15F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 72966034 — enter this when you fill out your peer evaluation via gradescope

Page 3



5F-2. VCGen Do-While

The formula for doy,, is very reminiscent of the normal whilej,, formula, with a key change. Because
the do form evaluates the command once before ever checking the loop condition, and Inv ”must be true
before each evaluation of the predicate b”, we need to ensure that Inv holds after the first execution of the
command. We do this by invoking VC on ¢, and conjunct Inv with the loop formula in the postcondition:

VC(dorny cwhile b, P) = VC(c, Inv A (Vx1...t. Inv = (b = VC(¢,Inv) A—b = P))

5F-3. VCGen Mistakes

1. We'll show the incompleteness of the ”targaryen” rule.
2. A=z<3

3. B=z <3 Atrue

4. o such that o(z) =2

5. o/ such that o'(z) = 2

6. ¢ =while false do x :=3

7. Within the form {(c,o) || o/, ¢’ = 0o

(false,o) | false
(while false do c,0) |} o

8. o(x) =2AN2<3 = o(z) <3. Thus, 0 | z < 3, and trivially o &= = < 3 A true.
9. o' =0 = o¢'(z) = o(z). By the same logic as in 8., ¢’ = = < 3 A true.

10. However, using the ”targaryen” rule, we fail to prove - {4} ¢ {B}:

F{r <3 = 3 < 3} + FALSE! F{3<3}z:=3{x<3}
F{zx<3}z:=3{zx<3}
F {z < 3} while false do x := 3 {z < 3}

As labeled, attempting to derive the rule requires that we make a false statement - z < 3 does not
imply the clearly false 3 < 3. On a higher level, we can clearly see that the condition x < 3 cannot
hold across the command x := 3. And yet, in the case that we do zero iterations, the condition holds
across the loop.

1. We'll show the incompleteness of the ”lannister” rule.

2. A=z=5
3. B=y=5
4. o such that o(x) =5Ao(y) =5

5. ¢’ such that o(z) =5Ao(y) =5

6. c=whilex #ydox:=4

Peer Review ID: 72966034 — enter this when you ﬁ]& out your peer evaluation via gradescope



2 5F-2 VCGen Do-While
- 0 pts Correct

Peer Review ID: 72966034 — enter this when you fill out your peer evaluation via gradescope

Page 5



5F-2. VCGen Do-While

The formula for doy,, is very reminiscent of the normal whilej,, formula, with a key change. Because
the do form evaluates the command once before ever checking the loop condition, and Inv ”must be true
before each evaluation of the predicate b”, we need to ensure that Inv holds after the first execution of the
command. We do this by invoking VC on ¢, and conjunct Inv with the loop formula in the postcondition:

VC(dorny cwhile b, P) = VC(c, Inv A (Vx1...t. Inv = (b = VC(¢,Inv) A—b = P))

5F-3. VCGen Mistakes

1. We'll show the incompleteness of the ”targaryen” rule.
2. A=z<3

3. B=z <3 Atrue

4. o such that o(z) =2

5. o/ such that o'(z) = 2

6. ¢ =while false do x :=3

7. Within the form {(c,o) || o/, ¢’ = 0o

(false,o) | false
(while false do c,0) |} o

8. o(x) =2AN2<3 = o(z) <3. Thus, 0 | z < 3, and trivially o &= = < 3 A true.
9. o' =0 = o¢'(z) = o(z). By the same logic as in 8., ¢’ = = < 3 A true.

10. However, using the ”targaryen” rule, we fail to prove - {4} ¢ {B}:

F{r <3 = 3 < 3} + FALSE! F{3<3}z:=3{x<3}
F{zx<3}z:=3{zx<3}
F {z < 3} while false do x := 3 {z < 3}

As labeled, attempting to derive the rule requires that we make a false statement - z < 3 does not
imply the clearly false 3 < 3. On a higher level, we can clearly see that the condition x < 3 cannot
hold across the command x := 3. And yet, in the case that we do zero iterations, the condition holds
across the loop.

1. We'll show the incompleteness of the ”lannister” rule.

2. A=z=5
3. B=y=5
4. o such that o(x) =5Ao(y) =5

5. ¢’ such that o(z) =5Ao(y) =5

6. c=whilex #ydox:=4

Peer Review ID: 72966034 — enter this when you ﬁ]& out your peer evaluation via gradescope



7. Within the form {(c,o) || o/, ¢’ = 0o

(z,0) 4 5 (y,0) 4 5
(z #y,0) I false
(whilex #Aydoxz:=xz—1,0) o

8. We defined o(z) =5, so o =z = 5.

9. Since ¢’/ = o, and we defined o(y) =5, 0 Ey =5.

10. However, using the ”lannister” rule, we fail to prove - {A} ¢ {B}. My derivation tree got way too big,
so I'll explain it verbally:

We're trying to show F {z =5}z :=4{r 4y = z=5Az=y = y =5}
We assume the precondition to be true (as it is before any iterations), so x = 5.
Evaluating the command, x := 4, binds z to 4, however.

y is never modified, and remains equal to 5, so = # y.

x #y = x = 5. But, we just bound z to 4, so we have a true statement (z # y) implying a
false statement (z = 5), so this is false.

By the definition of conjunction, this means the postcondition must be false.
So, the implicant of the rule is false, and we fail to prove the implicand.

But, we found above that the postcondition does hold when we evaluate this command. A starting
state exists such that the implicand is ultimately true, even though we could not prove it.

Thus, the ”lannister” rule is incomplete.

Peer Review ID: 72966034 — enter this when you ﬁlg out your peer evaluation via gradescope



35F-3 VCGen Mistakes
- 0 pts Correct

Peer Review ID: 72966034 — enter this when you fill out your peer evaluation via gradescope

Page 8



