded by the types of
locations that are obviously thread-escaping, like global variables accessed in thread functions, or
arguments to pthread create(). Then, the relevant type-quali�ers �ow across assignments as in
the above tutorial. At the end of the inference algorithm, those locations without the type quali�er
indicating thread-escape must be thread-private.

References

[1] Zachary Anderson, David Gay, Rob Ennals, and Eric Brewer. Sharc: checking data sharing
strategies for multithreaded c. In Proceedings of the 2008 ACM SIGPLAN conference on Pro-
gramming language design and implementation, PLDI '08, pages 149�158, New York, NY, USA,
2008. ACM.

80

Chapter 10

Adding a New Kind of Statement

In this section, we will take a look at two di�erent ways of adding a new statement to C without any
changes to the lexer or parser. In particular, we will add a statement to C that pro�les the cache
miss rate and used memory bandwidth in a block of code. Adding the new syntax and replacing
the new statement with calls into our runtime library will be the easy part. The more di�cult task
will be the implementation of the runtime library. In particular, we must arrange for each thread
to maintain su�cient state to handle arbitrary nesting of the new statement.

10.1 tut10.ml

The two di�erent ways of adding syntax involve further use of the same attribute syntax that
we used for type quali�ers. In the �rst method, we transform a specially constructed if state-
ment. In the second method we transform Block statements that have been annotated with the
blockattribute ((...)) syntax supported by CIL. When using the transformed if statement,

we'll be able to use a C preprocessor macro to make it look more like a standard C statement.
First, we de�ne a string for the name of the new statement. Then, in hasCacheReportAttrs and
isCacheReportType, we de�ne functions for determining whether a type or set of attributes contains
the the name of the new statement.

let cacheReportStr = "cache report"

let hasCacheReportAttrs : attributes → bool = hasAttribute cacheReportStr

let isCacheReportType (t : typ) : bool = t | > typeAttrs | > hasCacheReportAttrs

The function isCacheReportState looks for two kinds of statements: either an if statement testing
the constant 0 cast to a type with the cache report attribute, or a Block with that attribute.

81

CHAPTER 10. ADDING A NEW KIND OF STATEMENT 82

let isCacheReportStmt (s : stmt) : block option =
match s.skind with

| If(CastE(t, z), b, ,) when z = zero ∧ isCacheReportType t → Some b

| Block b when hasCacheReportAttrs b.battrs → Some b

| → None

Now, if we make the following macro:

#define cache report if((void * attribute ((cache report)))0)

We can write code like the following:

cache report {

...

}

Alternately (or in addition), if we make the following macro:

#define CACHE REPORT blockattribute ((cache report))

We can write code like the following:

{ CACHE REPORT

...

}

The above syntactic constructs will be replaced by calls to two functions, one at the beginning
of the block of code we want to pro�le, and one at the end.

We create instrumentation functions just as we did back in Chapter 4, so we just include the
code here that builds the function call instructions.
The functions are de�ned in ciltut-lib/src/tut10.c and set up using the function initCacheFunctions.
The function makeCacheReportStmts builds the function calls for source location loc, and returns
a pair of statements containing the instructions.

let makeCacheReportStmts (loc : location) : stmt × stmt =
let f, l = mkString loc.file, integer loc.line in

i2s (Call(None, v2e cachefuns.cache begin, [f; l;], loc)),
i2s (Call(None, v2e cachefuns.cache end, [f; l;], loc))

CHAPTER 10. ADDING A NEW KIND OF STATEMENT 83

The cacheReportAdder visitor �nds statements satisfying isCacheReportStmt, and brackets the
statements nested within them inside of the calls to our runtime, which are given by makeCacheReportStmts.

class cacheReportAdder = object(self)
inherit nopCilVisitor

method vstmt (s : stmt) =
let action s =
match isCacheReportStmt s with

| Some b → begin

let bs, es = makeCacheReportStmts (get stmtLoc s.skind) in
let nb = mkBlock [bs; mkStmt(Block b); es] in
s.skind ← Block nb;
s

end

| None → s

in

ChangeDoChildrenPost(s, action)
end

The function tut10 is the entry point to this module. It Initializes the runtime functions, and
invokes the cacheReportAdder visitor on the �le f.

let tut10 (f : file) : unit =
initCacheFunctions f;
let vis = new cacheReportAdder in

visitCilFile vis f

Now we describe all of the hard work that takes place inside of the C functions tut cache begin and
tut cache end. In addition we must explain the data structures used to maintain per-thread state,
and the method for reading the hardware performance counters for cache misses and references.

10.2 tut10.c

This C source �le contains the implementation of the runtime for the cache report statement. It
must accomplish three things. First, each thread must use Linux's perf event open system call to
access the hardware performance counters for cache misses and references. Secondly, each thread
must maintain a stack that mirrors the nesting structure of the cache report statement. Finally,
we must use the dynamic linker to override the C Library function pthread create to ensure that
new threads are set up to access the performance counters and to maintain the stack.

CHAPTER 10. ADDING A NEW KIND OF STATEMENT 84

../ciltut-lib/src/tut10.c
define _GNU_SOURCE // Needed for RTLD_NEXT

include <stdint.h> // for uint64_t

include <pthread.h> // for pthread_create

include <dlfcn.h> // for RTLD_NEXT

include <stdio.h>

include <stdlib.h>

include <unistd.h>

include <ciltut.h>

We'll omit from the text most of the code for setting up the performance counters. You can �nd it
in ciltut libc.c. The important thing to note about this code is that perf get cache refs() re-
turns the cumulative number of cache references performed by the calling thread, and perf get cache miss()

returns the cumulative number of those references that missed the cache.
For each thread we'll keep a stack of records that each record the cumulative number of cache

misses (start miss), the cumulative number of cache references (start refs), and the starting
time (start time) at the beginning of a cache report statement.

../ciltut-lib/src/tut10.c
struct cache_stack_entry {

uint64_t start_miss;

uint64_t start_refs;

uint64_t start_time;

};

define MAX_CACHE_STACK_ENTRIES 256

struct cache_stack {

struct cache_stack_entry s[MAX_CACHE_STACK_ENTRIES];

int t;

};

Next, we set up the thread local storage for the stack, and a pointer to the top of the stack. Linux
supports gcc's thread storage modi�er, but other OS's might not, for example Mac OSX. Thus,
we'll just stick to using pthread setspecific and pthread getspecific for implementing thread
local storage. The CONSTRUCTOR attribute on init CS key ensures that the stack is initialized in
the �rst thread of the program. Next, we'll ensure that each new thread also calls init CS key.

CHAPTER 10. ADDING A NEW KIND OF STATEMENT 85

../ciltut-lib/src/tut10.c
pthread_key_t CS_key;

static void init_CS()

{

struct cache_stack *CS = calloc(1, sizeof(*CS));

pthread_setspecific(CS_key, CS);

}

CONSTRUCTOR static void init_CS_key()

{

pthread_key_create(&CS_key, &free);

init_CS();

}

static struct cache_stack *get_CS()

{

return (struct cache_stack *)pthread_getspecific(CS_key);

}

The next three items demonstrate how to override the C Library's pthread create function. First,
we set up a function pointer to store a reference to the original function (pthread create orig)�
we'll need to call it from inside of our version. Second, wrap the call to the dynamic linker in some
error checking code in checked dlsym. Finally, we set up a constructor function, which runs before
main, to call checked dlsym, which returns a pointer to the original pthread create call.

../ciltut-lib/src/tut10.c
int (*pthread_create_orig)(pthread_t *__restrict,

__const pthread_attr_t *__restrict,

void *(*)(void *),

void *__restrict) = NULL;

extern void *checked_dlsym(void *handle, const char *sym);

CONSTRUCTOR static void init_cache_stack()

{

pthread_create_orig = checked_dlsym(RTLD_NEXT, "pthread_create");

}

The goal of wrapping pthread create is to ensure that spawned threads set up the state needed for
the cache report statement. Therefore, we need to wrap every function passed to pthread create

in a function that performs the initialization before calling passed function. We accomplish this by
de�ning a structure type for the function pointer and its argument. Then, in tfunc wrapper, we
initialize thread local storage for the cache stack, and initialize the performance counters for the
new thread with perf init before calling the function pointer on its argument.

CHAPTER 10. ADDING A NEW KIND OF STATEMENT 86

../ciltut-lib/src/tut10.c
struct pthread_closure {

void *(*fn)(void *);

void *arg;

};

static void *tfunc_wrapper(void *arg)

{

struct pthread_closure *c = (struct pthread_closure *)arg;

void *(*fn)(void *) = c->fn;

void *a = c->arg;

void *res = NULL;

free(c);

init_CS();

perf_init(gettid());

res = fn(a);

perf_deinit();

return res;

}

With the thread function wrapper set up in tfunc wrapper, we can now set up our version of
pthread create, which allocates a closure for the thread routine and its argument before making
the call to pthread create orig.

../ciltut-lib/src/tut10.c
int pthread_create(pthread_t *__restrict thread,

__const pthread_attr_t *__restrict attr,

void * (*start_routine)(void *),

void *__restrict arg)

{

struct pthread_closure *c = malloc(sizeof(struct pthread_closure));

int res;

c->fn = start_routine;

c->arg = arg;

res = pthread_create_orig(thread, attr, &tfunc_wrapper, c);

if (res != 0) {

printf("pthread failed\n");

fflush(stdout);

free(c);

}

return res;

}

CHAPTER 10. ADDING A NEW KIND OF STATEMENT 87

Finally, we can write the functions, which we inserted into the code with our CIL transformation.
In tut cache begin we read the performance counters for cache references and misses and the
current time, and write these values into the top entry of the stack. In tut cache end, we read
the performance counters and get the current time again, calculate the di�erences from the starting
values, and output the cache miss rate as a percentage of the total number of references. Since we
also know the elapsed time, we can also calculate the memory bandwidth.

../ciltut-lib/src/tut10.c
void tut_cache_begin(char const *f, int l)

{

struct cache_stack *cs = get_CS();

cs->s[cs->t].start_miss = perf_get_cache_miss();

cs->s[cs->t].start_refs = perf_get_cache_refs();

cs->s[cs->t].start_time = tut_get_time();

cs->t++;

return;

}

In tut cache end, we read the performance counters and get the current time again, calculate the
di�erences from the starting values, and output the cache miss rate as a percentage of the total
number of references. Since we also know the elapsed time, we can also calculate the memory
bandwidth.

CHAPTER 10. ADDING A NEW KIND OF STATEMENT 88

../ciltut-lib/src/tut10.c
void tut_cache_end(char const *f, int l)

{

uint64_t final_miss, final_refs, final_time;

uint64_t net_miss, net_refs, net_time;

double miss_rate;

double bandwidth;

struct cache_stack *cs = get_CS();

final_miss = perf_get_cache_miss();

final_refs = perf_get_cache_refs();

final_time = tut_get_time();

net_miss = final_miss - cs->s[cs->t - 1].start_miss;

net_refs = final_refs - cs->s[cs->t - 1].start_refs;

net_time = final_time - cs->s[cs->t - 1].start_time;

miss_rate = (double)net_miss/(double)net_refs;

bandwidth = (double)(net_miss * 1000000000ULL)/(double)net_time;

printf("%s:%d Miss rate was: %f, Bandwidth was %f\n",

f, l, miss_rate, bandwidth);

fflush(stdout);

cs->t--;

return;

}

The program in �le test/tut10.c spawns as many threads as there are cores on the machine, and
writes into a large array. The loop that writes the array is wrapped in a cache report statement.
We can build and run the test as follows:

$ ciltutcc --enable-tut10 -o tut10 test/tut10.c

$./tut10

... # debug messages from the pthread create wrapper

test/tut10.c:26 Miss rate was: 0.133511, Bandwidth was 1176936.786361

test/tut10.c:26 Miss rate was: 0.135422, Bandwidth was 1164002.872631

test/tut10.c:26 Miss rate was: 0.136743, Bandwidth was 1174543.676575

test/tut10.c:26 Miss rate was: 0.126649, Bandwidth was 1073938.382925

On my machine, there are four cores, and the cache line size of the last-level cache is 64-bytes.
Thus, the reported miss rate of approximately 1/8 makes sense since we are going sequentially
through the array accessing each of the 8-byte uint64 ts only once or twice.

CHAPTER 10. ADDING A NEW KIND OF STATEMENT 89

10.3 Exercises

1. Given the example code in this chapter. It is straightforward to add statements that report
on other performance counters, both hardware and software. Look in linux/perf event.h,
and add another statement that pro�les a di�erent performance counter.

2. We might also pro�le values that are speci�c to a particular application. Notice that, since
we know how to translate attribute parameters into C expressions, we could just as well have
allowed arguments to be passed to the pro�ling statement we added, e.g. cache report(e) {}.
Extend this statement to accept the address of an integer value, whose value is pro�led instead
of a performance counter.

3. In ciltut-lib/src/ciltut libc.c, reading the performance counters is implemented only
for Linux. Implement perf get cache miss and perf get cache refs for another OS.

10.4 Further Reading

This technique for adding a new statement is exactly the same as the one used by the Shelters [1]
extension to C, which adds an atomic {} statement. The statement is replaced by calls into the the
Shelters language runtime, which enforces mutual exclusion in multithreaded programs for selected
objects touched inside of the statement.

References

[1] Zachary Anderson and David Gay. Composable, nestable, pessimistic atomic statements. In
Proceedings of the 2011 ACM international conference on Object oriented programming systems
languages and applications, OOPSLA '11, pages 865�884, New York, NY, USA, 2011. ACM.

90

Chapter 11

Program Veri�cation

In this tutorial, we will use the Why3 [3] veri�cation framework to prove things about C code. In
particular we will generate veri�cation conditions (VCs) from preconditions, postconditions, and
loop invariants given by an annotation syntax that we will add to C using function type attributes
and block attributes. Suppose a function f is annotated with precondition pre and postcondition
post. We ask Why3 to prove the validity of pre→ V C(f, post).

An introduction to the generation of veri�cation conditions for imperative languages can be
found in the textbook by Winskel [6]. In this example we will use the backwards method of VC
generation. This will preclude a straightforward handling of C constructs like goto, break, and
continue statements. For these, a forwards method of VC generation is more suitable. However,
the backwards method is able to handle all the other features of C including while loops, for loops,
if statements, and switch statements.

This module allows expression preconditions, postconditions, and loop invariants in C code with
syntax extensions embodied in the following example:

void (pre(p1) post(p2) f)(...) {

while(c) { invariant(c, p3, v1, ..., vn)

}

}

Here, p1, p2, and p3 are propositions that may include universal quanti�cations and implica-
tions. Universal quanti�cation is written as forall(v1,...,vn,p) where v1 through vn are the
variables being quanti�ed over, and p is the formula being quanti�ed over. Implication is written
as implies(p1,p2), where p1 is the antecedent and p2 is the consequent. In the loop invariant an-
notation, c is the loop termination condition, p3 is the loop invariant proposition, and v1 through
textttvn are the loop variant variables. Except for forall and implies, C expression syntax is
used for the propositions.

91

CHAPTER 11. PROGRAM VERIFICATION 92

11.1 tut11.ml

This module is organized as follows. First, we de�ne types and functions for initializing and main-
taining the state needed for translation of the VC into the Term language of Why3. Then, we de�ne
functions for calculating the VC for the elements of the CIL AST and translating them into the
Why3 Term language. We begin with attribute parameters, needed for the precondition, postcondi-
tion, and loop invariant syntax that we add to C. This is followed by the translation of expressions
into Why Terms, which is similar. Next, using the Why3 Terms, we de�ne functions to generate the
VC for instructions, statements, blocks, and functions. Finally, we de�ne a function that wraps up
the generated VC into a proof goal that we pass on to one of Why3's provers.

module W = Why3 (∗ We introduce aliases for the Why3 module and some of its sub-modules. ∗)
module T = W.Term (∗ The Why3 library for constructing terms. ∗)
module Th = W.Theory (∗ The Why3 library of theories. ∗)

We use the ops record type to store function symbols of the Why3 theories that we'll employ. In
particular we'll use its theories of integer arithmetic, computer division, and maps.

type ops = {
iplus op : T.lsymbol; (∗ Integer addition ∗)
iminus op : T.lsymbol; (∗ Integer subtraction ∗)
itimes op : T.lsymbol; (∗ Integer multiplication ∗)
idiv op : T.lsymbol; (∗ Computer integer division ∗)
imod op : T.lsymbol; (∗ Computer integer modulus ∗)
lt op : T.lsymbol; (∗ Integer comparisons ∗)
(∗ ... ∗)

get op : T.lsymbol; (∗ get and set for maps ∗)
set op : T.lsymbol;

}

We use the type wctxt to store context for Why3. The �rst four �elds, which we omit here, store the
internal con�guration of Why3, the theories it will use, and information about the back-end prover
it will use. The ops �eld stores the symbols described above. The memory �eld stores a variable of
Why3 type (map int int) that we'll use to model memory accesses. The vars �eld is a map from
strings to Why3 symbols for the variables that are mentioned in the Why3 Term being constructed.

type wctxt = {
(∗...∗)
mutable ops : ops;
mutable memory : T.vsymbol;
mutable vars : T.vsymbol SM.t;

}

The initOps function extracts the Why3 symbols for the operations from the Why3 theories that
we are using.

CHAPTER 11. PROGRAM VERIFICATION 93

let initOps (it : Th.theory) (dt : Th.theory) (mt : Th.theory) : ops =
{iplus op = Th.ns find ls it.Th.th export ["infix +"];
iminus op = Th.ns find ls it.Th.th export ["infix -"];

(∗...∗)
}

The function initWhyCtxt initializes the Why3 context and directs it to use the prover speci�ed
by the string p. It uses the Why3 API to read its con�guration, load its plug-ins, �nd the speci�ed
prover, and load the theories we'll need into the wctxt.

let initWhyCtxt (p : string) (pv : string) : wctxt =
(∗ ... ∗)

As with the other attributes in previous chapters, we introduce global variables for string constants
for the attribute syntax.

let invariantAttrStr = "invariant"

let postAttrStr = "post"

let preAttrStr = "pre"

let tut11 attrs = [invariantAttrStr; postAttrStr; preAttrStr;]

The functions term of int and term of int64 convert OCaml integers (which we'll extract from
the CIL AST) into Why3 terms.

let term of int (i : int) : T.term = i | > string of int | > T.t int const

let term of i64 (i : int64) : T.term = i | > Int64.to string | > T.t int const

We'll use the functions make symbol and freshvar of ap to make fresh symbols for the variables
bound by quanti�ers that appear in attribute parameters.

let make symbol (s : string) : T.vsymbol =
T.create vsymbol (W.Ident.id fresh s) W.Ty.ty int

let freshvar of ap (ap : attrparam) : string × T.vsymbol =
match ap with

| ACons(n, []) → n, make symbol n

| → Em.s(Em.error "Names only")

The function term of attrparam converts an attribute parameter into a Why3 term. For variable
references, it looks up symbols in the vars �eld of the context. For binary and unary operations, it
uses the operations de�ned in the ops �eld.

For memory references it uses the get and set operations and the memory �eld of the context to
generate the appropriate Why3 terms. In particular, memory is modeled as one large array indexed

CHAPTER 11. PROGRAM VERIFICATION 94

by integers and storing integers. Thus, the C expression *a is translated to M(a), and the i'th �eld
of array a is translated to M(a + i).

Since attribute parameters will be used to express function pre- and post-conditions, and loop
invariants, we also interpret syntax for universal quanti�cation. The forall attribute parameter is
parameterized by the quanti�ed formula and the free variables of this formula. The free variables
are added to the context, the attribute parameter for the quanti�ed formula is translated to a Why3
term, and then we construct a Why3 term for the quali�er.

let rec term of attrparam (wc : wctxt) (ap : attrparam) : T.term =
match ap with

| AInt i → term of int i

| ACons(n, []) → T.t var (SM.find n wc.vars)
| ACons("forall",apl) → term of forall wc apl

| ACons("implies",[a; c]) → term of implies wc a c

| AUnOp(uo, ap) → term of apuop wc uo ap

| ABinOp(bo, ap1, ap2) → term of apbop wc bo ap1 ap2

| AStar ap → term of star wc ap

| AIndex(base, index) → term of index wc base index

(∗ The rest are unimplemented. See the exercises at the end of the section. ∗)
| → Em.s(Em.error "Attrparam is not a term: %a" d attrparam ap)

The function term of forall builds a Why3 term for our universal quanti�er annotation. The
list of parameters to a forall ends with the formula we are quantifying over. We copy this last
element of apl into fat. The rest of the elements of apl are the variables that we are quantifying
over. We translate those strings into fresh Why3 symbols and store the list in vl. Next, we add the
new symbols to the Why3 context after keeping a copy of the old map. Then, we translate fat in
the new context, restore the old context, and then �nally build the Why3 term for the quanti�er.

and term of forall (wc : wctxt) (apl : attrparam list) : T.term =
let fat = apl | > L.rev | > L.hd in

let vl = apl | > L.rev | > L.tl | > L.map freshvar of ap in

let oldm = wc.vars in

wc.vars ← L.fold left (fun m (n, v) → SM.add n v m) oldm vl;
let t = term of attrparam wc fat in

wc.vars ← oldm;
T.t forall close (L.map snd vl) [] t

The function term of implies translates the antecedent and consequence, then constructs and
returns the Why3 implication term.

and term of implies (wc : wctxt) (a : attrparam) (c : attrparam) : T.term =
let at = term of attrparam wc a in

let ct = term of attrparam wc c in

T.t implies at ct

CHAPTER 11. PROGRAM VERIFICATION 95

The functions term of apuop and term of apbop translate AUnOp and ABinOp attribute parameters
into Why3 terms.

and term of apuop (wc : wctxt) (u : unop) (ap : attrparam) : T.term =
let te = term of attrparam wc ap in

match u with

| Neg → T.t app infer wc.ops.iminus op [(term of int 0); te]
| LNot → T.t equ te (term of int 0)
| BNot → Em.s (Em.unimp "Attribute BNot: �%a\n" d attrparam ap)

and term of apbop (wc : wctxt) (b : binop) (ap1 : attrparam) (ap2 : attrparam) : T.term =
let te1 = term of attrparam wc ap1 in

let te2 = term of attrparam wc ap2 in

match b with

| PlusA | PlusPI | IndexPI → T.t app infer wc.ops.iplus op [te1; te2]
| MinusA | MinusPI | MinusPP → T.t app infer wc.ops.iminus op [te1; te2]

(∗ ... ∗)
| → Em.s (Em.error "term of bop failed: %a %a %a\n"

d attrparam ap1 d binop b d attrparam ap2)

The function term of star translates a memory referene in an attribute parameter into a Why3
get operation of the address in the memory map of the Why3 context.

and term of star (wc : wctxt) (a : attrparam) : T.term =
let at = term of attrparam wc a in

let mt = T.t var wc.memory in

T.t app infer wc.ops.get op [mt; at]

The function term of index is similar to term of star. First, though, we have to calculate the
address by adding the index to the base pointer.

and term of index (wc : wctxt) (base : attrparam) (index : attrparam) : T.term =
let bt = term of attrparam wc base in

let it = term of attrparam wc index in

let addr = T.t app infer wc.ops.iplus op [bt; it] in
let mt = T.t var wc.memory in

T.t app infer wc.ops.get op [mt; addr]

The function oldvar of ap �nds the Why3 symbol for a variable in the context.

let oldvar of ap (wc : wctxt) (ap : attrparam) : T.vsymbol =
match ap with

| ACons(n, []) → SM.find n wc.vars

| → Em.s(Em.error "Names only")

CHAPTER 11. PROGRAM VERIFICATION 96

Now that we can translate attribute parameters into Why3 terms, we can also interpret the syntax
for specifying loop invariants. In particular, a loop invariant gives three things. First, it speci�es
the loop's termination condition. This could also be read out of the program, but it simpli�es the
code a bit to have it available here. Second, it gives the loop invariant itself. Finally, it gives a list
of variables that vary in the loop. This list could also be read out of the program, but getting the
list here from the programmer avoids us having to write a visitor. If the programmer forgets to list
a variable, the worst that could happen is that the proof will fail.

The function inv of attrs translates a loop invariant annotation into the three Why3 terms
mentioned above.

let inv of attrs (wc : wctxt) (a : attributes)
: T.term × T.term × T.vsymbol list

=
match filterAttributes invariantAttrStr a with

| [Attr(, lc :: li :: rst)] →
term of attrparam wc lc,
term of attrparam wc li,
L.map (oldvar of ap wc) rst
| → Em.s(Em.error "Malformed invariant attribute: %a" d attrlist a)

The function cond of function extracts the Why3 terms for the pre- and post-condition annota-
tions on C function de�nitionss.

let cond of function (k : string) (wc : wctxt) (fd : fundec) : T.term option =
match filterAttributes k (typeAttrs fd.svar.vtype) with
| [Attr(, [ap])] → Some(term of attrparam wc ap)
| → None

let post of function = cond of function postAttrStr

let pre of function = cond of function preAttrStr

Now that we have written functions to translate the new syntax elements into Why3 terms, we can
calculate the VC of the postcondition. We proceed by �rst translating CIL expressions into Why3
terms. This is similar to our handling of attribute expressions with two exceptions. First, there are
no quali�ers. Second, we treat the results of comparisons and the boolean operations (e.g. ∧, ∨) as
integer valued, using 1 for true and 0 for false. These can be converted back to boolean values for
if statements and loop conditions as necessary.

The iterm of bterm function performs the conversion from a boolean valued Why3 term to
an integer valued Why3 term. bterm of iterm performs the reverse conversion. term of exp,
assisted by term of uop and term of bop, translates a CIL expression into a Why3 term. Their
de�nitions are very similar to the analogous functions for attribute parameters, so they are omitted
in the text.

CHAPTER 11. PROGRAM VERIFICATION 97

let iterm of bterm (t : T.term) : T.term = T.t if t (term of int 1) (term of int 0)
let bterm of iterm (t : T.term) : T.term = T.t neq t (term of int 0)
let rec term of exp (wc : wctxt) (e : exp) : T.term = (∗ ... ∗)

and term of uop (wc : wctxt) (u : unop) (e : exp) : T.term = (∗ ... ∗)

and term of bop (wc : wctxt) (b : binop) (e1 : exp) (e2 : exp) : T.term = (∗ ... ∗)

With expressions translated to terms, we can now begin calculating the VC. We are using the
backwards method of VC construction, but we accomplish this by traversing the program in the
forwards direction, building up a continuation that will then be applied to the function's postcondi-
tion. Therefore, both term of inst and term of stmt return functions that take as an argument
the term generated by the next instruction or statement, and yield the term modi�ed according to
the current instruction or statement.

This method of VC generation is not very e�cient. In particular it prevents the hashcons
optimizations inside of the Why3 library from being applied until the continuation we build up
is �nally applied. It would be more sensible, especially for dealing with large programs, to use a
forwards method of VC construction.

The function term of inst generates Why3 let bindings for assignments. These let bindings
automatically take care of any necessary variable renaming. Currently, the translation does not
handle writes to struct �elds. Accomplishing this will be discussed in one of the exercises.

let term of inst (wc : wctxt) (i : instr) : T.term → T.term =
match i with

| Set((Var vi, NoOffset), e, loc) →
let te = term of exp wc e in

let vs = SM.find vi.vname wc.vars in

T.t let close vs te

(∗ Also the case for a memory write ∗)
| → Em.s (Em.error "term of inst: We can only handle assignment")

The function term of stmt generates the continuation for calculating the VC for a statement. For
instruction statements, it folds over the list of instructions. For if statements it generates a Why3
if-then-else term. It recursively descends into block statements, and treats return statements as
no-ops. Loop statements are more complex. Handling loops is described in detail below.

let rec term of stmt (wc : wctxt) (s : stmt) : T.term → T.term =
match s.skind with

| Instr il → L.fold right (fun i t → (term of inst wc i) t) il
| If(e, tb, fb, loc) → term of if wc e tb fb

| Loop(b, loc, bo, co) → term of loop wc b

| Block b → term of block wc b

| Return(eo, loc) → (fun t → t)

CHAPTER 11. PROGRAM VERIFICATION 98

(∗ The other cases are unimplemented ∗)
| → Em.s(Em.error "No support for try-finally, or try-except")

For the C if statement, the function term of if we creates a Why3 if-then-else term. We
convert the condition of the if statement (e) to a term. The expression translation code gives an
integer term, which we convert to a boolean term using bterm of iterm. Next, we obtain the VC
continuations for the true and false blocks, and �nally construct the VC continuation for the if

term.

and term of if (wc : wctxt) (e : exp) (tb : block) (fb : block) : T.term → T.term =
let te = e | > term of exp wc | > bterm of iterm in

let tbf = term of block wc tb in

let fbf = term of block wc fb in

(fun t → T.t if te (tbf t) (fbf t))

For a loop statement, we use the following translation:

V C(loop(inv, c, b), t) = inv ∧ ∀x1,...,xn(inv ⇒ (c⇒ V C(b, inv)) ∧ (¬c⇒ t))

Where inv is the loop invariant, c is the termination condition, b is the body of the loop, t is
the postcondition for the loop, and x1, . . . , xn are the loop variants. Furthermore, V C(b, inv) is the
veri�cation condition of the loop invariant with respect to the body.

This asserts, essentially, that the invariant is true before the �rst iteration, that each non-
terminal iteration maintains the invariant, and that when the loop exits, the postcondition is true.

CIL transforms all loops into the form:

while(1) {

if(!cond) break;

{

...

}

}

where the innermost block statement is the original loop body. In the syntax extensions to C used
for this tutorial, the loop invariant goes on this loop body block. Therefore, we must take apart
the loop a bit to reach the invariant. Then, we must generate the continuation calculating the VC
for the loop body, excluding the break statement (since we can't handle it correctly). Finally, we
generate the continuation for the VC for the loop statement, which employs the loop invariant, and
quanti�es over the loop variant variables, including the memory.

The function term of loop performs the above translation.

CHAPTER 11. PROGRAM VERIFICATION 99

and term of loop (wc : wctxt) (b : block) : T.term → T.term =
let test, body = L.hd b.bstmts, L.tl b.bstmts in

let body block = body | > L.hd | > force block in

let bf = term of block wc (mkBlock (body block.bstmts @ (L.tl body))) in
let ct, li, lvl = inv of attrs wc body block.battrs in

let lvl' = wc.memory :: lvl in

(fun t → t

|> T.t if ct (bf li) (∗ if c then V C(b, inv) else t ∗)
|> T.t implies li (∗ inv => previous line ∗)
|> T.t forall close lvl' [] (∗ ∀x1,...,xn(previous line) ∗)
|> T.t and li) (∗ inv ∧ previous line ∗)

The function term of block folds over the statements of a block, processing the last statement
�rst, to generate a continuation for the VC.

and term of block (wc : wctxt) (b : block) : T.term → T.term =
L.fold right (term of stmt wc) b.bstmts

The function vsymbols of function collects the Why3 symbols for the formal parameters to a
function in addition to the symbol for the memory.

let vsymbols of function (wc : wctxt) (fd : fundec) : T.vsymbol list =
fd.sformals

|> L.map (fun vi → vi.vname)
|> sm find all wc.vars

|> L.append [wc.memory]

If there is a precondition, the function pre impl t returns a continuation that generates a term in
which the precondition implies the VC generated for the function body and the term. Otherwise,
it simply gives the continuation that generates the VC for the function body and the term.

let pre impl t (wc : wctxt) (fd : fundec) (pre : T.term option) : T.term → T.term =
match pre with

| None → term of block wc fd.sbody

| Some pre → (fun t → T.t implies pre (term of block wc fd.sbody t))

Finally the function vcgen generates a function that will take the function postcondition as the
argument and produce the veri�cation condition for the function. It does this by quantifying over
the memory and formal parameters as given by vsymbols of function, with the VC continuation
for the function body given by pre impl t.

CHAPTER 11. PROGRAM VERIFICATION 100

let vcgen (wc : wctxt) (fd : fundec) (pre : T.term option) : T.term → T.term =
(fun t → T.t forall close (vsymbols of function wc fd) [] (pre impl t wc fd pre t))

The function validateWhyCtxt Adds the term p to the Why3 context as a proof goal, and invokes
the external prover. In this example the prover is given a timeout of two minutes, and the result
is echoed to the terminal. One might also choose to use a proof assistant such as Coq [2] as the
back-end to Why3, in which case, we could enter into an interactive proof session.

Alternately, there are a range of options for what could be done here. We could do anything from
simply directing Why3 to emit all of the proof obligations for a program for examination o�-line, to
halting compilation and emitting an error if a proof obligation is not discharged during compilation.
The right choice likely depends on the stage of development the code is in, not to mention the goals
of the t

let validateWhyCtxt (w : wctxt) (p : T.term) : unit = (∗...∗)

The function processFunction initializes the Why3 context with fresh variables for the local vari-
ables and formal parameters of the function before checking to see if it has any postconditions. If
so, it tries to �nd a precondition, generates the veri�cation condition for the postcondition, and
�nally invokes validateWhyCtxt on the resulting term.

let processFunction (wc : wctxt) (fd : fundec) (loc : location) : unit =
wc.vars ←
L.fold left (fun m vi → SM.add vi.vname (make symbol vi.vname) m)
SM.empty (fd.slocals @ fd.sformals);

match post of function wc fd with

| None → ()
| Some g →
let pre = pre of function wc fd in

let vc = vcgen wc fd pre g in

validateWhyCtxt wc vc

The function tut11 is the entry point for this module. It initializes the Why3 context and then
iterates over all functions in the �le.

let tut11 (f : file) : unit =
let wc = initWhyCtxt (!Ciltutoptions.prover) (!Ciltutoptions.prover version) in
iterGlobals f (onlyFunctions (processFunction wc));

eraseAttrs f

CHAPTER 11. PROGRAM VERIFICATION 101

11.2 test/tut11.c

This C source �le contains an example function that we will use to demonstrate the features devel-
oped in tut11.ml. In particular we will verify that a function will successfully initialize an integer
array to contain the number 4 at each entry.

../test/tut11.c
include <ciltut.h> // For the pre, post and invariant annotations.

The function arr init loops over the given array setting each element to 4. The precondition to the
function states that the parameter n must be positive. The postcondition states that each element
of the array is 4. The loop invariant states that the loop index stays in bounds, and that the array
up to the value of the loop index is initialized to be 4.

../test/tut11.c
void (pre(n > 0)

post(forall(j,implies(j>=0 && j < n,*(a+j)==4)))

arr_init)(int *a, int n)

{

int i;

for (i = 0; i < n; i++)

{ invariant(i != n,

i >= 0 && i <= n && forall(j, implies(j>=0 && j<i, *(a+j) == 4)),

i)

a[i] = 4;

}

return;

}

The main function simply invokes the arr init function on a local array. The annotations we have
added have no runtime e�ects.

../test/tut11.c
int main()

{

int arr[5];

arr_init(&arr[0], 5);

return 0;

}

We can compile this example, and verify the correctness of arr init by saying:

CHAPTER 11. PROGRAM VERIFICATION 102

$ ciltutcc --enable-tut11 --prover=Alt-Ergo �prover-version=0.94 -o tut11 test/tut11.c

11.3 Exercises

1. Use a chain of Why3 if-then-else terms to calculate the VC for C's switch statement.

2. Handle structure �elds.

3. Verify an array sorting function.

4. Extend the translation of attribute parameters and terms to handle not only integer arithmetic,
but also �oating point arithmetic. To achieve this, the relevant theory must be added to the
Why3 context, and the operations from these theories must be added to the ops type.

5. Extend the checking here to also verify that function preconditions are satis�ed.

Project: Create a tool that �nds loop invariants given a post-condition and
pre-condition for the loop. There are several approaches you might take. You
could execute the program symbolically at the same time as it executes con-
cretely (which we'll see how to do in Chapter 15), and assume to be symbolic
invariants relationships that are concretely true at runtime. Alternately, you
could repeatedly construct trial invariants out of every relationship among
program variables that are live in the loop.

CHAPTER 11. PROGRAM VERIFICATION 103

11.4 Further Reading

There are many approaches to, and implementations of, program veri�cation. Here is a dated and
incomplete list. This is a big area with many ongoing projects, so ask your local PL professor to
point you in the right direction.

• VC generation and checking: Boogie [1]

• Software model checking: BLAST [4]

• Explicit path model checking: CUTE [4]

References

[1] Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured programs. In
Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, PASTE '05, pages 82�87, New York, NY, USA, 2005. ACM.

[2] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development.
Coq'Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
Springer Verlag, 2004.

[3] Jean-Christophe Filliâtre. Verifying two lines of C with Why3: an exercise in program veri�-
cation. In Veri�ed Software: Theories, Tools and Experiments (VSTTE), Philadelphia, USA,
January 2012.

[4] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy abstraction.
In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL '02, pages 58�70, New York, NY, USA, 2002. ACM.

[5] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine for c. In Pro-
ceedings of the 10th European software engineering conference held jointly with 13th ACM SIG-
SOFT international symposium on Foundations of software engineering, ESEC/FSE-13, pages
263�272, New York, NY, USA, 2005. ACM.

[6] Glynn Winskel. The formal semantics of programming languages - an introduction. Foundation
of computing series. MIT Press, 1993.

104

Chapter 12

Comments

CIL has a very basic mechanism for tracking comments. In this chapter we'll see how to use
it. CIL only sees comments when they are maintained in the output of the preprocessor. The
preprocessor may be instructed to maintain comments in its output by using the -C switch to
ciltutcc. Then, the comments in the source are collected by CIL's parser and placed in the
array Cabshelper.commentsGA. commentsGA is a GrowArray.t of triples of type (Cabs.cabsloc ×
string × bool). The cabsloc is the source location of the comment. The string is the comment
itself, and the bool is set aside for application bookkeeping.

12.1 tut12.ml

In this example, we'll visit the AST and print out comments nearby instructions and statements,
taking care to only print each comment once. This will be accomplished by extracting the source
location from instructions and statements and then doing a binary search on the array of comments.
The array of comments lives in the Cabshelper module. The locations of the comments are de�ned
in terms of the Cabs.cabsloc record type.

module GA = GrowArray

module A = Cabs

module CH = Cabshelper

First, we'll need a few utility functions, some of which are hidden away in Tututil (e.g. functions
for ordering source locations and comments). prepareCommentArray �lters out comments not from
source �le fname, and sorts the results according to source location.

let prepareCommentArray (cca : comment array) (fname : string) : comment array =
cca | > array filter (fun (cl, ,) → fname = cl.A.filename)

|> array sort result comment compare

The funcion commentsAdjacent returns the indexes of at most two comments that are immediately

105

CHAPTER 12. COMMENTS 106

adjacent to the given source location. The indexes are into the the array returned as the second
element of the return value.

let commentsAdjacent (cca : comment array) (l : location)
: int list × comment array =

if l = locUnknown then [], cca else

let cca = prepareCommentArray cca l.file in

(cca | > array bin search comment compare (comment of cilloc l)), cca

The function commentsBetween returns a list of indexes into the array returned as the second
element of the return value. The indexes indicate the comments lying between source locations l1
and l2. If the exact location is not in the comments array, the binary search function returns the
two closest elements. Therefore commentsBetween returns the highest of the lower bounds, and the
smallest of the upper bounds, so that only the indexes for the comments between the two locations
are returned.

let commentsBetween (cca : comment array) (l1 : location) (l2 : location)
: int list × comment array

=
if l1 = locUnknown then commentsAdjacent cca l2 else

if l1.file 6= l2.file then commentsAdjacent cca l2 else begin

let cca = prepareCommentArray cca l1.file in

let ll = array bin search comment compare (comment of cilloc l1) cca in

let hl = array bin search comment compare (comment of cilloc l2) cca in

let l, h =
match ll, hl with

| ([l] | [; l]), h :: → l, h
| → E.s(E.bug "bad result from array bin search")

in

(Array.init (h − l + 1) (fun i → i + l) | > Array.to list), cca
end

The function markComment searches a comment array for an exact source location, and marks the
third element of the tuple for that location as true, indicating in this example that the comment
has been printed by printComments.

let markComment (l : A.cabsloc) (cca : comment array) : unit =
Array.iteri (fun i (l', s, b) →
if compare l l' = 0 then cca.(i) ← (l', s,true)

) cca

The function printComments prints the comments from the array cca' indicated by the indexes in
il and marks the comments as having been printed in cca. The location l is used to indicate the
source location being inspected by an instance of the commentVisitorClass that triggered the call
to printComments.

CHAPTER 12. COMMENTS 107

let printComments (cca : comment array) (l : location)
((il, cca') : int list × comment array) : location =

L.iter (fun i → let c = cca'.(i) in
if ¬(thd3 c) then begin

markComment (fst3 c) cca;
E.log "%a: Comment: %a -> %s\n"

d loc l d loc (cilloc of cabsloc (fst3 c)) (snd3 c)
end

) il;
if il 6= []
then il | > L.rev | > L.hd | > Array.get cca' | > fst3 | > cilloc of cabsloc

else l

The commentVisitorClass visitor visits the AST, printing comments nearby instructions and state-
ments.

class commentVisitorClass (cca : comment array) = object(self)
inherit nopCilVisitor

val mutable last = locUnknown

method vinst (i : instr) =
last ← i | > get instrLoc

|> commentsBetween cca last

|> printComments cca (get instrLoc i);
DoChildren

method vstmt (s : stmt) =
last ← s.skind | > get stmtLoc

|> commentsBetween cca last

|> printComments cca (get stmtLoc s.skind);
DoChildren

end

The function tut12 is the entry point for this module. First it copies the GrowArray.t of comments
into an array. Then, it instantiates the commentVisitorClass visitor, and runs it over the Cil.file
passed as an argument.

let tut12 (f : file) : unit =
let cca = array of growarray CH.commentsGA in

let vis = new commentVisitorClass cca in

visitCilFile vis f

CHAPTER 12. COMMENTS 108

12.2 test/tut12.c
../test/tut12.c

/* With this test, we'll see if CIL's parser successfully captures comments */

int main ()

{

int x = 1; // line comment x

int y = 4; // line comment y

int z;

/* so far so good */

z = x + y;

/* after the instr */

return z;

}

When we invoke ciltutcc on tut12.c as follows:

$ ciltutcc --enable-tut12 -C -o tut12 test/tut12.c

We get the following output:

test/tut12.c:7: Comment: test/tut12.c:3 -> With this test, we'll see if CIL's parser

successfully captures comments

test/tut12.c:7: Comment: test/tut12.c:7 -> line comment x

test/tut12.c:12: Comment: test/tut12.c:8 -> line comment y

test/tut12.c:12: Comment: test/tut12.c:11 -> so far so good

test/tut12.c:15: Comment: test/tut12.c:14 -> after the instr

12.3 Further Reading

Tan et al. have proposed that comparing the Natural Language semantics of comments with the
Programming Language semantics of nearby code can reveal inconsistencies that could indicate the
existence of bugs [1, 2].

References

[1] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /* iComment: Bugs or bad com-
ments? */. In Proceedings of the 21st ACM Symposium on Operating Systems Principles
(SOSP07), October 2007.

[2] Lin Tan, Ding Yuan, and Yuanyuan Zhou. Hotcomments: How to make program comments more
useful? In Proceedings of the 11th Workshop on Hot Topics in Operating Systems (HotOS07),
May 2007.

109

Chapter 13

Whole-program Analysis

CIL has a simple mechanism for allowing whole-program analysis. This mechanism is invoked when
the --merge switch is passed to ciltutcc. First, in the compilation phase, instead of compiling
source code to an object �le with the back-end compiler, the emitted .o �le will contain the pre-
processed source. Then, in the link stage, ciltutcc parses the .o �les, and uses the CIL Mergecil

module to combine the separate source �les into a single Cil.file. More details of this process can
be found in the o�cial CIL documentation.

13.1 tut13.ml

In this tutorial, we'll see how to compute a whole-program call graph. The code in thie module is very
simple since there is already a pretty good module for computing call graphs in cil/src/ext/callgraph.ml.
Additionally, we'll use the ocamlgraph library to output a .dot �le, which can be used to generate
an image of the call-graph.

module H = Hashtbl

module CG = Callgraph

This module uses the Ocamlgraph library, which must be installed to build the code for this tutorial.
Here, we use its functorial interface to de�ne a module for functions on a graph type that mirrors
the graph we get back from the Callgraph module.

module SG = Graph.Imperative.Digraph.ConcreteBidirectional(struct
(∗ ... ∗)
end)

We'll also need to de�ne a module that extends the graph module above with functions to de�ne
properties of vertices used by Dot to draw the graph. We'll just use the defaults. These functions
can be modi�ed to add more information to the graph.

110

CHAPTER 13. WHOLE-PROGRAM ANALYSIS 111

module D = Graph.Graphviz.Dot(struct
(∗ ... ∗)
end)

The graph of callgraph functions converts a CIL call-graph into an Ocamlgraph graph that we
can use to generate a .dot �le.

let graph of callgraph (cg : CG.callgraph) : SG.t =
let g = SG.create () in
H.iter (fun s n → SG.add vertex g n) cg;
H.iter (fun s n →
Inthash.iter (fun i n' →
SG.add edge g n n'

) n.CG.cnCallees
) cg;
g

The function tut13 is the entry point for this module. It computes the call-graph, converts it to a
graph for the Ocamlgraph graph library, and passses it to the graph library function that produces
the .dot �le.

let tut13 (f : file) : unit =
let o = open out !Ciltutoptions.tut13out in

f | > CG.computeGraph | > graph of callgraph | > D.output graph o;
close out o

13.2 Example

The di�cult part of arranging for whole-program analysis is the more complicated compilation
process. Here are two source �les that we'll use to generate one call-graph:

In the �rst �le, we'll declare an extern function bar and de�ne a function foo that calls it.
../test/tut13a.c

extern int bar(int x);

int foo(int x)

{

return bar(x);

}

In the second �le, we'll make an extern declaration for the function foo, and de�ne the function
bar that in turn calls foo. The main function simply calls bar. (Obviously, this program is a
nonsense example.)

CHAPTER 13. WHOLE-PROGRAM ANALYSIS 112

../test/tut13b.c
extern int foo(int x);

int bar(int x)

{

return foo(x);

}

int main()

{

bar(1);

return 0;

}

Now we can build this program with the whole program analysis by executing the following
commands:

$ ciltutcc --merge -o tut13a.o -c test/tut13a.c

$ ciltutcc --merge -o tut13b.o -c test/tut13b.c

$ ciltutcc --merge --enable-tut13 --tut13-out tut13.dot -o tut13 tut13a.o tut13b.o

Then, we can generate a graph from the .dot �le as follows:

$ dot -Tpdf tut13.dot -o tut13.pdf

to produce the graph in Figure 13.1. Which is the call-graph for the whole program.
When doing whole program analysis, it is also necessary to override ar. For example, the

command:

$ ar r tut13.a tut13a.o

Should be replaced with the command:

$ ciltutcc --merge --mode=AR r tut13.a tut13a.o

CHAPTER 13. WHOLE-PROGRAM ANALYSIS 113

foo

bar

main

Figure 13.1: The call-graph for tut13a.c and tut13b.c

13.3 Exercises

1. Extend CIL's call-graph analysis to correctly handle function pointers by using the Ptranal

module de�ned in cil/src/ext/pta/ptranal.ml. Note the function Ptranal.resolve funptr.

13.4 Further Reading

The Capriccio [?] project uses a whole-program call-graph analysis to estimate the amount of stack
space needed by threads in C programs. Then, in server programs that use multithreading to hide
IO latency, lightweight user-level threads can be used to concurrently process a massive number
of incoming client requests. The threads can be very lightweight thanks to the call-graph analysis
putting an upper bound on the amount of stack space required.

Chapter 14

Implementing a simple DSL

When writing C code, one of the tasks that annoys me a lot is writing code to handle command
line arguments. Thus, in this chapter we'll use CIL to put together a simple DSL for describing
command line arguments. The module below will analyze a description of the arguments provided
by the programmer, and generate code for parsing the command line, and checking the arguments
for consistency. In particular, the goal is for the programmer to give a description like the one below
at global scope:

argument(int, intarg) {

.short form = "i",

.help text = "An integer argument (>0)",

.format = "%d",

.def = 1,

.requires = arg assert(intarg > 0),

.has opt = ARG HAS OPT,

};

We can provide this syntax using CIL's attribute syntax along with judicious use of pre-processor
macros. The macros, which are de�ned in ciltut-include/ciltut.h, declare variables for storing
the command line arguments and their options, along with a structure type with �elds for storing
the properties of the argument. The code above is essentially an initializer list for those structure
�elds. The CIL code below will generate code to parse the command line arguments according to
the options speci�ed in the structure �eld using the getopt long C Library call.

14.1 tut14.ml

First, we'll declare types for representing requirements for the command line arguments along with
some utility functions. Then, we'll write functions for extracting the requirements from the syntax
mentioned above. Finally, we'll use CIL's interpreted constructors to generate the loop that calls

114

CHAPTER 14. IMPLEMENTING A SIMPLE DSL 115

getopt long and uses sscanf to parse any options the arguemnts might have.

14.1.1 Speci�cation Extraction

The argument type is where we'll collect the information the programmer gives us about the com-
mand line arguments.

type argument = {
mutable argName : string; (∗ The name of the argument, i.e. --<name> ∗)
mutable argType : typ; (∗ The type of the argument ∗)
mutable argShort : string; (∗ The short form of the argument, i.e. -n ∗)
mutable argHelp : string; (∗ The help message for the argument ∗)
mutable argFmt : string; (∗ The format speci�er for sscanf ∗)
mutable argDef : exp; (∗ The default value of the argument ∗)
mutable argReq : exp; (∗ An assertion about the argument ∗)
mutable argOpt : bool; (∗ Whether the argument is optional ∗)
mutable argVi : varinfo; (∗ The global varialbe for the argument ∗)
mutable argGot : varinfo; (∗ Global variable indicating whether the argument was given ∗)
mutable argOption : bool; (∗ Whether the argument as a parameter ∗)

}

The function makeArgument makes a fresh argument initialized with dummy values.

let makeArgument () = (∗ ... ∗)

Now that we've de�ned the argument type, we can write utility functions for extracting information
from type attributes. In particular, structure types that should be interpreted as argument speci-
�cations are annotated with the ciltutarg type attribute. Also, we extract the parameter to the
ciltut assert attribute on the type of the requires �eld of the argument structure to be used as
an assertion that must be true of the argument, e.g. intarg > 0 in the example above.

As usual, we begin by de�ning some global variables for the string constants, along with a list
of the strings.

let argStr = "ciltutarg"

let assertStr = "ciltut assert"

let mandatoryStr = "mandatory"

let attr strings = [argStr; assertStr; mandatoryStr;]

The functions hasArgAttr, hasAssertAttr, and hasMandatoryAttr return true if their arguments
have the indicated attributes.

CHAPTER 14. IMPLEMENTING A SIMPLE DSL 116

let hasArgAttr : attributes → bool = hasAttribute argStr

let hasAssertAttr : attributes → bool = hasAttribute assertStr

let hasMandatoryAttr : attributes → bool = hasAttribute mandatoryStr

The functions isArgType, and isMandatoryType return true when their argument types have the
indicated attributes.

let isArgType (t : typ) : bool = t | > typeAttrs | > hasArgAttr

let isMandatoryType (t : typ) : bool = t | > typeAttrs | > hasMandatoryAttr

The function getAssertAttr returns the attribute parameter when the type has a "ciltut assert"

attribute, and otherwise throws an exception.

let getAssertAttr (t : typ) : attrparam =
match filterAttributes assertStr (typeAttrs t) with
| [Attr(, [ap])] → ap

| → E.s (E.error "Malformed %s attribute: %a" assertStr d type t)

The function string of exp extracts a string literal from an expression and returns it as an OCaml
string. If the expression is NULL, it returns the empty string. If the expression is not a string, it
raises an exception. We'll use it to extract structure �elds for the argument type.

let rec string of exp (e : exp) : string =
match e with

| Const(CStr s) → s

| z when z = zero → ""

| CastE(, e) → string of exp e

| → E.s (E.error "Expected string literal: %a" d exp e)

The function name of argname extracts the name of the argument from the name of the instance
of the argument description structure.

let name of argname (s : string) : string =
if S.length s < 8 then

E.s (E.error "Invalid argument name: %s" s);
S.sub s 8 (S.length s − 8)

Since we're using attributes to express the assertions about arguments, we'll need a few functions
from Chapter 8 that we'll use to compile the attribute parameters. The function req of exp

extracts the attrparam for an argument assertion from a CastE expression, and compiles it using
T.exp of ap. The context c holds all of the global variables, so the assertion can also refer to other
command line arguments.

CHAPTER 14. IMPLEMENTING A SIMPLE DSL 117

module T = Tut8

let req of exp (c : T.ctxt) (loc : location) (e : exp) : exp =
match e with

| CastE(t, z) when z = zero →
t | > getAssertAttr | > T.exp of ap c loc

| → one

The command line arugment speci�cation is the in form of a static initializer on a global variable.
We'll iterate through the list of global variable declarations looking for global variable de�nitions
(i.e. GVars) whose types have the ciltutarg attribute. The function handle field looks at one
�eld of the static initializer on the GVar, and uses it to �ll in a �eld of the argument type we de�ned
above.

let handle field (c : T.ctxt) (loc : location) (a : argument)
(off : offset) (ini : init) (t : typ) ()
: unit

=
match off, ini with

| Field(f, NoOffset), SingleInit e → begin

match f.fname with

| "short form" → a.argShort ← string of exp e

| "help text" → a.argHelp ← string of exp e

| "def" → a.argDef ← e;
a.argType ← f.ftype;
a.argVi ← makeGlobalVar a.argName a.argType

| "requires" → a.argReq ← req of exp c loc e

| "format" → a.argFmt ← string of exp e

| "has opt" → a.argOption ← e = one

| → E.s(E.bug "malformed arg struct")
end

| → E.s(E.bug "Unexpected initializer in argument of global")

The function argument of global looks at one global, g, to determine whether it is a command
line argument sepci�cation, i.e. whether it is a GVar with isArgType returning true. If so, it makes
a new argument, �lls in a few of the �elds that can be determined immediately, like the name of the
argument, and calls iterCompound. iterCompound iterates over the �elds of the static initializer
using the function handle field that we just de�ned. iterCompound is de�ned in tututil.ml. It
is based on foldLeftCompound from the CIL library.

let argument of global (c : T.ctxt) (g : global) : argument list =
match g with

| GVar(vi, {init = Some(CompoundInit(t, ini))}, loc)
when isArgType vi.vtype → begin

let a = makeArgument () in

CHAPTER 14. IMPLEMENTING A SIMPLE DSL 118

a.argName ← name of argname vi.vname;
a.argGot ← makeGlobalVar (a.argName�"got") intType;
a.argOpt ← ¬(isMandatoryType vi.vtype);
iterCompound �implicit :false �doinit : (handle field c loc a)

�ct : vi.vtype �initl : ini;
[a]

end

| → []

Now that we can extract an argument speci�cation from an arbitrary global, we can just iterate
over all the globals to collect a list of all the arguments. The function gatherArguments performs
this iteration and returns the list of found argument speci�cations.

let gatherArguments (f : file) : argument list =
let c = T.context for globals f in

f.globals

|> L.map (argument of global c)
|> L.concat

14.1.2 Code Generation

With the argument speci�cations successfully gathered, we can now generate the code that actually
parses the command line. As mentioned above, we'll use the getopt long function from the C
Library. This process will involve three steps. First, we'll generate assignments to initialize the
global variables for the options to any default values given by the programmer. Second, we'll
generate a loop that calls getopt long and interprets its results. Finally, we'll generate checks to
make sure that the arguments are consistent with any assertions that the programmer gave.

Initializing the global varialbes and checking the programmer provided assertions is reletively
easy, but initializing the option strucutres and generating the loop for getopt long is more in-
volved. First, we'll need a few utility functions:

The function field of option gives us the CIL lval for the �eld n of the i'th option structure
in the array of options based at o. We'll use it in generating Set instructions that initialize the
array of options needed for getopt long.

let field of option (o : varinfo) (ot : typ) (i : int) (n : string) : lval =
(Var o),
Index(integer i, Field(fieldinfo of name ot n, NoOffset))

The functions has arg of argument and int code of argument transform bits of the argument
speci�cation into CIL expressions that we'll use to initialize �elds of the option structures.

CHAPTER 14. IMPLEMENTING A SIMPLE DSL 119

let has arg of argument (a : argument) : exp =
if a.argOption then one else zero

let int code of argument (a : argument) : exp =
a.argShort.[0] | > int of char | > integer

The function initialize options takes a function for generating an lval, (e.g. field of option),
an index, a �eld name, and an argument. Using the argument it generates instructions for initializing
the �elds.

let initialize options (foo : int → string → lval)
(i : int) (a : argument)
: instr list

=
[Set(foo i "name", mkString a.argName, locUnknown);
Set(foo i "has arg", has arg of argument a, locUnknown);
Set(foo i "val", int code of argument a, locUnknown)]

The function create long options generates code that allocates an option array, and �lls it in.
It returns the varinfo for the array, the call to malloc, and the assignments for the initializations.

let create long options (f : file) (main : fundec) (al : argument list)
: varinfo × instr × instr list

=
let malloc = findOrCreateFunc f "malloc" (mallocType f) in
let ot = findType f.globals "option" in

let o = makeTempVar main (TPtr(ot, [])) in
let foo = field of option o ot in

let size = integer((L.length al + 1) × ((bitsSizeOf ot)/8)) in
let mcall = Call(Some(var o), v2e malloc, [size], locUnknown) in
let inits = al | > A.of list

|> A.mapi (initialize options foo)
|> A.to list

|> L.concat

in

o, mcall, inits

With an array of options allocated and initialized, we can now generate the code for the loop that
calls getopt long. Since generating this code using type-constructors would be tedious and di�cult
to read, we'll use CIL's interpreted constructors instead. To do this, we need to build a string to
pass to Formatcil.cStmts.

Before doing that, though, we'll de�ne a few utility functions for obtaining expressions that will
be parameters to the interpreted constructor. The function create short options generates an
expression for the string to be used as the parameter to getopt long that de�nes the short versions
of the arguments.

CHAPTER 14. IMPLEMENTING A SIMPLE DSL 120

let create short options (al : argument list) : exp =
let short arg of arg (a : argument) : string =
a.argShort�(if a.argOption then ":" else "")

in

al | > L.map short arg of arg

|> S.concat ""

|> mkString

The function getMainArgs just extracts the varinfos for argv and argv from the list of formal
parameters.

let getMainArgs (main : fundec) : varinfo × varinfo =
match main.sformals with

| argc :: argv :: → argc, argv
| → E.s (E.error "Must give main argc and argv")

The function string of short arg gives the integer code for the character used as the short form
of an argument. This is needed since we can't write string or character literals in the interpreted
constructor. The function string of arg opt returns the string �1� if the argument has an option,
and the string �0� otherwise.

let string of short arg (a : argument) : string =
a.argShort.[0] | > int of char | > string of int

let string of arg opt (a : argument) : string =
if a.argOption then "1" else "0"

The function create def int string creates a string for a C else statement to be used for setting
an argument of integer type without any options to 1.

let create def int string (a : argument) : string =
if isIntegralType a.argType ∧ ¬(a.argOption)
then "else {%l:"�a.argVi.vname�"l = 1;}"

else ""

The function create if str creates a string for the C code that processes a particular argument.
The return of getopt long is given in the variable c. If c is equal to the character code for the
short version of the argument, then we check to see if the argument has an option, which we parse
using sscanf. In case the argument is for a boolean �ag, we include the string obtained with
create def int string. Finally, we set the global variable that indicates that the argument was
given.

CHAPTER 14. IMPLEMENTING A SIMPLE DSL 121

let create if str (a : argument) : string =
"if (c == "�(string of short arg a)�") {"�

"if ("�(string of arg opt a)�") { if(%e:optarg) {"�
"%l:scan(%e:optarg,%e:"�a.argVi.vname�"fmt,%e:"�a.argVi.vname�"addr);"�

"}}"�
(create def int string a)�
"%l:"�a.argGot.vname�" = 1;"�
"}"

The if statements created with create if str from the arguments form the body of the loop in
which we repeatedly call getopt long. The function create opt loop str generates the string of
C code for the loop. It calls getopt long before proceeding into the if statements generated by
create\ if str. If the return of getopt long is −1, we break out of the loop.

let create opt loop str (al : argument list) : string =
"while(1) {"�

"int c;"�
"c = %l:gol(%e:argc, %e:argv, %e:sstr, %e:lopts, (void *)0);"�
"if (c == -1) break;"�
(al | > L.map create if str | > S.concat " else ")�

"}"

Finally, in the function makeArgStmts we can call Formatcil.cStmts to generate the CIL statements
for argument processing. The calls to findOrCreateFunc and findGlobalVar retrieve varinfos
from the CIL �le that we'll need to pass as parameters to the interpreted constructor. Here, we'll
also call the functions that generate the code for allocating and initializing the option array.

let makeArgStmts (f : file) (main : fundec) (al : argument list) : stmt list =
let gol = findOrCreateFunc f "getopt long" intType in

let scan = findOrCreateFunc f "sscanf" intType in

let optarg = findGlobalVar f.globals "optarg" in

let so = create short options al in

let o, m, i = create long options f main al in

let argc, argv = getMainArgs main in

(L.map i2s (m :: i)) @
Formatcil.cStmts (create opt loop str al)
(fun n t → makeTempVar main �name : n t) locUnknown
([("argc", Fe(v2e argc));
("argv", Fe(v2e argv));
("sstr", Fe so);
("lopts", Fe (v2e o));
("gol", Fl(var gol));
("scan", Fl(var scan));
("optarg",Fe(v2e optarg))]@
(L.map (fun a → (a.argVi.vname�"fmt"), Fe (mkString a.argFmt)) al)@

CHAPTER 14. IMPLEMENTING A SIMPLE DSL 122

(L.map (fun a → (a.argVi.vname�"addr"), Fe (AddrOf(var a.argVi))) al)@
(L.map (fun a → (a.argVi.vname�"l"), Fl(var a.argVi)) al)@
(L.map (fun a → (a.argGot.vname), Fl(var a.argGot)) al))

The function initArgs generates statements that initialize the global variables for arguments with
their default values.

let initArgs (al : argument list) : stmt list =
L.map (fun a → i2s(Set(var a.argVi, a.argDef, locUnknown))) al

The function printHelp generates statements using printf that print the help text for the argu-
ments to standard out. The help text gives the short version, the long version, the default value,
and tells whether the argument is mandatory. The statements generated by printHelp will be used
in case some checks on the runtime argument values fails.

let printHelp (f : file) (al : argument list) : stmt list =
let print = findOrCreateFunc f "printf" intType in

let s s = mkString s in

[i2s(Call(None, v2e print, [s "Improper arguemnts\n"], locUnknown))]@
(L.map (fun a →
let af = if a.argFmt 6= "" then a.argFmt else "%d" in

let fmt = if a.argOpt

then s ("\t-%s,--%s\t%s ("�af�")\n")
else s "\t-%s,--%s\t%s (mandatory)\n"

in

let args = if a.argOpt

then [fmt; s a.argShort; s a.argName; s a.argHelp; a.argDef]
else [fmt; s a.argShort; s a.argName; s a.argHelp]

in

i2s (Call(None, v2e print, args, locUnknown))
) al) @
[mkStmt (Return(Some mone, locUnknown))]

The function makeArgChecks generates an if statement that checks two things. First, it checks that
all mandatory arguments have been given. Second, it checks that all assertions stipulated by the
programmer on the arguments are true. If either of these fails, the statements given by printHelp

are used to print the help messages, and exit from the program with a failure code.

CHAPTER 14. IMPLEMENTING A SIMPLE DSL 123

let makeArgChecks (f : file) (al : argument list) : stmt =
let got arg a = if a.argOpt then one else v2e a.argGot in

let bexp, mexp =
L.fold left (fun b a → BinOp(LAnd, b, a.argReq, intType)) one al,
L.fold left (fun b a → BinOp(LAnd, b, (got arg a), intType)) one al

in

mkStmt (If(BinOp(LOr, UnOp(LNot, mexp, intType), UnOp(LNot, bexp, intType), intType),
mkBlock (printHelp f al), mkBlock[],
locUnknown))

If we have found the main function, then the function processFunction inserts the code for pro-
cessing command line arguments at the top of the function.

let processFunction (f : file) (al : argument list)
(fd : fundec) (loc : location) : unit =

if fd.svar.vname = "main" then

fd.sbody.bstmts ← (initArgs al) @
(makeArgStmts f fd al) @
[makeArgChecks f al] @
fd.sbody.bstmts

Finally, the function tut14 gathers the argument speci�cations using gatherArguments before call-
ing processFunction, which generates the argument parsing code.

let tut14 (f : file) : unit =
f | > gatherArguments

|> processFunction f

|> onlyFunctions

|> iterGlobals f;
eraseAttrs f

14.2 test/tut14.c

This C code demonstrates the language extension we wrote for generating code to process command
line arguments. It will accept one argument called boolarg, and another called intarg.

../test/tut14.c
include <unistd.h>

include <getopt.h>

include <ciltut.h> // This is where the argument macro is #define'd

The boolarg argument can be passed with --boolarg or -b, and its value can be accessed in the
program through the global variable boolarg of type int. When not given, the default value is 0
or false.

CHAPTER 14. IMPLEMENTING A SIMPLE DSL 124

../test/tut14.c
argument(int, boolarg) {

.short_form = "b",

.help_text = "A boolean argument",

};

The program also accepts an argument called intarg that speci�es a particular integer. Setting the
has opt �eld to ARG HAS OPT indicates that the argument takes an option, which is parsed using
the given format speci�er. It can be passed with --intarg n or -i n, and then the value n will be
accessable in the program through the variable intarg. We have also stated a requirement that the
given number must bigger than 0.

../test/tut14.c
argument(int, intarg, mandatory) {

.short_form = "i",

.help_text = "An integer argument (>0)",

.format = "%d",

.requires = arg_assert(intarg > 0),

.has_opt = ARG_HAS_OPT,

};

int main(int argc, char *argv[])

{

printf("%d %d\n", boolarg, intarg);

return 0;

}

This example can be compiled by saying:

$ ciltutcc --enable-tut14 -o tut14 test/tut14.c

Then we can run tut14 and supply the correct arguments:

$./tut14 -i 4 --boolarg

1 4

But now let's see what happens when we get it wrong:

$../tut14 --intarg -5

Improper arguemnts

-b,�boolarg A boolean argument (0)

-i,�intarg An integer argument (>0) (mandatory)

Chapter 15

Automated Test Generation

In this tutorial we will use CIL to instrument programs with calls to an SMT solver such that
running annotated functions will generate a high-coverage set of test inputs for those functions. For
example, if a function de�nition is annotated as follows:

void (autotest foo)(int input a, int input b) {...}

then a set of (a,b) pairs will be generated such that as many conditionals in foo as possible have
both true and false branches taken when run over the set of pairs.

This approach works as follows. The autotest functions are instrumented such that they
run both concretely (as usual) and symbolically (in terms of inputs) when called. When run
symbolically, the autotest runtime builds a conjunction of true conditionals for each executed
branch. This conjunction is called the path condition. If we were to send this path condition to our
SMT solver, it would generate a model that would drive the program down the same path, taking
the same branches, and generating the same path condition. However, if we change the sense of
one of the conjuncts in the path condition, the SMT solver will generate a model that should drive
the program down a di�erent path, in particular taking the branch corresponding to the conjunct
whose sense was was changed in a di�erent direction than before.

Consider the example autotest function in Figure 15.1. Using random a's and b's, it would be
di�cult to cause the the true branch of either of the conditionals to be taken. Suppose, however,
that we run the function concretely with the call foo(0,0), and also run the program symbolically
in terms of inputs a0 and b0.

The symbolic execution generates the path condition given by Figure 15.2. If we negate one of
the disequalities, for example if we replace (d != 700) with (d == 700), and ask an SMT solver
to give a model (that is, an assignment of the free variables a0 and b0) that causes the modi�ed
path condition to be true, then we will have obtained inputs to foo that cause the second branch
to be taken. This process is repeated until as many conditionals as possible in foo have had both
branches taken by the set of generated inputs.

125

CHAPTER 15. AUTOMATED TEST GENERATION 126

void (autotest foo)(int input a, int input b) {

int c, d, e;

c = a * b;

d = a + b;

e = c - d;

if (e == 14862436) explode();

if (d == 700) explode();

return;

}

Figure 15.1: Example

let a = a0 in

let b = b0 in

let c = a * b in

let d = a + b in

let e = c-d in

(e != 14862436) &&

(d != 700)

Figure 15.2: Path Condition

CHAPTER 15. AUTOMATED TEST GENERATION 127

15.1 Background

This approach goes by many names including directed automated random testing, concolic testing,
whitebox fuzzing, and smart fuzzing. Further, researchers have created a number of tools implement-
ing the approach, and variations on it, for a number of di�erent languages. These include DART [3],
CUTE [4], CREST [1], and PEX [5].

In particular, CREST also uses CIL as compiler front-end, and Yices [2] for the SMT solver
as we will here, and is much more complete than the implementation in this tutorial. Therefore,
as a starting point for further investigation of automated test generation based on CIL, CREST is
likely to be a more appropriate choice. However, one possible advantage to this simpler tutorial
implementation is that it uses OCaml rather than C++ to implement the calls to the SMT solver
by using the features of the OCaml runtime that allow OCaml calls to be made from C code.

Since these more complete tools exist, for the purposes of this tutorial we'll make some simplify-
ing assumptions. In particular, this implementation will handle only scalar values, and regular and
null-terminated arrays of scalar values. That is, struct and union types are not handled. Also,
Only functions annotated autotest and instrument will be instrumented for symbolic execution.
If a non-instrumented function is called from within an autotest function, only its concrete return
value will be used in the path condition. In other words, inputs will not be generated to explore
functions not annotated autotest or instrument. Finally, our path-exploration algorithm will give
up when the SMT solver is unable to generate a new model for any of the available branches whose
sense could be �ipped. A more complete implementation would avoid getting stuck in this case.

15.2 Organization

A bit more code than in previous tutorials is required to implement these features, so instead of
listing and commenting on all of it, we'll take a short tour through a few select functions, types,
and modules to get an idea of how the code works, and the high-level ideas behind it.

15.2.1 Instrumentation

The code using CIL to instrument a program with calls to the SMT solver is in source �le src/tut15.ml.
Before carrying out the instrumentation however, we use CIL's Simplify module to break down
complex expressions and l-values. A full description of its e�ects can be found in the CIL docu-
mentation. For now, it su�ces to point out that expressions are simpli�ed to the extent that all
binary and unary operations operate only on constants or l-values. This is achieved by the Simplify
module by introducing additional temporary variables and assignments.

The instrumentation calls notify the automated testing runtime of a number of important events:
assignments, conditionals, function calls and returns, and entering and leaving an autotest function.

For assignments and conditionals, the calls are passed both the addresses and values of the
operands and results. Including the concrete values allows the symbolic execution to under-
approximate the concrete execution when the SMT solver lacks a theory for some operation per-
formed by the program. In particular, instead of representing the operation symbolically, the SMT
solver can under-approximate the program's behavior by using the concrete values. This under-

CHAPTER 15. AUTOMATED TEST GENERATION 128

approximation may prevent the SMT solver from producing a new path through the code, but
strategies for achieving high coverage exist in this case, and are implemented by the above men-
tioned tools.

To handle function calls, the mapping of actual parameters to formal parameters is handled like
assignments. To handle function return values, a call is made so that the value can be remembered
by the runtime, and then assigned at the call site.

A loop is wrapped around each call of an autotest function. This loop noti�es the runtime
when an autotest function is completed. If the runtime is able to produce an input that may
explore a new path, the autotest function is called again. Otherwise, the loop terminates. This
loop is constructed in the makeTestLoop function by way of an interpreted constructor.

15.2.2 autotest Runtime

The runtime library for this tutorial is divided into three parts. First, we maintain a symbolic
memory that maps concrete addresses to expressions in terms of inputs. Second, at the end of an
autotest function, we translate these expressions into expressions of the Yices SMT solver in order
to obtain a path condition. Finally, we maintain a set of path conditions from which we may choose
a path to modify for submission to Yices in the hope of obtaining inputs that will explore a new
path. The source for the runtime library can be found in ciltut-lib/src/concolic. File names
mentioned below are relative to this path.

The �le concolic exp.ml implements our internal expression representation. We de�ne our
own type for expressions instead of translating directly to Yices expressions so that we leave open
the possibility of using other SMT solvers in the future. The �le concolic ctxt.ml implements the
mapping from memory addresses to our symbolic expressions. It also maintains state for Yices, and
includes a function yices of exp that translates our symbolic expressions into Yices expressions.
In yices of exp the bit shifting operations are not translated into symbolic Yices expressions.
This is because the Yices theory for bitvectors is only capable of reasoning about shifts by constant
amounts. Therefore, yices of exp simply uses the concrete result of the operations.

Finally, the �le concolic paths.ml implements the path exploration algorithm. The global
record pState maintains a list of already explored paths along with a list of conditions for the
current path. It also maintains two mappings. The branchHT hash table maps branch identi�ers
to the state of a branch. A branch identi�er is a combination of an id assigned at compile time to
each conditional, and a count of the number of times a conditional has been executed on a single
concrete run. The count is kept so that the possibly many executions of the same static conditional
are not improperly con�ated by the path exploration algorithm. This is important, for example,
so that each time a loop guard is executed, it is considered a di�erent conditional. The state of
a branch is either NeitherTaken, TrueTaken, FalseTaken, or BothTaken. The second hash table,
branchCounts, keeps track of how many times a conditional has been executed, so that branch id's
may be properly assigned.

When a conditional is executed, its id is determined by checking its static id and looking it up
in branchCounts. Then, the condition is appended to pathCond. When an autotest function ends,
the expressions in pathCond are translated to Yices expressions, and the resulting path condition is
appended to paths, and branchHT is updated. Then, paths is searched for a path condition having

CHAPTER 15. AUTOMATED TEST GENERATION 129

the property that �ipping one of its conjuncts should cause Yices to generate a model that explores
an unexplored branch, as recorded by branchHT. This search and conjunct �ipping is carried out
by the genNextPath function. If no such path is found, a value is returned indicating that the loop
around the autotest function should terminate. If Yices does �nd a model, the values are stored
such that they may be requested in the autotest loop body, and stored in local variables so that
they may be given as input in the next iteration.

15.3 test/tut15.c

This �le shows how the features in this tutorial can be used. It de�nes two functions, one that does
arithmetic using its arguments, and another that does a string comparison. These two functions
are annotated autotest so that the test generation runtime will execute them repeatedly until each
conditional has had both branches taken. The string comparison function is annotated instrument

so that it will be executed symbolically when called from an autotest function.

../test/tut15.c
include <ciltut.h>

string compare has the behavior of strcmp. We include the code for it here explicitly so that it
can be instrumented and explored by the test generation runtime when called from g below. On
each iteration the conditionals are considered distict from the conditionals executed in previous
iterations. The result is that input strings of various lengths will be generated until the SMT solver
is no longer able to generate a model.

../test/tut15.c
int (instrument string_compare)(char *a, char *b)

{

int i = 0;

while (1) {

if (a[i] > b[i]) return 1;

if (a[i] < b[i]) return -1;

if (a[i] == 0 && b[i] == 0) break;

i++;

}

return 0;

}

The function f is annotated as an autotest function. The test generation runtime will take the
given inputs from the text of the program and use them to generate the �rst path through the
function. For this function, the �rst input is 0 for a and 0 for b. With this input the false branch of
the conditional is taken. When the path condition is negated and passed to Yices, an a and b are
returned such that (a * b) - (a + b) == 14862436.

CHAPTER 15. AUTOMATED TEST GENERATION 130

../test/tut15.c
uint64_t (autotest f)(int input a, int input b)

{

if ((a * b) - (a + b) == 14862436) {

return 1;

}

else return 0;

}

The function g compares the string given by its argument with the string "autotest". The type
of the argument s has the annotation inputnt indicating that it is a null-terminated array. This
indicates to the test generation runtime that it must generate valid null-terminated strings when
concocting new inputs for g.

../test/tut15.c
uint64_t (autotest g)(char *inputnt s)

{

return string_compare(s, "autotest");

}

int main ()

{

uint64_t res;

char cheese[1024] = "cheese";

res = f(0,0);

res = g(cheese);

return res;

}

This example can be compiled by invoking the following command:

$ ciltutcc --enable-tut15 -o tut15 test/tut15.c

Then invoking the resulting program, tut15, produces the following output:

autotest f:

a <- 0

b <- 0

a <- 2

b <- 14862438

autotest g:

s <- cheese

s <- 0

CHAPTER 15. AUTOMATED TEST GENERATION 131

s <- a

s <- au

s <- av6

s <- aut

s <- auu0

s <- auto

s <- autp6

s <- autot

s <- autou0

s <- autote

s <- autotp8

s <- autotes

s <- autotew6

s <- autotest

s <- autotesu

References

[1] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In Proceedings of the
2008 23rd IEEE/ACM International Conference on Automated Software Engineering, ASE '08,
pages 443�446, Washington, DC, USA, 2008. IEEE Computer Society.

[2] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for dpll(t). In Proceedings
of the 18th international conference on Computer Aided Veri�cation, CAV'06, pages 81�94,
Berlin, Heidelberg, 2006. Springer-Verlag.

[3] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated random testing.
In Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and
implementation, PLDI '05, pages 213�223, New York, NY, USA, 2005. ACM.

[4] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine for c. In Pro-
ceedings of the 10th European software engineering conference held jointly with 13th ACM SIG-
SOFT international symposium on Foundations of software engineering, ESEC/FSE-13, pages
263�272, New York, NY, USA, 2005. ACM.

[5] Nikolai Tillmann and Jonathan De Halleux. Pex: white box test generation for .net. In Proceed-
ings of the 2nd international conference on Tests and proofs, TAP'08, pages 134�153, Berlin,
Heidelberg, 2008. Springer-Verlag.

132

Index

A (module), 10, 13, 15, 10, 13, 15
addEdgesForCallArgs, 10, 10
addEdgesForCallRet, 10, 10
addInferredColors, 10, 10
addNodeMarks, 10, 10
argDef (�eld), 15, 15
argFmt (�eld), 15, 15
argGot (�eld), 15, 15
argHelp (�eld), 15, 15
argName (�eld), 15, 15
argOpt (�eld), 15, 15
argOption (�eld), 15, 15
argReq (�eld), 15, 15
argShort (�eld), 15, 15
argStr, 15, 15
argType (�eld), 15, 15
argument (type), 15, 15
argument of global, 15, 15
argVi (�eld), 15, 15
assertStr, 15, 15
assignRmVisitor (class), 3, 3
attrEraserVisitor (class), 15, 15
attr of color, 10, 10
attr strings, 15, 15
begin loop (�eld), 5, 5
begin loop str, 5, 5
Blue, 8, 8
blueStr, 8, 8
Bottom, 4, 4
cachefuns, 11, 11
cacheReportAdder (class), 11, 11
cacheReportStr, 11, 11
cache begin (�eld), 11, 11
cache begin str, 11, 11
cache end (�eld), 11, 11

cache end str, 11, 11
cache function names, 11, 11
CG (module), 14, 14
CH (module), 13, 13
checkColorTypes, 8, 9, 8, 9
collectVars, 4, 4
color (type), 8, 9, 8�10
colorAdder (class), 10, 10
colorCheckVisitor (class), 8, 9, 8, 9
colorEraserVisitor (class), 8, 9, 8, 9
colorqual of type, 9, 9
colors (type), 9, 10, 9, 10
ColorsMismatch, 8, 8
colors equal, 10, 10
colors includes, 9, 9
colors of exp, 9, 9
colors of lval, 9, 9
colors of type, 8, 9, 8�10
colorTypesCompat, 8, 8
color checks (type), 9

color eq (�eld), 9, 9
color eq str, 9, 9
color funcs, 9, 9
color function names, 9

color includes, 9, 9
color le (�eld), 9, 9
color le str, 9, 9
color of string, 8, 8
color strings, 8, 9, 8, 9
combinePredecessors, 4

commentsAdjacent, 13, 13
commentsBetween, 13, 13
commentVisitorClass (class), 13, 13
compare, 9, 14, 4, 9, 13, 14
compinfoOfLval, 6, 6

133

INDEX 134

computeFirstPredecessor, 4

computeOddEven, 4, 4
context for call, 9, 9
context for globals, 9, 9, 15
context for locals, 9, 9
context for struct, 9, 9
copy, 4

create def int string, 15, 15
create if str, 15, 15
create long options, 15, 15
create opt loop str, 15, 15
create short options, 15, 15
ctxt (type), 9, 9
ctxt add exp, 9, 9
ctxt add field, 9, 9
ctxt add var, 9, 9
current state, 4, 4
D (module), 14, 14
debug, 4, 4
default edge attributes, 14

default vertex attributes, 14

DF (module), 4, 4
doGuard, 4

doInstr, 4

doStmt, 4

dummyVar, 5, 9, 11, 15, 5, 9, 11, 15
E (module), 1�4, 6, 8�11, 14, 15, 1�4, 6, 8�10,

13�15
edge attributes, 14

end loop (�eld), 5, 5
end loop str, 5, 5
enqueueNodes, 10, 10
equal, 14

eraseAttrs, 15, 15
eraseColors, 8, 9, 8, 9
eraseNodeMarks, 10, 10
Even, 4, 4
evenOddAnalysis, 4, 4
ExactRGB, 9, 9
exactRGBStr, 9, 9
exactRGB of type, 9, 9
exp of ap, 9, 9, 15
exp of string, 9, 9

field of option, 15, 15
fileBuildGraph, 10, 10
filterStmt, 4

findColoredNodes, 10, 10
functionBuildGraph, 10, 10
functions (type), 5, 11
GA (module), 13

gatherArguments, 15, 15
getAssertAttr, 15, 15
getMainArgs, 15, 15
getOddEvens, 4, 4
get cur vml (method), 4, 4
get subgraph, 14

graph (type), 10, 10
graphAddEdge, 10, 10
graphBuilder (class), 10, 10
graphCreate, 10, 10
graph attributes, 14

graph of callgraph, 14, 14
Green, 8, 8
greenStr, 8, 8
H (module), 14, 14
handle field, 15, 15
hasArgAttr, 15, 15
hasAssertAttr, 15

hasCacheReportAttrs, 11, 11
hash, 14, 14
hasMandatoryAttr, 15, 15
has arg of argument, 15, 15
id of vm, 4, 4
IH (module), 4, 4
incoming (�eld), 10, 10
initArgs, 15, 15
initCacheFunctions, 11, 11
initColorFunctions, 9, 9
initialize options, 15, 15
initTutFunctions, 5, 5
instrOddEvens, 4, 4
int code of argument, 15, 15
isArgType, 15, 15
isBlueType, 8

isCacheFun, 11

isCacheReportStmt, 11, 11

INDEX 135

isCacheReportType, 11, 11
isColorType, 8, 8
isGreenType, 8

isMandatoryType, 15, 15
isRedType, 8

isTutFun, 5

isTypeColor, 8, 8
iter edges e, 14, 14
iter vertex, 14, 14
kind of int64, 4, 4
kind of vm, 4, 4
L (module), 4�6, 8�11, 13, 15, 4�6, 8�11, 13,

15
last, 13, 13
loopInstrumenterClass (class), 5, 5
LowerRGB, 9, 9
lowerRGBStr, 9, 9
lowerRGB of type, 9, 9
makeArgChecks, 15, 15
makeArgStmts, 15, 15
makeArgument, 15, 15
makeCacheReportStmts, 11, 11
makeInstrStmts, 5, 5
make colorqual, 9, 9
mandatoryStr, 15, 15
markComment, 13, 13
mkColorEqInst, 9, 9
mkColorInst, 9, 9
mkColorLeInst, 9, 9
mkFunTyp, 5, 5
name, 4

name of argname, 15, 15
ncolors (�eld), 10, 10
newNode, 10, 10
node (type), 10, 10
nodeAttr, 10, 10
nodeColorFinder (class), 10, 10
nodeStr, 10, 10
node of type, 10, 10
Odd, 4, 4
OddEven (module), 4, 4
OddEvenDF (module), 4, 4
oekind (type), 4, 4

oekind combine, 4, 4
oekind includes, 4

oekind neg, 4, 4
oekind of binop, 4, 4
oekind of exp, 4, 4
oekind of unop, 4, 4
old (label), 4

outgoing (�eld), 10, 10
prepareCommentArray, 13, 13
pretty, 4

printComments, 13, 13
printHelp, 15, 15
processFunction, 3, 5, 6, 15, 3, 5, 6, 15
processNode, 10, 10
processQueue, 10, 10
Q (module), 10, 10
Red, 8, 8
redStr, 8, 8
req of exp, 15, 15
rgb (type), 9, 9
rgb of color, 9, 9
S (module), 8�10, 13, 15, 8, 9, 15
SG (module), 14, 14
sid, 4, 4
SM (module), 9, 9
state list, 4, 4
stmtStartData, 4, 4
string of arg opt, 15, 15
string of color, 8, 9, 9, 10
string of colors, 9

string of exp, 15, 15
string of oekind, 4, 4
string of rgb, 9, 9
string of short arg, 15, 15
string of varmap, 4, 4
string of varmap list, 4, 4
t (type), 4, 9, 14, 9, 10, 14
T (module), 10, 15, 10, 15
Top, 4, 4
tut0, 1

Tut0 (module), 1

tut1, 2

Tut1 (module), 2

INDEX 136

tut10, 11

Tut10 (module), 11

Tut11 (module), 12

tut12, 13

Tut12 (module), 13

tut13, 14

Tut13 (module), 14

tut14, 15

Tut14 (module), 15

Tut15 (module), 16

tut1FixBlock, 2, 2
tut1FixFunction, 2, 2
tut1FixInstr, 2, 2
tut1FixStmt, 2, 2
tut2, 3

Tut2 (module), 3

tut3, 4

Tut3 (module), 4

tut4, 5

Tut4 (module), 5

tut5, 6

Tut5 (module), 6

tut6, 7

Tut6 (module), 7

tut7, 8

Tut7 (module), 8, 10
tut8, 9

Tut8 (module), 9, 15
tut8 init, 9, 9
tut9, 10

Tut9 (module), 10

tutfuns, 5, 5
tut function names, 5, 5
typecheck result (type), 8, 8
typeNodeEraser (class), 10, 10
typeNodeMarker (class), 10, 10
typesAddEdge, 10, 10
TypesMismatch, 8, 8
TypesOkay, 8, 8
UpperRGB, 9, 9
upperRGBStr, 9, 9
upperRGB of type, 9, 9
V (module), 14, 14

varmap (type), 4, 4
varmap combine, 4, 4
varmap equal, 4, 4
varmap list combine, 4, 4
varmap list combine one, 4, 4
varmap list equal, 4, 4
varmap list handle inst, 4, 4
varmap list kill, 4, 4
varmap list pretty, 4, 4
varmap list replace, 4, 4
varUseReporterClass (class), 4, 4
vattr (method), 8�10, 15
vertex attributes, 14

vertex name, 14

vexpr (method), 8, 10
vinst (method), 3, 4, 8�10, 13
vi of vm, 4, 4
vmlVisitorClass (class), 4, 4
vstmt (method), 4, 5, 10, 11, 13
vtype (method), 10

vvrbl (method), 4

warning for tcres, 8, 8
zeroArray, 6, 6
zeroComp, 6, 6
zeroField, 6, 6
zeroPtr, 6, 6
zeroType, 6, 6

