5F-2. VCGen Do-While

Here is the verification condition formula for the command doy,, ¢ while b with respect to a post-condition
P.

VC(c,Inv) A (Vz1,...,2n Inv = ((b = VC(c,Inv)) A (b = VC(c, P))))

Here we want the Invariant to hold after one evaluation of ¢ and that’s why instead of Inv at the beginning
(like in the normal while loop VC) we have VC(c,Inv). And also, for the post condition to hold we let the
command c to evaluate one more time before we exit the do-while loop that’s why we have -b = VC(c, P)
at the end instead of =b = P like in a normal while loop VC.

1 5F-3. VCGen Mistakes

Here is an example that cannot be proved by the targaryen rule: Let’s say we have, X to be x = 0
(A= X and B = X A-b), ¢ to be while false do =z = z+ 1 and o(z) = 0. And o'(z) = 0 since
(while false do = = z + 1,0) | o by the large step operational semantic rules. And o = 2 = 0 and
o' Ex =0 Atrue. When we try to apply the targaryen rule with the consequence rule we will have the
following,

F{z+1=0x=2+1{z =0} Foz=0= 2+1=0
{z =0} while false do =z =z + 1{z =0A ~false}

Although here, the second premise doesn’t work logically that’s why we are stuck and the targaryen is
incomplete considering this example.

And if we consider the stark rule, we can give the following unprovable example: Let’s say our X is
2 < 4, and we have the following command: while z < 4 do = = z *2. And we have o(z) = 2. When
we apply the large step operational semantics we will get to ¢’(z) = 4. Therefore, we can say o =z < 4
and o’ = x < 4. However, when we try to apply the stark and consequence rules together we will have the
following,

Fr<d = 2x2<4 F{2xzx<4}z=xx2{z <4}

F{r<dnz<4lz=azx+2{x <4}
{z <4} whilez <4doz=xx2{z <4}

Since the first premise is not correct we cannot prove the above example using the stark rule.

Peer Review ID: 320560419 — enter this when you fill out your peer evaluation via gradescope

