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ABSTRACT
Deep learning models are trained with certain assumptions about

the data during the development stage and then used for predic-

tion in the deployment stage. It is important to reason about the

trustworthiness of the model’s predictions with unseen data during

deployment. Existing methods for specifying and verifying tradi-

tional software are insufficient for this task, as they cannot handle

the complexity of DNN model architecture and expected outcomes.

In this work, we propose a novel technique that uses rules derived

from neural network computations to infer data preconditions for a

DNNmodel to determine the trustworthiness of its predictions. Our

approach, DeepInfer involves introducing a novel abstraction for a

trained DNN model that enables weakest precondition reasoning

using Dijkstra’s Predicate Transformer Semantics. By deriving rules

over the inductive type of neural network abstract representation,

we can overcome the matrix dimensionality issues that arise from

the backward non-linear computation from the output layer to the

input layer. We utilize the weakest precondition computation using

rules of each kind of activation function to compute layer-wise

precondition from the given postcondition on the final output of a

deep neural network.We extensively evaluatedDeepInfer on 29 real-
world DNN models using four different datasets collected from five

different sources and demonstrated the utility, effectiveness, and

performance improvement over closely related work. DeepInfer ef-
ficiently detects correct and incorrect predictions of high-accuracy

models with high recall (0.98) and high F-1 score (0.84) and has

significantly improved over the prior technique, SelfChecker . The
average runtime overhead of DeepInfer is low, 0.22 sec for all the
unseen datasets. We also compared runtime overhead using the

same hardware settings and found that DeepInfer is 3.27 times faster

than SelfChecker , the state-of-the-art in this area.

CCS CONCEPTS
• Software and its engineering→ Specification languages; •
Computing methodologies→Machine learning.

KEYWORDS
Deep neural networks, weakest precondition, trustworthiness

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0217-4/24/04.

https://doi.org/10.1145/3597503.3623333

ACM Reference Format:
Shibbir Ahmed, Hongyang Gao, and Hridesh Rajan. 2024. Inferring Data

Preconditions from Deep Learning Models for Trustworthy Prediction in

Deployment. In 2024 IEEE/ACM 46th International Conference on Software
Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York,

NY, USA, 13 pages. https://doi.org/10.1145/3597503.3623333

1 INTRODUCTION
Deep neural networks (DNN) are widely utilized nowadays, in-

cluding in safety-critical systems. A DNN is trained on some data

(training data), tested on possibly separate data (test data), and

deployed in production, where they predict output for unseen data.

A major challenge is: can we trust the output of a trained DNN on

unseen data? Prior work has referred to these circumstances as data

corruption bugs [37, 38] or conformal constraint violation [26, 28].

Prior research on the specification and verification of DNNs has

focused on creating abstract representations for the verification

of properties such as robustness and fairness [11, 14, 29, 35, 42, 43,

49, 60, 62, 65, 69]. However, these works have not addressed the

questions of the trustworthiness of DNN outputs [72] on unseen

data. Recent studies [26, 28] have explored techniques for discov-

ering constraints, but they do not consider the DNN’s structure

in determining these constraints. In particular, the conformance

constraints approach [26] uses the training dataset to establish a

"safety envelope" that characterizes the inputs for which the model

is expected to make trustworthy predictions. However, this work

does not examine whether those conformation constraint violations

of the safety envelope can determine correct or incorrect predic-

tions with unseen data in the deployment stage. Our work fills this

research gap. While many classifiers generate a confidence mea-

sure in addition to their class predictions, these measures are often

unreliable due to inappropriate calibration [40, 48] and may not be

sufficient to indicate trust in the classifier’s prediction. In particular,

the application of an activation function to raw numeric prediction

values can lead to confidence measures that are not well-calibrated,

making them difficult to determine whether the prediction with

unseen data during deployment is correct or incorrect.

Recently, Xiao et al. proposed a technique, SelfChecker [72] that
computes the similarity between layer features of test instances

and the samples in the training set, using kernel density estimation

(KDE) to detect misclassifications by the model in deployment. This

technique has limitations, such as being restricted to the capabil-

ity of computing density function from specific training and test

data and the selected combination of layers with certain activa-

tion functions. Therefore, SelfChecker incurs a significant runtime

overhead to compute KDEs for different combinations of layers for
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Figure 1: An example motivating how we can trust a model’s prediction with unseen data in the deployment stage

each class in training and deployment modules for all training and

test datasets. We address these shortcomings of the state-of-the-art

techniques and aim to develop a technique that infers DNN model’s

assumption on training data and utilizes that inferred assumption

during the deployment stage to determine correct or incorrect pre-

diction, therefore implying trust in prediction with unseen data.

In this work, we provide a novel approach DeepInfer for reason-
ing about a DNN’s prediction with unseen data by inferring data

preconditions from the DNN model, i.e., structure of the DNN and

trained parameters. The technical contributions of our approach

include: a novel abstraction of DNN, including conditions, a weak-

est precondition (wp) calculus [34] for DNNs, and an algorithm

that utilizes derived rules from the DNN abstraction and layer-wise

computations to infer data preconditions and determine the model’s

correct or incorrect prediction. Starting with the conditions that

should hold on the output of the DNN (postconditions), our wp rules
provide mechanisms to compute conditions on the input of that

layer (preconditions). Since the output of one layer (𝑁 ) is fed to

the input of the next layer (𝑁 + 1) in a DNN, our approach then

uses the preconditions of the 𝑁 + 1 layer as postconditions of the

previous layer 𝑁 . The precondition of the first layer, also called the

input layer, in the DNN are data preconditions. The challenge in
formulating wp rules lies in handling multiple layers with hidden

non-linearities due to the architecture of the DNNs.

To evaluate our approach, we utilize 29 real-world models and 4

different datasets collected from prior research [9, 14, 64, 76] and

Kaggle [41] to answer three research questions. We investigated

whether data precondition violations determine incorrect model

prediction. We also measure how effective DeepInfer is to imply

trustworthiness in the model’s prediction and compare against

closely related work using their evaluation metrics [72]. We deter-

mine the performance, especially the runtime overhead of DeepInfer
and compared it with the state-of-the-art using unseen data during

deployment. Our key results are: DeepInfer implies that data
precondition violations and incorrect model prediction are
highly correlated (𝑝𝑐𝑐 = 0.88), where 𝑝𝑐𝑐 denotes Pearson corre-

lation coefficient. Also, the data precondition satisfaction and
correct model prediction are strongly correlated (𝑝𝑐𝑐 = 0.98).
DeepInfer effectively implies the correct and incorrect predic-
tion of higher accuracymodels with recall (0.98) and F-1 score
(0.84), compared to prior work SelfChecker with recall (0.59)
and F-1 score (0.52). The average runtime overhead of DeepInfer
is fairly minimal (0.22 sec for the entire test data). Our proposed
approach, DeepInfer is 3.27 times faster during deployment
than SelfChecker, state-of-the-art in this area.

In summary, this work makes the following contributions:

• a novel abstraction for trained DNN that incorporates pre

and postconditions as predicate vectors for each layer;

• a weakest precondition calculus for the DNN abstraction

that overcomes challenges due to non-linearities introduced

by the DNN architecture;

• a novel technique for computing data preconditions from

DNN models after training and utilizing those inferred pre-

conditions for implying trust in the model’s prediction dur-

ing the deployment stage ;

• a detailed evaluation with publicly available datasets and

models to demonstrate the utility, efficiency, and perfor-

mance of DeepInfer with an open-source implementation [7]

that can be leveraged by future research in explainable soft-

ware engineering for machine learning.

2 MOTIVATION
We are aware that a DNN model’s prediction could be correct or

incorrect, but it is important to know how trustworthy the model’s

prediction is for unseen data during the deployment stage. To moti-

vate our objectives, let us consider a deep neural network model in

Fig. 1. The first layer, i.e., the DNN model’s input layer, receives the

input from training data, compiles it and produces the output ( 1 ).

Then, the next layers receive the output from the previous ones as

input. The model compiles the input data, evaluates it, predicts the

output, and delivers it to the deployment stage ( 2 ). This model

has been trained for the PIMA diabetes dataset with eight features

for whether a patient has diabetes. Although the model’s accuracy

is 77%, when we get the output from the model, we do not really

know how confident the model is for that output. In some cases, the

model could be confidently incorrect. So, this model’s prediction

with an unseen data during the deployment stage might be correct

or incorrect. For instance, during the deployment stage, unseen data

is fed to the trained DNN model ( 3 ), which predicts whether the

patient with that particular data point has diabetes or no diabetes

( 4 ). It is necessary to determine whether the model’s prediction is

correct and to trust this prediction or its prediction is incorrect and

not to trust it with such unseen data points during the deployment

stage. The growing prevalence of Deep Neural Networks (DNNs) in

critical domains highlights the importance of ensuring the trustwor-

thiness of their outputs. Despite their high accuracy, DNNs are still

prone to prediction errors, and in applications such as autonomous

vehicles and medical diagnosis, etc. It is reported that Uber’s fatal

self-driving crash was caused by software detecting objects on the
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Figure 2: Overview diagram depicting the technique of data precondition inference from a trained DNNmodel after the training
phase and how those are utilized in the deployment stage for implying trust in the model’s prediction using unseen data

road [1] and AI models for health care that predict disease are not

as accurate as suggested in reports [2]. Therefore, making the DNN

black-box model explainable and determining correct, incorrect, or

uncertain predictions during deployment is crucial.

Problem formulation: Given a trained DNN model and an

unseen data instance, our goal is to derive preconditions from a

trained DNN model’s assumptions about the training data after the

training stage, and leverage inferred data preconditions from the

model to precisely determine whether a prediction by the DNN

model with unseen data during deployment is correct or incorrect,

or uncertain. By addressing the challenges posed by non-linear

computation functions in DNNmodel and the variability of weights,

biases, inputs, and outputs, our work aims to provide an efficient

solution and significantly improved technique over state-of-art

for ensuring trust in the DNN model’s prediction in real-world

applications.

3 DEEPINFER APPROACH
We present an overview diagram in Fig. 2 illustrating our proposed

technique DeepInfer . The top portion of the diagram depicts how

data preconditions are inferred from a trained DNN model after the

training phase. In the bottom portion, we depict how the inferred

data preconditions are utilized for determining the trustworthiness

of the model’s prediction using unseen data during deployment.

At first, we utilize a trained DNN model for the novel abstrac-

tion with layers and activation functions incorporating precondi-

tions and postconditions ( 1 ). Then, we represent a neural network

with activation function operations inside layers ( 2 ). We compute

the weakest preconditions from the abstract representation of the

trained model (𝑁 ) and postcondition (𝛿) ( 3 ). Then, we determine

the predicate vectors for each layer utilizing the computed weakest

preconditions from layer-wise operations ( 4 ). From ( 5 ), we infer

the input layer’s predicate vector for each feature. Therefore, we

obtain the data preconditions using the trained model once after

the training phase ( 6 ). Then, we compute mean data precondition

violations for all features using the entire validation dataset, which

serve as a threshold ( 7 ). In the deployment phase, DeepInfer uti-
lizes the trained DNN model and obtained data preconditions for

determining trust in the model’s prediction with an unseen data

point ( 9 ). Next, we check the data precondition violations ( 10 )

for each feature using the violation threshold ( 8 ) for that data

point ( 11 ). Furthermore, we utilize the computed count vectors of

the violation using a decision-tree-based approach ( 12 ). To that

extent, we determine the trustworthiness of the model’s prediction

with unseen data ( 13 ). Finally, DeepInfer determines whether the

model’s prediction is correct and we can trust it or incorrect and

not certain, and we can not rely on that prediction with unseen

data during the deployment stage ( 14 ).

3.1 Abstract representation of a DNN model
We propose a novel abstraction for trained DNNs that incorporates

pre and postconditions as predicate vectors for each layer. Let us

consider the following grammar for representing DNN depicted

in Fig. 3.

𝑁 ::= 𝑁 :: 𝑁 | 𝑎(𝑓 (𝑥)) Neural network with activation function
𝑎 ::= 𝑙𝑖𝑛𝑒𝑎𝑟 | 𝑟𝑒𝑙𝑢 | 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 | 𝑡𝑎𝑛ℎ Common activation functions
𝑓 (𝑥) ::=𝑊 .𝑥 + 𝑏 Dense operation using weight and bias
𝛿 ::= 𝑡𝑟𝑢𝑒 | 𝛿 ∧ 𝛿 | 𝛿 ∨ 𝛿 | 𝜎 Preconditions and Postconditions
𝜎 ::= 𝑧 ⊲⊳ 𝑛 Predicate vector of layer’s input/output (𝑧), 𝑛 ∈ R
⊲⊳ ::= ≥ | ≤ | > | < | == | ≠ Binary comparison operators

𝛾 (𝑊 ) ::= (𝑊𝑇
.𝑊 )−1 Inverse function (𝛾 ) of layer’s weight matrix

𝐷𝑡𝑒𝑠𝑡 ::= 𝐷𝑖𝑛 :: 𝐷𝑜𝑢𝑡 Data with input and output features

𝐷𝑖𝑛 ::= {(𝑓𝑖𝑛, 𝑣) |𝑓𝑖𝑛 ∈ 𝑠, 𝑣 ∈ 𝑇 } Tuple of input features (𝑓𝑖𝑛) and data (𝑣)

𝐷𝑜𝑢𝑡 ::= {(𝑓𝑜𝑢𝑡 , 𝑣) |𝑓𝑜𝑢𝑡 ∈ 𝑠, 𝑣 ∈ 𝑇 } Tuple of output features (𝑓𝑜𝑢𝑡 ) and data (𝑣)

𝑇 ::= 𝑛 |𝑠 |𝑐 𝑛 ∈ R, 𝑐 ∈ [𝑎 − 𝑧] | [𝐴 − 𝑍 ] |𝑛, 𝑠 ∈ [𝑐]∗

Figure 3: Grammar representing Neural network, precondi-
tions, and postconditions

Let us consider the Dense layer computation denoting 𝑓 (𝑥). In
the grammar, we denote 𝑁 as a neural network with activation

function 𝑎(𝑓 (𝑥)) in layers. In this computation, the function is

based on the neuron’s weights, and bias where one weight is as-

signed to each component of the input (𝑥) with corresponding

weight (𝑊 ) and bias (𝑏) in each layer. We consider some common

activation functions [69] used in deep learning programs such as

linear, ReLU, sigmoid, tanh. We consider each layer’s output

and input vector as 𝑧 and the predicate as ⊲⊳ 𝑛, where 𝑛 ∈ 𝑅 and

⊲⊳ represent the logical comparison operators. Here, 𝛾 denotes an
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inverse function of a layer’s weight matrix nonlinear computation.

We represent the test dataset (𝐷𝑡𝑒𝑠𝑡 ) as a tuple of features and data.

3.2 Computing weakest preconditions from
abstract representation of a DNN model

To compute the weakest preconditions from the abstract represen-

tation of a DNN model (𝑁 ), we consider a postcondition 𝛿 as the

expected DNNmodel’s output. As edges from one layer connect the

neural network to another layer, we denote 𝑧 as the input/output

vector for the intermediate layers. We consider 𝑦 the output of the

last layer, and 𝑛 is the prediction interval for a DNN model’s pre-

diction. Here, 𝑥 is the input vector to the first layer. It is considered

as data precondition. We follow Dijkstra’s predicate transformer

semantics rules in the form of 𝑤𝑝 (𝑁, 𝛿), where 𝑁 is a program

statement involving a DNN layer computation using activation

functions as represented in the grammar, and 𝛿 is a postcondition

on the program state. This transformer rule defines the weakest

predicate, which holds the model statement before executing 𝑁

to guarantee that the postcondition 𝛿 holds after 𝑁 terminates.

DeepInfer computes data precondition for a model using the de-

fined rules in Fig. 4. We compute the data precondition, which is

obtained recursively by following these rules from the last layer

until the first layer of a DNN model. Therefore, the computation of

the data precondition from a DNN model is done recursively for

a given representation 𝑁 from the DNN model and postcondition

𝛿 using the rules illustrated in Fig. 4. Here, the rules (wp), (wpAl-

pha) represent recursion over inductive type 𝑁 by the function𝑤𝑝 ,

eventually satisfying base cases of 𝑁 . These base cases of 𝑤𝑝 use 𝛼

to compute the precondition where 𝛼 does recursion over the cases

of the inductive type 𝛿 represented using rules (wpAlphaTrue),

(wpAlphaWedge), (wpAlphaVee), (wpAlphaSigma) illustrated

in Fig. 4. Again, base cases of 𝛼 use 𝛽 to compute the 𝑤𝑝 for the

cases of the activation function (𝑎). For instance, for ReLU activation
function, we compute 𝛽 using the computation with weight and

bias of a layer as follows,

𝑟𝑒𝑙𝑢 (𝑓 (𝑥)) = 𝑓 (𝑟𝑒𝑙𝑢 (𝑊 .𝑥 + 𝑏)) =
{

0, (𝑊 .𝑥 + 𝑏) < 0

𝑊 .𝑥 + 𝑏, (𝑊 .𝑥 + 𝑏) ≥ 0

We solve this non-linear equation of 𝑟𝑒𝑙𝑢 (𝑊 .𝑥+𝑏) for postcondition
(𝑧 ⊲⊳ 𝑛) and obtain the precondition as stated in the (BetaRelu) rule

in Fig. 4. Similary, for other kinds of activation functions, we have

derived 𝛽 rules e.g., (BetaLinear), (BetaSigmoid), (BetaTanh)

rules illustrated in Fig. 4. The derivation details of each kind of

those rules are in the appendix of open-source repository [7].

𝛽 (𝑟𝑒𝑙𝑢 (𝑊 .𝑥+𝑏), 𝑧 ⊲⊳ 𝑛) ≡ 𝑧 ⊲⊳ ((𝛾 .𝑛)−𝑏)∧𝑧 ⊲⊳ 𝛾 .(−𝑏), 𝛾 = (𝑊𝑇
.𝑊 )−1

Next, we describe the challenges towards layer-wise weakest

precondition reasoning using a DNN model.

3.3 Layer-wise weakest precondition reasoning
In order to obtain𝑤𝑝 by asserting the model statement using post-

condition from layer to layer, there are some challenges. First, the

layer function computation using the activation function is not al-

ways linear. Different non-linear activation functions operate using

weight and bias along with the input in each layer computation. For

instance, sigmoid activation function computes (𝜎 (𝑥) = 1

1+𝑒−𝑥 ),

tanh activation function computes (𝑡𝑎𝑛ℎ(𝑥) = 2

1+𝑒−2𝑥 -1), ReLU ac-

tivation function computes (𝑟𝑒𝑙𝑢 (𝑥) = 𝑥, 𝑥 ≥ 0|0, 𝑥 < 0), ELU acti-
vation function computes (𝑒𝑙𝑢 (𝑥) = 𝑥, 𝑥 ≥ 0|𝑒𝑥 −1, 𝑥 < 0), softmax

activation function computes (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑥𝑖 ) = 𝑒𝑥𝑖∑𝑛
𝑗=1

𝑒
𝑥𝑗 ) [69], etc.

Second, there is a challenge to tackle the variability of the matrix

dimension of weight, bias, input, and output in each layer. For

instance, an example model (in Fig. 5) contains 3 Dense layers

which perform linear, linear, sigmoid activation function

computation using weight and bias vector with input in each layer.

To obtain the layer-wise 𝑤𝑝 , the dimension of weight and bias

matrices should be taken into account. The dimension of weight

matrices varies from layer to layer in the network. As the weight

vector (𝑊 ) is multiplied by the input vector (𝑋 ), the dimension must

be consistent with the bias vector (𝑏) and output (𝑦) in forward

propagation. In terms of backward computation, it is challenging to

get the appropriate matrix dimension on the precondition of input

data in each layer. In Fig. 5, the dimension of weight, bias, input,

and output of last layer is (1× 8), (1× 1), (8× 1), (1× 1) respectively.

In the second layer, the dimension of weight, bias, input, and output

is (8 × 12), (8 × 1), (12 × 1), (8 × 1), respectively. In the first layer,

the dimension of weight, bias, input, and output is (12 × 8), (12 × 1),

(8× 1), (12× 1), respectively. If we assert using postcondition with a

single dimension of 𝛿 , as a data precondition in the first layer should

be a dimension of 8× 1 in this scenario. We encounter here that the

weight, bias, input, and output of each layer appear non-linearly in

the equations of the activation function, where there are nonlinear

constraints among the parameters. To address these challenges, we

have adopted the least square solution [39] for nonlinear activation

computation. One of our contributions is to derive 𝑤𝑝 rules for

each kind of activation function (shown in Fig. 4) for layer-wise

weakest precondition reasoning.

Next, we describe the weakest precondition computation of a

DNN model to infer data preconditions of the input layer using

the derived rules (in Fig. 4). Our approach is generalized to a DNN

with any number of hidden layers with linear or non-linear activa-

tion functions. For simplicity, we demonstrate the𝑤𝑝 computation

process using derived rules with a canonical example DNN model.

3.4 Infer data preconditions of the input layer
For computing the weakest precondition using DNN models, we

take the statements from the model structure consisting of layers

with input dimensions, number of output, activation function, etc.

We consider the prediction interval (𝑛) as the postcondition. The

rationale behind choosing prediction interval as a postcondition to

DNN classification or regression model is that it [46] provides how

good the model prediction is. Also, the prediction interval helps

gauge the weight of evidence available when comparing models.

Prediction intervals facilitate trade-offs between models favoring

less complex or more interpretable models [17].

To infer data preconditions, starting from the last layer state-

ment, we assert using the𝑤𝑝 equation to determine the weakest

precondition. The equation of 𝐷𝑒𝑛𝑠𝑒 layer is as follows:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑑𝑜𝑡 (𝑖𝑛𝑝𝑢𝑡,𝑤𝑒𝑖𝑔ℎ𝑡) + 𝑏𝑖𝑎𝑠)

So, for given postcondition 𝛿 : 𝑦 ≤ 𝑛, the statement 𝑆3 can be

written for output of last layer (𝑦3) with corresponding weight (𝑤3)
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(wp)

𝑤𝑝 (𝑁0, 𝛿
′ ) = 𝛿 ′′ 𝛿 ′ = 𝑤𝑝 (𝑁1, 𝛿 )

𝑤𝑝 (𝑁0 .𝑁1, 𝛿 ) = 𝛿 ′′

(wpAlpha)

𝛿 ′ = 𝛼 (𝛿, 𝛽 (𝑎 (𝑓 (𝑥 ) ) ) )
𝑤𝑝 (𝑎 (𝑓 (𝑥 ) ), 𝛿 ) = 𝛿 ′

(AlphaTrue)

𝛼 (𝑡𝑟𝑢𝑒, 𝛽 (𝑎 (𝑓 (𝑥 ) ) ) ) = 𝑡𝑟𝑢𝑒

(AlphaWedge)

𝛼 (𝛿0, 𝛽 (𝑎 (𝑓 (𝑥 ) ) ) ) = 𝛿 ′
0
𝛼 (𝛿1, 𝛽 (𝑎 (𝑓 (𝑥 ) ) ) ) = 𝛿 ′

1

𝛼 (𝛿0 ∧ 𝛿1, 𝛽 (𝑎 (𝑓 (𝑥 ) ) ) ) = 𝛿 ′
0
∧ 𝛿 ′

1

(AlphaVee)

𝛼 (𝛿0, 𝛽 (𝑎 (𝑓 (𝑥 ) ) ) ) = 𝛿 ′
0

𝛼 (𝛿1, 𝛽 (𝑎 (𝑓 (𝑥 ) ) ) ) = 𝛿 ′
1

𝛼 (𝛿0 ∨ 𝛿1, 𝛽 (𝑎 (𝑓 (𝑥 ) ) ) ) = 𝛿 ′
0
∨ 𝛿 ′

1

(AlphaSigma)

𝛿 ′ = 𝛽 (𝑎 (𝑓 (𝑥 ) ), 𝑧 ⊲⊳ 𝑛)
𝛼 (𝑧 ⊲⊳ 𝑛, 𝛽 (𝑎 (𝑓 (𝑥 ) ) ) ) = 𝛿 ′

(BetaRelu)

𝛿 ′
1
= 𝑧 ⊲⊳ (𝛾 .𝑛) − 𝑏 𝛿 ′

2
= 𝑧 ⊲⊳ 𝛾 .(−𝑏 ) 𝛾 = (𝑊𝑇

.𝑊 )−1 .(𝑊𝑇 )
𝛽 (𝑟𝑒𝑙𝑢 (𝑊 .𝑥 + 𝑏 ), 𝑧 ⊲⊳ 𝑛) = 𝛿 ′

1
∧ 𝛿 ′

2

(BetaLinear)

𝛿 ′ = 𝑧 ⊲⊳ (𝛾 .𝑛) − 𝑏 𝛾 = (𝑊𝑇
.𝑊 )−1 .(𝑊𝑇 )

𝛽 (𝑙𝑖𝑛𝑒𝑎𝑟 (𝑊 .𝑥 + 𝑏 ), 𝑧 ⊲⊳ 𝑛) = 𝛿 ′

(BetaSigmoid)

𝛿 ′ = 𝑧 ⊲⊳ (𝛾 .𝑙𝑛 ( 𝑛

1 − 𝑛 ) − 𝑏 ) 𝛾 = (𝑊𝑇
.𝑊 )−1 .(𝑊𝑇 )

𝛽 (𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊 .𝑥 + 𝑏 ), 𝑧 ⊲⊳ 𝑛) = 𝛿 ′

(BetaTanh)

𝛿 ′ = 𝑧 ⊲⊳ (𝛾 . 1
2

𝑙𝑛 (𝑛 − 1

𝑛 + 1

) − 𝑏 ) 𝛾 = (𝑊𝑇
.𝑊 )−1 .(𝑊𝑇 )

𝛽 (𝑡𝑎𝑛ℎ (𝑊 .𝑥 + 𝑏 ), 𝑧 ⊲⊳ 𝑛) = 𝛿 ′

Figure 4: Rules for computing𝑤𝑝 over inductive type 𝑁 , 𝛼 over inductive type 𝛿 , 𝛽 over inductive type 𝑎(𝑓 (𝑥))

input output

Linear Linear Sigmoid

Linear Linear

Figure 5: Data precondition (𝛿1) computation from an exam-
ple DNN model (𝑁 ) with 3 layers and postcondition (𝛿)

and bias (𝑏3) as,

𝑦3 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑤𝑇
3
.𝑥3 + 𝑏3)

We have Dense layers with linear, linear, sigmoid activa-
tion functions for this example. Now, for given neural network (𝑁 )

and postcondition (𝛿),

𝑁 : 𝑙𝑖𝑛𝑒𝑎𝑟 (𝑊1 .𝑥1 + 𝑏1).𝑙𝑖𝑛𝑒𝑎𝑟 (𝑊2 .𝑥2 + 𝑏2) .𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊3 .𝑥3 + 𝑏3);
𝛿 : 𝑦3 ≥ 𝑛1 ∧ 𝑦3 ≤ 𝑛2

Our proposed technique is generalized to DNN models with

multiple layers. For example, a DNN model presented in Fig. 5 has 3

layers and different activation functions. In that model, the output

layer has a single class, i.e., the output value 𝑦 ∈ R. The given

postcondition is an instance of (𝛿 ∧ 𝛿) and will be in the range

between [𝑛1, 𝑛2]. Now, we utilize𝑤𝑝 rules over 𝑁 and 𝛿 using (wp),

(wpAlpha) rules to get the precondition for this multiple layer

neural network as follows,

𝛿1 = 𝑤𝑝 (𝑁, 𝛿) = 𝑤𝑝 (𝑁0 .𝑁1, 𝛿) ≡

𝑤𝑝 (𝑙𝑖𝑛𝑒𝑎𝑟 (𝑊1 .𝑥1 + 𝑏1) .𝑙𝑖𝑛𝑒𝑎𝑟 (𝑊2 .𝑥2 + 𝑏2) .𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊3 .𝑥3 + 𝑏3), 𝛿)
𝛿1 = 𝑤𝑝 (𝑙𝑖𝑛𝑒𝑎𝑟 (𝑊1 .𝑥1 + 𝑏1, 𝛿2);

𝛿2 = 𝑤𝑝 (𝑙𝑖𝑛𝑒𝑎𝑟 (𝑊2 .𝑥2 + 𝑏2) .𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊3 .𝑥3 + 𝑏3), 𝛿);
𝛿2 = 𝑤𝑝 (𝑙𝑖𝑛𝑒𝑎𝑟 (𝑊2 .𝑥2 + 𝑏2), 𝛿3);𝛿3 = 𝑤𝑝 (𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊3 .𝑥3 + 𝑏3), 𝛿)

Then, we apply (wpAlphaSigma), (wpAlphaWedge), (BetaSig-

moid) rules consecutively to get the precondition as follows,

𝛿3 = 𝑤𝑝 (𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊3 .𝑥3 + 𝑏3), 𝛿) ≡ 𝛼 (𝛿3, 𝛽 (𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊3 .𝑥3 + 𝑏3)))

≡ 𝛽 (𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊3 .𝑥3+𝑏3), 𝛿3) ≡ 𝛽 (𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊3 .𝑥3+𝑏3), 𝑦3 ≥ 𝑛1∧𝑦3 ≤ 𝑛2)
≡ 𝑥3 ≥ ((𝛾3 .𝑙𝑛

𝑛1

1 − 𝑛1

) − 𝑏3) ∧ 𝑥3 ≤ ((𝛾3 .𝑙𝑛
𝑛2

1 − 𝑛2

) − 𝑏3)

Here, 𝑥3 is an array of input that has been obtained from the

second layer and fed into the third layer, and the predicate of 𝑥3

denotes the precondition of the data in layer 3, which is a post-

condition of layer 2. Here, 𝛾3 is an inverse function of the layer’s

weight matrix (𝑊3). Then, we obtain 𝛿2 similarly using the𝑤𝑝 rules

(wpAlpha), (wpAlphaWedge), (BetaLinear) consecutively,

𝛿2 = 𝑤𝑝 (𝑙𝑖𝑛𝑒𝑎𝑟 (𝑊2 .𝑥2 + 𝑏2), 𝛿3)

≡ 𝛼 (𝛿3, 𝛽 (𝑙𝑖𝑛𝑒𝑎𝑟 (𝑊2 .𝑥2 + 𝑏2))) ≡ 𝛽 (𝑙𝑖𝑛𝑒𝑎𝑟 (𝑊2 .𝑥2 + 𝑏2), 𝛿3)

≡ 𝛽 (𝑙𝑖𝑛𝑒𝑎𝑟 (𝑊2 .𝑥2 + 𝑏2), 𝑥3 ≥ ((𝛾3 .𝑙𝑛
𝑛1

1 − 𝑛1

) − 𝑏3)∧

𝑥3 ≤ ((𝛾3 .𝑙𝑛
𝑛2

1 − 𝑛2

)−𝑏3)) ≡ 𝑥2 ≥ ((𝛾2 .((𝛾3 .𝑙𝑛
𝑛1

1 − 𝑛1

)−𝑏3))−𝑏2)∧

𝑥2 ≤ ((𝛾2 .((𝛾3 .𝑙𝑛
𝑛2

1 − 𝑛2

) − 𝑏3)) − 𝑏2), 𝛾2 = (𝑊𝑇
2
.𝑊2)−1 .(𝑊𝑇

2
)

In this step, we obtain the precondition which is an array of the

input (𝑥2) that has been obtained from the first layer and fed into

the second layer, and the predicate of 𝑥2 denotes the precondition

of the input in layer 2, which is a postcondition of layer 1. After

asserting with this postcondition, we obtain 𝛿1 similarly using the

𝑤𝑝 rules (wpAlpha), (wpAlphaWedge), (BetaLinear),

𝛿1 = 𝑤𝑝 (𝑙𝑖𝑛𝑒𝑎𝑟 (𝑊1 .𝑥1 + 𝑏1), 𝛿2) ≡ 𝛼 (𝛿2, 𝛽 (𝑙𝑖𝑛𝑒𝑎𝑟 (𝑊1 .𝑥1 + 𝑏1)))

≡ 𝛽 (𝑙𝑖𝑛𝑒𝑎𝑟 (𝑊1 .𝑥1 + 𝑏1), 𝛿2)

≡ 𝑥1 ≥ ((𝛾1 .((𝛾2 .((𝛾3 .𝑙𝑛
𝑛1

1 − 𝑛1

) − 𝑏3)) − 𝑏2) − 𝑏1)∧

𝑥1 ≤ ((𝛾1 .((𝛾2 .((𝛾3 .𝑙𝑛
𝑛2

1 − 𝑛2

) − 𝑏3)) − 𝑏2) − 𝑏1)

Finally, we obtain the precondition, which is an array of the data

(𝑥1) for each feature that has been assumed by this DNN with

multiple layers where 𝛾1 = (𝑊𝑇
1
.𝑊1)−1 .(𝑊𝑇

1
). In our proposed

technique, the entire process of data precondition inference from a

DNNmodel is automated and generalized for other models which is

performed after the training stage. Next, we discuss how we utilize

inferred data preconditions for determining the trustworthiness of

the model’s prediction using unseen data.
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3.5 Implying trustworthiness on the model’s
prediction using inferred data preconditions

Regarding the design choice, we determine the data preconditions

for the inputs to the first layer in a DNN model. These data precon-

ditions for the inputs to a DNN model indicate the trained model’s

assumption about the data. Furthermore, these input data precon-

ditions must hold true for the data before it is fed to the model,

which is important for its prediction. Prior work regarding the

conformance constraints approach [26] uses the training dataset

to establish a "safety envelope" that characterizes the inputs and

demonstrates that conformal constraint violation is related to a

model’s trustworthy predictions. We leverage a similar notion in

our approach that the violation of obtained data preconditions for

the input to a DNN model indicates the trustworthiness of the

model’s prediction.

The overall process has two parts shown in Algorithm 1. The

procedure computeThreshold computes the violation threshold

for input features using the validation set, and checkPrediction

uses these computed values to check prediction for unseen data.

Given the neural network representation𝑁 and the postcondition 𝛿 ,

the first step is to acquire the data preconditions (line 2), set of input

features, and data points from the validation dataset𝐷test (lines 3-5).

The algorithm proceeds by collecting feature-wise violations using

the helper procedure on lines 11–18, which checks precondition

violation for each input in the validation set and accumulates the

precondition violations by features. Finally, we calculate the mean

number of data precondition violations for all features (𝑉 ), which

serve as a threshold (on line 9). For the unseen data, procedure

MoreImpFeatViolCounter (M)

Correct LessImpFeatViolCounter (L)

UncertainIncorrect Correct

Figure 6: Utilizing computed count vectors of the data pre-
condition violations using decision-tree
checkPrediction computes the violation count for each feature

(line 21). Next, for each feature the procedure checks whether the

number of violations are above (𝐿) or below (𝑀) the violation thresh-

old. To be more specific regarding the design choice of the decision

tree (in Fig. 6) of data preconditions violation, we have utilized more

feature violations and fewer feature violations as indicative of the

model’s correct and incorrect prediction. The decision tree logic is

in Fig. 6. First leaf (from the left) of this decision tree is immediate,

if there are no more violations compared to the threshold then the

model’s prediction is correct. If 𝐿 == 𝑉 == 𝑀 , then the procedure

is unsure about the output of the model and therefore we assign

it uncertain (leaf 3). If 𝐿 < 𝑉 < 𝑀 , then there are more features

for which the precondition violation is below the threshold and

fewer features for which the violation is above. That means the

overall violation is less, leading to correct prediction (leaf 4). Finally,

if 𝑀 < 𝑉 < 𝐿, there are more precondition violations above the

threshold, and thus the model output is incorrect (leaf 2). To be

more specific regarding the design choice of the decision-tree of

data preconditions violation is that we utilized the more feature

violations and less feature violations as indicative of the model’s

correct and incorrect prediction.

Algorithm 1 Data Precondition Violation Procedure

1: procedure computeThreshold(𝑁 , 𝐷𝑡𝑒𝑠𝑡 , 𝛿 )

2: 𝛿 ′ ← 𝑤𝑝 (𝑁,𝛿 ) ⊲ Obtain data precondition given 𝑁 and postcondition 𝛿

3: 𝑓 ← dom(𝐷𝑖𝑛 ) ⊲ Set of input features, 𝐷𝑖𝑛 ∈ 𝐷𝑡𝑒𝑠𝑡

4: 𝑑 ← range(𝐷𝑖𝑛 ) ⊲ Set of data points, 𝑣 ∈ 𝐷𝑖𝑛

5: 𝑤𝑝𝑣𝐷𝑖𝑐𝑡 ← ∅
6: 𝑣 ← collectFeatureWiseViolations(𝑑, 𝑓 , 𝛿 ′ )
7: for each 𝑖 ∈ | 𝑓 | do
8: 𝑤𝑝𝑣𝐷𝑖𝑐𝑡 ← 𝑤𝑝𝑣𝐷𝑖𝑐𝑡 ∪ {⟨𝑖, 𝑣 [𝑖 ] ⟩}
9: 𝑉 ← 1

𝑛

∑𝑛=|𝑓 |
𝑛=1

(𝑣𝑤𝑝 ) |𝑣𝑤𝑝 ∈ 𝑤𝑝𝑣𝐷𝑖𝑐𝑡 ⊲ Mean violation threshold

10: return𝑉 , 𝛿 ′, 𝑓

11: procedure collectFeatureWiseViolations(𝑑 , 𝑓 , 𝛿 ′)
12: 𝑣 ← 0 ⊲ Violation count array indexed by features

13: for each 𝑡 𝜖 𝑑 do
14: 𝑣𝑤𝑝 ← 𝛿 ′ (𝑡 ) ⊲ Check precondition violation for input

15: for each 𝑖 ∈ | 𝑓 | do ⊲ Collect precondition violation for each feature

16: if 𝑣𝑤𝑝 [𝑖 ] then
17: 𝑣 (𝑖 ) ← 𝑣 (𝑖 ) + 1

18: return 𝑣

19: procedure checkPrediction (𝑑 ,𝑉 , 𝛿 ′, 𝑓 )
20: 𝑀,𝐿 ← 0, 𝑤𝑝𝑤𝑎𝑟𝑛 ← ∅
21: 𝑣 ← collectFeatureWiseViolations(𝑑, 𝑓 , 𝛿 ′ )
22: for each 𝑖 ∈ | 𝑓 | do
23: if (𝑣 [𝑖 ] ≤ 𝑉 ) then ⊲ Compare violation count with threshold

24: 𝑀 ← 𝑀 + 1

25: else
26: 𝐿 ← 𝐿 + 1

27: 𝑤𝑝𝑤𝑎𝑟𝑛 ← 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒 (𝑀,𝑉 , 𝐿) ⊲ Correct/incorrect/uncertain?

28: return 𝑤𝑝𝑤𝑎𝑟𝑛

Time Complexity. The procedure checkPrediction doesn’t

compute over the DNN. It uses preconditions computed by the

procedure computeThreshold that runs once per DNN after train-

ing. The time complexity of the procedure computeThreshold

is dominated by the𝑤𝑝 function, whose complexity is akin to the

back-propagation algorithm of a FCNN. The time complexity is

primarily determined by matrix multiplications, that has the com-

plexity 𝑂 (𝑛𝑙𝑜𝑔27) for Strassen’s method [18]. The time complexity

of 𝑤𝑝 is𝑂 ( |𝑁 | +𝑛𝑙𝑜𝑔27) where, |𝑁 | is the length of layers of model

and 𝑛 is the dimension of the weight matrix. The time complexity of

checkPrediction is 𝑂 ( |𝑑 |.|𝑓 |) where |𝑑 | is the size of unseen data

and |𝑓 | is the number of features. So, our approach for inferring

data precondition from a large DNN model with many layers is

scalable because of quadratic time complexity.

4 EVALUATION
This section describes the evaluation of DeepInfer . First, we discuss
the experimental setup in §4.1. Next, we describe research questions

and present the results and discussion in §4.2.

4.1 Experiment
4.1.1 Benchmark. We have gathered four canonical real-world

datasets from Kaggle competitions [41]. The train and test datasets

are converted to numerical values if those are in any other data

types during the data preprocessing stage.We have gatheredmodels
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intended for classification problems from the Kaggle and used by

prior work [9, 14, 64, 76]. In table 1, we present the total number of

features in a dataset, number of neurons, and layers of the models.

Table 1: DNN Benchmark for inferring data preconditions

Dataset # Features Model Source # Layers # Neurons
PD1 Kaggle 3 221

PD2 Kaggle 3 221

PD3 Kaggle 3 221

Pima Diabetes [61] 8

PD4 Kaggle 4 293

HP1 Kaggle 3 273

HP2 Kaggle 3 273

HP3 Kaggle 3 273

House Price [6] 10

HP4 Kaggle 4 383

BM1 [14] 4 97

BM2 [14] 4 65

BM3 [9] 3 117

BM4 [14] 5 318

BM5 [14] 4 49

BM6 [14] 4 35

BM7 [14] 4 145

BM8 [76] 7 141

BM9 Kaggle 3 627

BM10 Kaggle 3 627

BM11 Kaggle 3 627

BankCustomer [4] 28

BM12 Kaggle 4 1439

GC1 [14] 3 64

GC2 [64] 3 114

GC3 [14] 3 23

GC4 [14] 4 24

GC5 [76] 7 138

GC6 Kaggle 3 2397

GC7 Kaggle 3 2397

GC8 Kaggle 3 2397

GermanCredit [5] 22

GC9 Kaggle 4 2949

4.1.2 Prediction interval. We have adopted high-quality prediction

intervals for deep learning models for classification and regression

models from prior work [55]. Therefore, for the experimental evalu-

ation, we selected a prediction interval (≥ 0.95) as the postcondition

for determining the data precondition from a deep learning model.

4.1.3 Experimental Setup. To perform our experiments and evalu-

ation, we implemented our techniques using Python and Keras. We

have used mathematical packages (numpy, pandas) to compute the

data precondition from a Keras model and to evaluate the implied

trustworthiness of model’s prediction using inferred data precondi-

tions. We have conducted all the experiments on a machine with a

2 GHz Quad-Core Intel Core i7 and 32 GB 1867 MHz DDR3 RAM

running the macOS 11.14.

4.1.4 Evaluation Metrics. : To determine the efficiency DeepIn-
fer , we measure the Pearson Correlation Coefficient (𝑝𝑐𝑐) follow-
ing prior work [26]. We define true positive (TP), false positive

(FP), false negative (FN), and true negative (TN) following prior

work [72]. We also measure precision, recall, TPR, FPR, F-1 score

following prior work [72] from TP, FP, and FN to determine the

efficiency of our approach in predicting the correct prediction of a

DNN model.

4.2 Results
4.2.1 Research Questions. To evaluate the utility, efficiency, and

performance, we answer the following research questions:

RQ1(Utility): Do data precondition violations imply incorrect
model prediction, and data precondition satisfaction implies correct
model prediction, i.e., to trust the model?

We first obtain the preconditions on data for each feature using

the respective model and dataset to measure the utility of data

for implying the model’s prediction. Then using Algorithm 1, we

imply "Correct" or "Incorrect" or "Uncertain" prediction for unseen

data based on data precondition violation and satisfaction for each

feature. For RQ1, the model has been trained with the seen i.e.,

training data, and validated with the second portion of training data.

Following the experimental procedure [72], we have used all the

test datasets as unseen data. For evaluation purposes, we determine

the ground truth from the actual label and the model’s predicted

label and we consider "Uncertain" prediction as "Incorrect".

RQ2 (Effectiveness): How effective DeepInfer is to imply trust-
worthiness in the model’s prediction compared to the prior approach?

To determine the effectiveness of our proposed approach Deep-
Infer , we measure true positive, false positive, false negative, and

true negative as discussed in §4.1.4 . We reported the false positive

and true positive ground truth where "ActTP" denotes if the actual

label and predicted label by a model are not equal and "ActFP"

denotes if the actual label and predicted label by a model are equal.

This suggests whether the model is properly trained or not and

also explains how DeepInfer performs compared to the "ActFP" and

"ActTP". We compare our approach with SelfChecker [72] using
same 29 models and 4 datasets. We have compared our approach

against SelfChecker [72] in terms of how effective each approach

is in predicting DNN misclassifications in deployment. We have

used the open-source implementation of SelfChecker and utilized

the same hardware setup. We communicated with the authors to

ensure their tool is applicable to these models and datasets.

RQ3 (Efficiency): What is the performance of DeepInfer with
respect to time, and what is the runtime overhead using unseen data
during deployment compared to prior work?

To compute the efficiency of our proposed technique, we com-

pute the training time of all themodels.We computed the runtime of

DeepInfer and SelfChecker for all the models and all unseen datasets.

We consider the runtime measure important for determining trust

on the model’s prediction with unseen data in the deployment stage

for safety-critical issues. Considering resource constraints such as

processing data and generating prediction timely and limited com-

puting power or memory, it is crucial to ensure that models are

suitable for deployment in safety-critical scenarios to prevent acci-

dents or mitigate risks. For instance, a self-driving Uber car struck

and killed a woman in March 2018 as an investigation [3] revealed

that the model couldn’t correctly predict her path and it needed to

brake just 1.3 seconds before it struck her. Therefore, it is important

to measure the runtime of such techniques.

4.2.2 Results and Analysis. In this section, we discuss the results

and analysis for each of the research questions utilizing 4 different

real-world tabular datasets with 29 different Keras real-world mod-

els (discussed in §4.1.1) targeting binary classification problems.

RQ1 (Utility): For RQ1, we present the results of all 29 real-

world models for four different datasets in Table 2. We report the

model’s accuracy and the number of test instances. Then, we re-

ported the total number of "Correct" and "Incorrect" labels for all

the test datasets as the ground truth of the model’s prediction and

actual label. Next, we report the total number of data precondition
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Table 2: DeepInfer implying correct and incorrect model prediction for unseen data

Ground Truth DeepInferDataset Model Accuracy # Features # Unseen data # Correct # Incorrect # Violation # Satisfaction # Correct # Incorrect #Uncertain Time (sec)

PD1 77.98% 119 34 192 1032 108 43 2 0.67

PD2 65.10% 99 54 0 1224 153 0 0 0.66

PD3 65.49% 98 55 129 1095 74 79 0 0.65

Pima Diabetes

PD4 77.47%

8 153

111 42 132 1092 37 116 0 0.65

HP1 85.22% 147 145 341 2579 188 98 6 0.86

HP2 89.77% 147 145 341 2579 188 98 6 0.83

HP3 45.45% 145 147 0 2920 292 0 0 0.97

House Price

HP4 87.50%

10 292

147 145 188 2732 107 184 1 0.87

BM1 81.10% 1072 1044 18814 40434 616 1500 0 3.42

BM2 82.11% 1066 1050 14855 44393 1492 624 0 3.48

BM3 80.19% 1054 1062 7370 51878 734 1382 0 3.78

BM4 79.10% 1067 1049 17486 41762 1061 1055 0 3.78

BM5 82.10% 1052 1064 7703 51545 807 1306 3 3.39

BM6 82.00% 1059 1057 17868 41380 1099 1017 0 3.48

BM7 81.00% 1074 1042 12762 46486 1375 741 0 3.40

BM8 82.00% 1075 1041 15213 44035 1089 1027 0 3.90

BM9 81.30% 1058 1058 21395 37853 1392 724 0 3.32

BM10 81.90% 1092 1024 9931 49317 820 1296 0 3.21

BM11 83.60% 1092 1024 27241 32007 945 1171 0 3.10

BankCustomer

BM12 80.70%

22 2116

1075 1041 20051 39197 1164 952 0 3.23

GC1 99.00% 198 2 1044 3356 200 0 0 1.94

GC2 99.00% 198 2 959 3441 188 12 0 2.18

GC3 99.00% 198 2 1569 2831 73 127 0 2.03

GC4 99.00% 198 2 2401 1999 200 0 0 2.01

GC5 99.00% 198 2 1193 3207 195 5 0 1.93

GC6 99.00% 198 2 1627 2773 67 133 0 1.99

GC7 99.00% 198 2 1074 3326 195 5 0 1.96

GC8 99.00% 198 2 1360 3040 143 57 0 2.07

GermanCredit

GC9 99.00%

28 200

198 2 1667 2733 144 56 0 1.93

violations and satisfaction. Then, we report "Correct" and "Incor-

rect" implications in "#Correct" and "#Incorrect", "#Unseen" columns

using our proposed technique DeepInfer . We also measure the total

runtime and report in the "Time" column in Table 2. From the results,

we observe that for the model with high accuracy, the total number

of "Correct" and "Incorrect" implied using DeepInfer is comparable

to the ground truth. For example, for the German Credit dataset

and GC1 and GC4 model with accuracy 99.00%, DeepInfer obtained
200 "#Correct" and 0 "#Incorrect" where Ground Truth contains in

total 198 "#Correct" and 2 "#Incorrect" labels. The reason behind

incorrectly implying a number of incorrect and correct predictions

in models like BM11 is that the model itself was not trained well,

as low accuracy suggests. Based on our findings, we conclude that

the model with high accuracy implies a better comparable number

of "Correct" and "Incorrect" predictions for all the unseen datasets.

Despite several models exhibiting high accuracy, we observed a lack

of correlation between the number of violations and the accuracy

of these models. This finding suggests the presence of underlying

issues that warrant further investigation. We investigated further

to determine the correlation between the number of violations

in data preconditions and the frequency of "Correct" and "Incor-

rect" predictions based on the ground truth. Using the Pearson

Correlation Coefficient (pcc) following prior work [26], we found a

positive correlation of 0.88 between data precondition violations

and incorrect model predictions, indicating that as the number of

violations increases, the likelihood of incorrect predictions by the

model also rises. This highlights the importance of data precondi-

tions in determining the trustworthiness of the model’s predictions.

Additionally, we saw a strong correlation of 0.98 between precondi-

tion satisfaction and correct model predictions, indicating that the

model tends to make accurate predictions when data preconditions

are satisfied. To assess the statistical significance of these correla-

tions, we conducted a t-test to compute p-values following prior

work [26], yielding p-values of 0.0001 for the correlation between

data precondition violation and incorrect prediction and 0.0003 for

the correlation between data precondition satisfaction and correct

prediction. Based on the commonly used significance level of 0.05,

these p-values indicate that the correlations are statistically signifi-

cant [57]. A p-value below 0.05 suggests strong evidence against the

null hypothesis, supporting the presence of a significant correlation

between the variables.

In summary, DeepInfer implies that data precondition violations
and Incorrect model prediction are highly correlated (0.88) between
prediction ground truth and violation. Also, the precondition satisfac-
tion and correct model prediction are strongly correlated (0.98).

RQ2 (Effectiveness): In Table 3, we highlighted the best values

with high model accuracy from each set of the dataset. We also

observe how close the values are obtained from DeepInfer com-

pared to the ground truth FP and TP. Some of the models, e.g.,

BM6, BM7, BM9, BM10, BM11 in the Bank Customer dataset throw

numpy.linalg.LinAlgError:Singular matrix error during KDE gen-

eration steps using SelfChecker tool. We communicated with the

authors of SelfChecker , and they explained that the models they

used for evaluation contained only relu,softmax having more

than 8 layers for image datasets. Furthermore, we obtain 0 FP and

0 TP and the same number of FN and TN for many models un-

der experiments e.g., PD2, PD3, HP2, Hp3, BM4, BM5, BM8, GC5,

GC6, GC7, GC8, and GC9 etc. We have investigated further and

found that SelfChecker approach does not handle a model if the last

layer contains sigmoid, relu, tanh activation functions with

single output and the threshold of KDE values performs well for

softmax activation functions with multiple outputs to determine

true misbehavior of the model.

Next, we compute the precision, recall, and accuracy for all the

models and present the results in Table 3. We computed average

precision, recall, and accuracy for each dataset and obtained that
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Table 3: Efficiency of DeepInfer for implying model’s prediction

Ground Truth SelfChecker DeepInferDataset Model Test Acc. ActFP ActTP FP TP FN TN Precision Recall Accuracy TPR FPR F-1 FP TP FN TN Precision Recall Accuracy TPR FPR F-1
PD1 77.98% 34 119 46 90 5 12 0.66 0.95 0.67 0.95 0.79 0.78 33 118 1 1 0.78 0.99 0.78 0.99 0.97 0.87

PD2 65.10% 54 99 0 0 59 94 - 0.00 0.61 0.00 0.00 0.00 54 99 0 0 0.65 1.00 0.65 1.00 1.00 0.79

PD3 65.49% 55 98 0 0 59 94 - 0.00 0.61 0.00 0.00 0.00 55 98 0 0 0.64 1.00 0.64 1.00 1.00 0.78

Pima Diabetes

PD4 77.47% 42 111 60 77 7 9 0.56 0.92 0.56 0.92 0.87 0.70 42 111 0 0 0.73 1.00 0.73 1.00 1.00 0.84

HP1 85.22% 145 147 59 114 13 105 0.66 0.90 0.75 0.90 0.36 0.76 138 146 1 7 0.51 0.99 0.52 0.99 0.95 0.68

HP2 89.77% 145 147 0 0 139 153 - 0.00 0.52 0.00 0.00 0.00 127 145 2 18 0.53 0.99 0.56 0.99 0.88 0.69

HP3 45.45% 147 145 0 0 139 153 - 0.00 0.52 0.00 0.00 0.00 147 145 0 0 0.50 1.00 0.50 1.00 1.00 0.66

House Price

HP4 87.50% 145 147 51 168 15 57 0.77 0.92 0.77 0.92 0.47 0.84 143 146 1 2 0.51 0.99 0.51 0.99 0.99 0.67

BM1 81.10% 1044 1072 0 0 1024 1092 - 0.00 0.52 0.00 0.00 0.00 984 987 85 60 0.50 0.92 0.49 0.92 0.94 0.65

BM2 82.11% 1050 1056 0 0 1024 1092 - 0.00 0.52 0.00 0.00 0.00 869 866 200 181 0.50 0.81 0.49 0.81 0.83 0.62

BM3 80.19% 1062 1054 387 798 332 599 0.67 0.71 0.66 0.71 0.39 0.69 474 559 533 550 0.54 0.51 0.52 0.51 0.46 0.53

BM4 79.10% 1049 1067 0 0 1024 1092 - 0.00 0.52 0.00 0.00 0.00 916 906 161 133 0.50 0.85 0.49 0.85 0.87 0.63

BM5 82.10% 1064 1052 0 0 1024 1092 - 0.00 0.52 0.00 0.00 0.00 1001 970 82 63 0.49 0.92 0.49 0.92 0.94 0.64

BM6 82.00% 1057 1059 - - - - - - - - - - 1004 977 82 53 0.49 0.92 0.49 0.92 0.95 0.64

BM7 81.00% 1042 1074 - - - - - - - - - - 987 984 90 55 0.50 0.92 0.49 0.92 0.95 0.65

BM8 82.00% 1041 1075 0 0 1024 1092 - - - - - - 985 986 89 56 0.50 0.92 0.49 0.92 0.95 0.65

BM9 81.30% 1058 1058 - - - - - - - - - - 923 888 170 135 0.49 0.84 0.48 0.84 0.87 0.62

BM10 81.90% 1024 1092 - - - - - - - - - - 982 989 103 42 0.50 0.91 0.49 0.91 0.96 0.65

BM11 83.60% 1024 1092 - - - - - - - - - - 1062 1054 0 0 0.50 1.00 0.50 1.00 1.00 0.66

BankCustomer

BM12 80.70% 1041 1075 0 0 1024 1092 - 0.00 0.52 0.00 0.00 0.00 860 866 209 181 0.50 0.81 0.49 0.81 0.83 0.62

GC1 99.00% 2 198 37 91 1 71 0.71 0.99 0.81 0.99 0.34 0.83 2 198 0 0 0.99 1.00 0.99 1.00 1.00 0.99

GC2 99.00% 2 198 0 74 18 108 1.00 0.80 0.91 0.80 0.00 0.89 2 186 12 0 0.99 0.94 0.93 0.94 1.00 0.96

GC3 99.00% 2 198 42 96 1 61 0.70 0.99 0.79 0.99 0.41 0.82 1 72 126 1 0.99 0.36 0.37 0.36 0.50 0.53

GC4 99.00% 2 198 0 2 0 198 1.00 1.00 1.00 1.00 0.00 1.00 2 198 0 0 0.99 1.00 0.99 1.00 1.00 0.99

GC5 99.00% 2 198 0 0 2 198 - 0.00 0.99 0.00 0.00 0.00 2 193 5 0 0.99 0.97 0.97 0.97 1.00 0.98

GC6 99.00% 2 198 0 0 2 198 - 0.00 0.99 0.00 0.00 0.00 1 66 132 1 0.99 0.33 0.34 0.33 0.50 0.50

GC7 99.00% 2 198 0 0 2 198 - 0.00 0.99 0.00 0.00 0.00 2 193 5 0 0.99 0.97 0.97 0.97 1.00 0.98

GC8 99.00% 2 198 0 0 2 198 - 0.00 0.99 0.00 0.00 0.00 1 142 56 1 0.99 0.72 0.72 0.72 0.50 0.83

GermanCredit

GC9 99.00% 2 198 0 0 2 198 - 0.00 0.99 0.00 0.00 0.00 1 143 55 1 0.99 0.72 0.72 0.72 0.50 0.84

* Here, ‘-’ in "FP", "TP", "FN", "TN" column indicates where SelfChecker does not provide any output, therefore we can not get any values. For those cases, we get divided by zero

error in the "Precision", "Recall", "Accuracy", "TPR", "FPR", "F-1" columns.
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Figure 7: Runtime comparison of DeepInfer and SelfChecker
for all models across different datasets

for the high-accuracy models, the average precision, recall, and

accuracy are 0.76, 0.98, and 0.76, respectively. Higher precision

means that DeepInfer implies accurate results than inaccurate ones,

and high recall means that DeepInfer returns most of the accurate

results. The average precision and accuracy are low for models

with performance-related underlying issues, which calls for further

research. Furthermore, we also compared against the SelfChecker
and found that SelfChecker produced identical results in terms of TP,

FP, FN, and TN for certain models on a specific dataset. However,

the assumption of using density functions and selected layers in

the training module might not work properly. Also, measuring

density function using training and representative test datasets

might not be independent of model architectures, and it might not

work well on different model structures which learned the training

data differently.

In summary, DeepInfer effectively implies the correct and incorrect
prediction of higher accuracy models with recall (0.98) and F-1 score
(0.84), compared to SelfChecker with recall (0.59) and F-1 score (0.52).

RQ3 (Efficiency): We computed the runtime overhead of Deep-
Infer and SelfChecker with respect to original training time for all
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Figure 8: Runtime overhead comparison of DeepInfer and
SelfChecker for all unseen data

models in each kind of dataset which are unseen and plotted in

Fig. 7. From the results, we observed that the average runtime of

DeepInfer is 0.66 sec, 0.88 sec, 3.46 sec, 2.00 sec compared to av-

erage training time of 8.88 sec, 10.15 sec, 15.67 sec, and 5.74 sec

in Pima Diabetes, House Price, Bank Customer, German Credit

dataset respectively. On the other hand, the average runtime of

SelfChecker is 3.65, 3.66, 5.73, and 3.61 sec using all the models of

Pima Diabetes, House Price, Bank Customer, and German Credit

dataset, respectively. We observe that the runtime is proportional

to the number of features, which is consistent with our theoretical

complexity results. Furthermore, we computed the runtime over-

head of DeepInfer and SelfChecker for all unseen datasets over the

training time for all models in each kind of dataset and plotted it

in Fig. 8. We have observed that, the average runtime overhead

of SelfChecker and DeepInfer is 0.41 and 0.07, 0.36 and 0.09, 0.37

and 0.22, 0.62 and 0.35 respectively, for Pima Diabetes, House Price,

Bank Customer, German Credit dataset. During the deployment

phase, we found that DeepInfer outperforms SelfChecker in terms

of speed, being approximately 3.27 times faster. Additionally, we

calculated the average runtime overhead for all unseen datasets and
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models, which is 0.22 seconds. This runtime overhead is relatively

minimal when compared to the original training time. An advan-

tage of our proposed approach is that we eliminate the need to

repeatedly retrain the model for overhead computation. In contrast,

SelfChecker requires extensive computations for all training and

test datasets, along with different layer combinations, in order to

calculate statistical measures like KDE values. Consequently, this

process incurs a substantial runtime overhead.

In summary, the average runtime overhead of DeepInfer is fairly
minimal (0.22 sec for all the unseen data). The runtime overhead of
DeepInfer is 3.27 times faster than SelfChecker during deployment.

4.2.3 Limitation. In this study, we conducted experiments to eval-

uate our proposed technique for inferring preconditions from real-

valued features. We focused on these features because they are

easier for humans to understand, and our datasets only included

numerical values. While our current algorithms and derived 𝑤𝑝

rules are specific to certain layer computations and activation func-

tions of fully connected layers, we believe that the fundamental idea

of inferring data preconditions from deep neural network (DNN)

models after training and using them for trustworthy prediction in

deployment can be applied to other types of DNNs. For example,

in popular models that utilize convolution and attention layers,

we can extend the concept of computing data preconditions by

extracting features from raw input data, such as images or text, and

inferring preconditions from the classifier similarly.

4.2.4 Discussion on the state-of-the-art (SOTA) metrics and ap-
proaches. Some classifiers produce a confidence measure, such as

confidence score and class prediction, typically by applying a soft-

max function to the raw numeric prediction values. However, such

confidence measures need to be better-calibrated [40]; therefore,

they cannot be reliably used as a measure of trust in prediction [26].

Surprise coverage relies on the concept of surprise adequacy [45, 70],

which measures the dissimilarity between a test and the training

data set. Surprise adequacy has a high computational cost. Surprise

adequacy aims to quantitatively measure how surprising each new

test input is when compared to the training data. It is used to de-

tect out-of-bound with respect to the distribution of the training

data, and the input is also more likely to cause unexpected model

behavior. However, given an input, it captures the activation trace,

the collection of neuron outputs produced by the model under test,

which is expensive even for a simple model. Moreover, it does not

indicate whether a particular prediction of the model is correct or

incorrect with an unseen data point. DeepGini score [27] mainly

provides a way to calculate a test prioritization to improve the

quality of DNN. It determines a score by using only on the test

input activations of the DNN’s softmax output layer, limiting the ap-

proach’s applicability to only classification problems with softmax

activation function in the last layer. Moreover, it does not provide a

mechanism to imply whether a particular prediction of the model

is correct or incorrect during deployment. Some classifiers provide

a level of confidence [55] or certainty when making predictions

about which class something belongs to. They usually calculate this

confidence using the softmax function. However, these confidence

scores are often not very accurate and can’t be trusted to tell us how

confident the classifier is about its prediction and imply whether

it is correct or incorrect prediction. None of these SOTA metrics

learns input constraints from the trained model and utilizes that

during the deployment to imply trust in the model’s prediction

using unseen data. For the evaluation with publicly available fully

connected DNNs and datasets with numerical values, the SOTA

techniques SELFORACLE [63], DISSECTOR [68], ConfidNet [20] are
not applicable (details in §5).

5 RELATEDWORK
We are inspired by the vast body of seminal work on weakest

precondition calculus [16, 21, 23, 24, 33, 34, 56, 75].

Trusted Machine Learning. The closest idea related to trusted

machine learning in the database and machine learning community

is Conformance Constraint Discovery (CCSynth) [26] to quantify

the degree of non-conformance in a dataset, allowing for the effec-

tive characterization of whether or not inference over a given tuple

is reliable. They demonstrated the application for detecting unsafe

tuples in trustworthy machine learning. However, their approach

is model-independent and will result in the same constraints for

different models with the same dataset. Our approach resolves this

issue and works as a model-specific approach to identify how to

imply trust in different DL models’ predictions using a dataset with

unseen data during deployment. In the software engineering com-

munity, SELFORACLE [63] has proposed an approach that monitors

the performance of the DNN at runtime to predict unsupported

driving scenarios by computing a confidence estimation. In contrast,

our approach produces preconditions from the model using offline

computation. SELFORACLE also focuses on image-based models

and temporally ordered inputs, such as video frames, and does not

apply to data with numerical attributes. Another technique, Self-
Checker [72], assesses model consistency during deployment and

assumes that the density functions and layers chosen by the train-

ing module can be applicable to new test instances. However, this

assumption is contingent upon whether the training and validation

datasets accurately represent the characteristics of test instances.

SelfChecker operates through a layer-based approach, which neces-

sitates white-box access and may have limited capabilities in detect-

ing issues in shallow DNNs with a few layers. SelfChecker++ [71]

has been designed to target both unintended abnormal test data and

intended adversarial samples. InputReflector [73], introduced a run-

time approach to identify and fix failure-inducing inputs in DL sys-

tems inspired by traditional input-debugging techniques.Wang et al.

introduced DISSECTOR [68] to identify inputs that deviate from the

norm, by training several sub-models on top of a pre-trained deep

learning model. However, generating these sub-models is manual

and time-consuming [72]. Further, DISSECTOR is only applicable to

image-based models such as ImageNet [8]. Researchers in the deep

learning community have developed learning-based models to mea-

sure a model’s confidence during deployment [20, 22, 40, 47, 48, 54].

However, these models can be untrustworthy and suffer from over-

fitting. Corbière et al. [20] proposed ConfidNet, a model built on

top of pre-trained models that uses true class probability for failure

prediction. However, overfitting can occur due to being trained on

a small number of incorrect predictions in training dataset. Confid-
Net technique has ConvNet architecture in its implementation and

it would not be applicable for DNNs with only dense layers and

datasets with numerical values. In contrast, our approach infers the
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model’s assumption of the data after training and utilizes that to

imply the trustworthiness of model’s prediction.

Neural Network Abstraction. There are a number of research

ideas that focuses on abstracting neural network as DNN verifi-

cation is NP-hard due to the number of nodes in DNN slowing

the algorithms exponentially [62]. Singh et al. [60] proposes an
abstract domain based on floating-point polyhedra and intervals

along with abstract transformers for neural network functions for

certifying deep neural networks. Gehr et al. [29] introduces the
idea of abstract transformers that capture the behavior of com-

mon neural network layers to certify convolutional and large fully

connected networks. There are other abstractions of neural net-

works, e.g., interval universal approximation [69], neural interval

abstraction, neural zonotope abstraction, and neural polyhedron

abstraction [11] None of these abstractions of the neural network

works for 𝑤𝑝 reasoning with neural network functions as code

statements and expected output as a postcondition which DeepInfer
demonstrates.

Neural Network Specification and Verification. The related
ideas in the specification of DNNs [32, 58, 66]. [58] discusses formal-

izing and reasoning about properties of DNN; however, [58] does

not propose any precondition inference using model architecture

and post condition. [32] proposed a technique to compute input and

layer properties from a feed-forward network and utilize formal

contracts for the network. The application of inferred properties

has been demonstrated to explain predictions, guarantee robust-

ness, simplify proofs, and network distillation. [66] introduced a

constraint-based technique for repairing neural network classifiers

by inferring correctness specifications. [25] proposes a technique

to apply formal methods to ML components e.g., perception sys-

tems, and analyze system behavior in an uncertain environment.

However, [25, 32, 66] did not consider abstracting neural networks

and introduce a technique for computing data preconditions from

trained DNN models and utilizing those inferred preconditions for

implying trust in the model’s prediction during the deployment

stage. There is a recent study [59] on reducing DNN properties

to enable falsification with adversarial attacks using a correctness

problem comprised of a DNN and robustness problems property.

In a recent study [19], a rule induction-based technique has been

proposed to facilitate the debugging process of trained statistical

models only that generates an interpretable characterization of the

data on which the predictive machine learning model performs

poorly. In another study [30], a bias-guided misprediction expla-

nation technique has been proposed that generates explanation

rules with higher misprediction explanation and also improves the

machine learning model’s robustness utilizing a mispredicted area

upweight sampling algorithm. Recently, an empirical study [44]

characterizes different kinds of ML contracts, which may help ML

API developers to write contracts. Another research study [10] pro-

posed a technique for checking contracts for deep learning libraries

by specifying DL APIs with preconditions and postconditions. None

of these recent papers along with the work [67, 74] related to neu-

ral network specification and verification utilizes a DNN model’s

model architecture and expected output to infer assumptions on

data that our approach emphasizes. We demonstrate the utility of in-

ferred data preconditions to imply the trustworthiness in predicting

unseen data during deployment.

6 THREATS TO VALIDITY
In the context of inferring preconditions from a deep learningmodel,

internal threats to validity include an incorrect model structure

where the DNN model may not fully capture the underlying sys-

tem’s complexity or dynamics, leading to inaccurate precondition

inference. External threats to validity include lack of representative-

ness in the unseen data where the data used to evaluate the model

may not accurately reflect the real-world scenario, leading to the

inaccurate implication of the model’s prediction by our approach.

To mitigate these threats, we have collected a large and diverse

dataset that accurately represents the real-world scenario. This can

help ensure the model is exposed to various variations and can

generalize well to unseen data. Also, we have used more complex

models with more Dense layers, which have the ability to learn

complex patterns and features in the real-world dataset.

7 CONCLUSION AND FUTUREWORK
We propose a novel technique, DeepInfer , for inferring data precon-
ditions from a DNN. DeepInfer uses an abstract representation of

the DNN model and derived 𝑤𝑝 rules for different types of DNN

functions, by solving challenges of non-linear computation with

different dimensions of matrices, to infer preconditions for the

model. A DNN can be deployed with these preconditions, and their

violation can imply trust in the model’s predictions during deploy-

ment. We have evaluated DeepInfer on 29 models using 4 real-world

datasets and found substantial results compared to prior work re-

garding effectiveness and efficiency. We find that data precondition

violations and incorrect model prediction are highly correlated.

DeepInfer effectively implies the correct and incorrect prediction of

higher accuracy models with recall (0.98) and F-1 score (0.84), which

is a significant improvement compared to prior work. DeepInfer is
3.29 times faster than the state-of-the-art technique. In future, our

approach can be extended to automatically validate the temporal

properties of DNN models. We can also explore the use of predicate

abstraction and symbolic reasoning for DNN models to further

explain the black-box DNN models. Recent studies on decomposing

DNN into modules [36, 52, 53], we intend to infer input precondi-

tions of each DNN module for its expected and reliable behavior.

We want to extend our data precondition inference technique to

mitigate model’s unfairness [12, 13, 31] in different stages of the

ML pipeline [15]. We can enhance techniques [50, 51] by inferring

preconditions from mined models, considering improved accuracy

for trustworthy prediction.

8 DATA AVAILABILITY
The replication packages and results are available in this reposi-

tory [7] that can be leveraged by software engineering for machine

learning research in the future.

ACKNOWLEDGMENTS
We acknowledge the reviewers for their insightful comments. This

material is based upon work supported by the National Science

Foundation under Grant CCF-15-18897, CNS-15-13263, CNS-21-

20448, CCF-19-34884, and CCF-22-23812. All opinions are of the

authors and do not reflect the view of sponsors.



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Shibbir Ahmed, Hongyang Gao, and Hridesh Rajan

REFERENCES
[1] 2018. Uber’s fatal self-driving crash reportedly caused by software. https:

//www.cnet.com/roadshow/news/uber-reportedly-finds-false-positive-self-

driving-car-accident/. [Online; accessed Mar-2023].

[2] 2019. AI in Medicine Is Overhyped. https://www.scientificamerican.com/article

/ai-in-medicine-is-overhyped/. [Online; accessed Mar-2023].

[3] 2019. Self-driving Uber car that hit and killed woman did not recognize that

pedestrians jaywalk. https://www.nbcnews.com/tech/tech-news/self-driving-

uber-car-hit-killed-woman-did-not-recognize-n1079281. [Online; accessed

Mar-2023].

[4] 2022. Bank Customer dataset. https://www.kaggle.com/datasets/kidoen/bank-

customers-data. [Online; accessed Aug-2022].

[5] 2022. German Credit Risk Classification dataset. https://www.kaggle.com/c

ode/twunderbar/german-credit-risk-classification-with-keras/data. [Online;

accessed Aug-2022].

[6] 2022. House Price Prediction dataset. here. [Online; accessed Aug-2022].

[7] 2023. Repository of DeepInfer. https://github.com/shibbirtanvin/DeepInfer.

[Online; accessed September-2023].

[8] 2023. Repository of DISSECTOR. https://github.com/ParagonLight/dissector.

[Online; accessed July-2023].

[9] Aniya Aggarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan Saha.

2019. Black Box Fairness Testing of Machine Learning Models. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)

(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,

625–635. https://doi.org/10.1145/3338906.3338937

[10] Shibbir Ahmed, Sayem Mohammad Imtiaz, Samantha Syeda Khairunnesa,

Breno Dantas Cruz, and Hridesh Rajan. 2023. Design by Contract for Deep

Learning APIs. In ESEC/FSE’2023: The 31st ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering
(San Francisco, California). https://doi.org/10.1145/3611643.3616247

[11] Aws Albarghouthi. 2021. Introduction to Neural Network Verification. Found.
Trends Program. Lang. 7, 1–2 (dec 2021), 1–157. https://doi.org/10.1561/250000

0051

[12] Sumon Biswas and Hridesh Rajan. 2020. Do the Machine Learning Models on a

Crowd Sourced Platform Exhibit Bias? An Empirical Study on Model Fairness.

In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Virtual

Event, USA) (ESEC/FSE 2020). Association for Computing Machinery, New York,

NY, USA, 642–653. https://doi.org/10.1145/3368089.3409704

[13] Sumon Biswas and Hridesh Rajan. 2021. Fair Preprocessing: Towards Understand-

ing Compositional Fairness of Data Transformers in Machine Learning Pipeline.

In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,

Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,

USA, 981–993. https://doi.org/10.1145/3468264.3468536

[14] Sumon Biswas and Hridesh Rajan. 2023. Fairify: Fairness Verification of Neu-

ral Networks. In Proceedings of the 45th International Conference on Software
Engineering (Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, 1546–1558.

https://doi.org/10.1109/ICSE48619.2023.00134

[15] Sumon Biswas, Mohammad Wardat, and Hridesh Rajan. 2022. The Art and

Practice of Data Science Pipelines: A Comprehensive Study of Data Science

Pipelines in Theory, in-the-Small, and in-the-Large. In Proceedings of the 44th
International Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 2091–2103.

https://doi.org/10.1145/3510003.3510057

[16] Marcello M Bonsangue and Joost N Kok. 1994. The weakest precondition calculus:

Recursion and duality. Formal Aspects of Computing 6, 1 (1994), 788–800.

[17] Leo Breiman. 2001. Statistical modeling: The two cultures (with comments and a

rejoinder by the author). Statistical science 16, 3 (2001), 199–231.
[18] Murat Cenk and MAnwar Hasan. 2017. On the arithmetic complexity of Strassen-

like matrix multiplications. Journal of Symbolic Computation 80 (2017), 484–501.

[19] Jürgen Cito, Isil Dillig, Seohyun Kim, Vijayaraghavan Murali, and Satish Chan-

dra. 2021. Explaining Mispredictions of Machine Learning Models Using Rule

Induction. In Proceedings of the 29th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering
(Athens, Greece) (ESEC/FSE 2021). Association for Computing Machinery, New

York, NY, USA, 716–727. https://doi.org/10.1145/3468264.3468614

[20] Charles Corbière, Nicolas THOME, Avner Bar-Hen, Matthieu Cord, and Patrick

Pérez. 2019. Addressing Failure Prediction by Learning Model Confidence. In

Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran

Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2019/file/757f

843a169cc678064d9530d12a1881-Paper.pdf

[21] Frank S de Boer. 1999. A wp-calculus for OO. In International Conference on
Foundations of Software Science and Computation Structure. Springer, 135–140.

[22] Terrance DeVries and Graham W Taylor. 2018. Learning confidence for out-

of-distribution detection in neural networks. arXiv preprint arXiv:1802.04865

(2018).

[23] Ellie D’hondt and Prakash Panangaden. 2006. Quantum weakest preconditions.

Mathematical Structures in Computer Science 16, 3 (2006), 429–451.
[24] Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal

Derivation of Programs. Commun. ACM 18, 8 (aug 1975), 453–457. https:

//doi.org/10.1145/360933.360975

[25] Tommaso Dreossi, Daniel J Fremont, Shromona Ghosh, Edward Kim, Hadi Ra-

vanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A Seshia. 2019. Verifai: A

toolkit for the formal design and analysis of artificial intelligence-based systems.

In International Conference on Computer Aided Verification. Springer, 432–442.
[26] Anna Fariha, Ashish Tiwari, Arjun Radhakrishna, Sumit Gulwani, and Alexandra

Meliou. 2021. Conformance Constraint Discovery: Measuring Trust in Data-

Driven Systems. In Proceedings of the 2021 International Conference on Manage-
ment of Data (Virtual Event, China) (SIGMOD ’21). Association for ComputingMa-

chinery, New York, NY, USA, 499–512. https://doi.org/10.1145/3448016.3452795

[27] Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu

Chen. 2020. Deepgini: prioritizing massive tests to enhance the robustness of

deep neural networks. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 177–188.

[28] Sainyam Galhotra, Anna Fariha, Raoni Lourenço, Juliana Freire, Alexandra Me-

liou, and Divesh Srivastava. 2022. DataPrism: Exposing Disconnect between Data

and Systems. In Proceedings of the 2022 International Conference on Management
of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing Ma-

chinery, New York, NY, USA, 217–231. https://doi.org/10.1145/3514221.3517864

[29] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat

Chaudhuri, and Martin Vechev. 2018. AI2: Safety and Robustness Certification

of Neural Networks with Abstract Interpretation. In 2018 IEEE Symposium on
Security and Privacy (SP). 3–18. https://doi.org/10.1109/SP.2018.00058

[30] Jiri Gesi, Xinyun Shen, Yunfan Geng, Qihong Chen, and Iftekhar Ahmed. 2023.

Leveraging Feature Bias for Scalable Misprediction Explanation of Machine

Learning Models. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). 1559–1570. https://doi.org/10.1109/ICSE48619.2023.00135

[31] Usman Gohar, Sumon Biswas, and Hridesh Rajan. 2023. Towards Understanding

Fairness and Its Composition in Ensemble Machine Learning. In Proceedings of
the 45th International Conference on Software Engineering (Melbourne, Victoria,

Australia) (ICSE ’23). IEEE Press, 1533–1545. https://doi.org/10.1109/ICSE48619.

2023.00133

[32] Divya Gopinath, Hayes Converse, Corina Pasareanu, and Ankur Taly. 2019.

Property Inference for Deep Neural Networks. In 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). 797–809. https:

//doi.org/10.1109/ASE.2019.00079

[33] Charles Antony Richard Hoare. 1969. An axiomatic basis for computer program-

ming. Commun. ACM 12, 10 (1969), 576–580.

[34] Charles Antony Richard Hoare and Jifeng He. 1987. The weakest prespecification.

Inform. Process. Lett. 24, 2 (1987), 127–132.
[35] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety verifi-

cation of deep neural networks. In Computer Aided Verification: 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I
30. Springer, 3–29.

[36] Sayem Mohammad Imtiaz, Fraol Batole, Astha Singh, Rangeet Pan, Breno Dantas

Cruz, and Hridesh Rajan. 2023. Decomposing a Recurrent Neural Network

into Modules for Enabling Reusability and Replacement. In 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). 1020–1032. https:

//doi.org/10.1109/ICSE48619.2023.00093

[37] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A

Comprehensive Study on Deep Learning Bug Characteristics. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)

(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,

510–520. https://doi.org/10.1145/3338906.3338955

[38] Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. 2020. Repair-

ing Deep Neural Networks: Fix Patterns and Challenges. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South

Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA,

1135–1146. https://doi.org/10.1145/3377811.3380378

[39] William H Jefferys. 1980. On the method of least-squares. The Astronomical
Journal 85 (1980), 177.

[40] Heinrich Jiang, Been Kim, Melody Y. Guan, and Maya Gupta. 2018. To Trust

or Not to Trust a Classifier. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems (Montréal, Canada) (NIPS’18). Curran
Associates Inc., Red Hook, NY, USA, 5546–5557.

[41] Kaggle. 2010. The world’s largest data science community with powerful tools

and resources to help you achieve your data science goals. www.kaggle.com.

[42] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.

2017. Reluplex: An efficient SMT solver for verifying deep neural networks. In

Computer Aided Verification: 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part I 30. Springer, 97–117.



Inferring Data Preconditions from Deep Learning Models for Trustworthy Prediction in Deployment ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[43] Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,

Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, et al.

2019. The marabou framework for verification and analysis of deep neural

networks. In Computer Aided Verification: 31st International Conference, CAV 2019,
New York City, NY, USA, July 15-18, 2019, Proceedings, Part I 31. Springer, 443–452.

[44] Samantha Syeda Khairunnesa, Shibbir Ahmed, Sayem Mohammad Imtiaz,

Hridesh Rajan, and Gary T. Leavens. 2023. What Kinds of Contracts Do ML

APIs Need? Empirical Software Engineering 1, 1 (March 2023).

[45] Jinhan Kim, Robert Feldt, and Shin Yoo. 2023. Evaluating Surprise Adequacy for

Deep Learning System Testing. ACM Trans. Softw. Eng. Methodol. 32, 2, Article
42 (mar 2023), 29 pages. https://doi.org/10.1145/3546947

[46] Max Kuhn, Kjell Johnson, et al. 2013. Applied predictive modeling. Vol. 26.
Springer.

[47] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Sim-

ple and Scalable Predictive Uncertainty Estimation Using Deep Ensembles. In

Proceedings of the 31st International Conference on Neural Information Processing
Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red

Hook, NY, USA, 6405–6416.

[48] Yan Luo, Yongkang Wong, Mohan S Kankanhalli, and Qi Zhao. 2021. Learning to

Predict Trustworthiness with Steep Slope Loss. In Advances in Neural Information
Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and

J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates, Inc., 21533–21544. https:

//proceedings.neurips.cc/paper_files/paper/2021/file/b432f34c5a997c8e7c806a

895ecc5e25-Paper.pdf

[49] DenisMazzucato and Caterina Urban. 2021. Reduced products of abstract domains

for fairness certification of neural networks. In Static Analysis: 28th International
Symposium, SAS 2021, Chicago, IL, USA, October 17–19, 2021, Proceedings 28.
Springer, 308–322.

[50] Giang Nguyen, Sumon Biswas, and Hridesh Rajan. 2023. Fix Fairness, Don’t Ruin

Accuracy: Performance Aware Fairness Repair using AutoML. In ESEC/FSE’2023:
The 31st ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (San Francisco, California).

[51] Giang Nguyen, Md Johirul Islam, Rangeet Pan, and Hridesh Rajan. 2022. Manas:

Mining Software Repositories to Assist AutoML. In Proceedings of the 44th In-
ternational Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 1368–1380.

https://doi.org/10.1145/3510003.3510052

[52] Rangeet Pan and Hridesh Rajan. 2020. On Decomposing a Deep Neural Network

into Modules. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Virtual Event, USA) (ESEC/FSE 2020). Association for Computing Machinery,

New York, NY, USA, 889–900. https://doi.org/10.1145/3368089.3409668

[53] Rangeet Pan and Hridesh Rajan. 2022. Decomposing Convolutional Neural

Networks into Reusable and Replaceable Modules. In Proceedings of the 44th
International Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 524–535. https:

//doi.org/10.1145/3510003.3510051

[54] Nicolas Papernot and Patrick McDaniel. 2018. Deep k-nearest neighbors: Towards

confident, interpretable and robust deep learning. arXiv preprint arXiv:1803.04765
(2018).

[55] Tim Pearce, Alexandra Brintrup, Mohamed Zaki, and Andy Neely. 2018. High-

Quality Prediction Intervals for Deep Learning: A Distribution-Free, Ensembled

Approach. In Proceedings of the 35th International Conference on Machine Learning
(Proceedings ofMachine Learning Research), Jennifer Dy andAndreas Krause (Eds.),
Vol. 80. PMLR, 4075–4084. https://proceedings.mlr.press/v80/pearce18a.html

[56] Christopher M Poskitt and Detlef Plump. 2010. A Hoare calculus for graph

programs. In International Conference on Graph Transformation. Springer, 139–
154.

[57] William R Rice. 1989. Analyzing tables of statistical tests. Evolution 43, 1 (1989),

223–225.

[58] Sanjit A Seshia, Ankush Desai, Tommaso Dreossi, Daniel J Fremont, Shromona

Ghosh, Edward Kim, Sumukh Shivakumar, Marcell Vazquez-Chanlatte, and Xi-

angyu Yue. 2018. Formal specification for deep neural networks. In International
Symposium on Automated Technology for Verification and Analysis. Springer, 20–
34.

[59] David Shriver, Sebastian Elbaum, and Matthew B. Dwyer. 2021. Reducing DNN

Properties to Enable Falsification with Adversarial Attacks. In Proceedings of the

43rd International Conference on Software Engineering (Madrid, Spain) (ICSE ’21).
IEEE Press, 275–287. https://doi.org/10.1109/ICSE43902.2021.00036

[60] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An

Abstract Domain for Certifying Neural Networks. Proc. ACM Program. Lang. 3,
POPL, Article 41 (jan 2019), 30 pages. https://doi.org/10.1145/3290354

[61] Jack W Smith, James E Everhart, WC Dickson, William C Knowler, and

Robert Scott Johannes. 1988. Using the ADAP learning algorithm to forecast the

onset of diabetes mellitus. In Proceedings of the annual symposium on computer
application in medical care. American Medical Informatics Association, 261.

[62] Matthew Sotoudeh and Aditya V Thakur. 2020. Abstract neural networks. In

International Static Analysis Symposium. Springer, 65–88.

[63] Andrea Stocco, Michael Weiss, Marco Calzana, and Paolo Tonella. 2020. Mis-

behaviour Prediction for Autonomous Driving Systems. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South

Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA,

359–371. https://doi.org/10.1145/3377811.3380353

[64] Sakshi Udeshi, Pryanshu Arora, and Sudipta Chattopadhyay. 2018. Automated

Directed Fairness Testing. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (Montpellier, France) (ASE ’18).
Association for Computing Machinery, New York, NY, USA, 98–108. https:

//doi.org/10.1145/3238147.3238165

[65] Caterina Urban, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang. 2020.

Perfectly parallel fairness certification of neural networks. Proceedings of the
ACM on Programming Languages 4, OOPSLA (2020), 1–30.

[66] Muhammad Usman, Divya Gopinath, Youcheng Sun, Yannic Noller, and Co-

rina S. Păsăreanu. 2021. NNrepair: Constraint-based Repair of Neural Network

Classifiers. In Computer Aided Verification: 33rd International Conference, CAV
2021, Virtual Event, July 20–23, 2021, Proceedings, Part I. Springer-Verlag, Berlin,
Heidelberg, 3–25. https://doi.org/10.1007/978-3-030-81685-8_1

[67] ChengpengWang, Gang Fan, Peisen Yao, Fuxiong Pan, , and Charles Zhang. ICSE

2023. Verifying Data Constraint Equivalence in FinTech Systems. (ICSE 2023).

[68] Huiyan Wang, Jingwei Xu, Chang Xu, Xiaoxing Ma, and Jian Lu. 2020. Dissector:

Input Validation for Deep Learning Applications by Crossing-Layer Dissection.

In Proceedings of the ACM/IEEE 42nd International Conference on Software Engi-
neering (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery,

New York, NY, USA, 727–738. https://doi.org/10.1145/3377811.3380379

[69] Zi Wang, Aws Albarghouthi, Gautam Prakriya, and Somesh Jha. 2022. Inter-

val universal approximation for neural networks. Proceedings of the ACM on
Programming Languages 6, POPL (2022), 1–29.

[70] Michael Weiss and Paolo Tonella. 2022. Simple techniques work surprisingly well

for neural network test prioritization and active learning (replicability study).

In Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis. 139–150.

[71] Yan Xiao, Ivan Beschastnikh, Yun Lin, Rajdeep Singh Hundal, Xiaofei Xie, David S.

Rosenblum, and Jin Song Dong. 2022. Self-Checking Deep Neural Networks for

Anomalies and Adversaries in Deployment. IEEE Transactions on Dependable and
Secure Computing (2022), 1–18. https://doi.org/10.1109/TDSC.2022.3200421

[72] Yan Xiao, Ivan Beschastnikh, David S. Rosenblum, Changsheng Sun, Sebastian

Elbaum, Yun Lin, and Jin Song Dong. 2021. Self-Checking Deep Neural Networks

in Deployment. In Proceedings of the 43rd International Conference on Software
Engineering (Madrid, Spain) (ICSE ’21). IEEE Press, 372–384. https://doi.org/10.1

109/ICSE43902.2021.00044

[73] Yan Xiao, Yun Lin, Ivan Beschastnikh, Changsheng Sun, David Rosenblum,

and Jin Song Dong. 2023. Repairing Failure-Inducing Inputs with Input Re-

flection. In Proceedings of the 37th IEEE/ACM International Conference on Au-
tomated Software Engineering (Rochester, MI, USA) (ASE ’22). Association for

Computing Machinery, New York, NY, USA, Article 85, 13 pages. https:

//doi.org/10.1145/3551349.3556932

[74] Chenyang Yang, Rachel A Brower-Sinning, Grace A Lewis, and Christian Kästner.

2022. Data leakage in notebooks: Static detection and better processes. (2022).

[75] Mingsheng Ying. 2012. Floyd–hoare logic for quantum programs. ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 33, 6 (2012), 1–49.

[76] Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang,

Jin Song Dong, and Ting Dai. 2020. White-Box Fairness Testing through Adversar-

ial Sampling. In Proceedings of the ACM/IEEE 42nd International Conference on Soft-
ware Engineering (Seoul, South Korea) (ICSE ’20). Association for Computing Ma-

chinery, New York, NY, USA, 949–960. https://doi.org/10.1145/3377811.3380331


