Exercise 5F-2. VCGen Do-While [8 points]. Choose exactly one of the two options
below. (If you are not certain, pick the first. The answers end up being equivalent, but the
first may be easier to grasp for some students and the second easier to grasp for others.)

e Give the (backward) verification condition formula for the command dos,, ¢ while b
with respect to a post-condition P. The invariant Inv is true before each evaluation
of the predicate b. Your answer may not be defined in terms of VC(while...).

e Give the (backward) verification condition formula for the command do 1 ez ¢ while b
with respect to a post-condition P. The invariant Inv1 is true before c is first executed.
The invariant Inv2 is true before each evaluation of the loop predicate b. Your answer
may not be defined in terms of VC(while...).

The following is the (backward) verification formula for the command do 1, mee ¢ while b:

VC(dO[m,]’]m,Q ¢ while b, P) =
Invy A VC(c,Invy A Inva) A (Vay..zp.Inva = (b = VC(c,Invp) A =b = P))

Where z;...x, are iterations of the do-while loop.

Inv; must hold before and after only the initial execution of c.

Inv, must be true immediately after the initial execution of ¢ and prior to the entry of
the loop and prior to every iteration of the loop.

The postcondition P must hold once the do-while command finishes—that is, the loop
guard, b, is no longer true prior to an iteration, thus exiting the loop and completing the
command.

Peer Review ID: 320142619 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 3

Peer Review ID: 320142619 — enter this when you fill out your peer evaluation via gradescope



Exercise 5F-3. VCGen Mistakes [20 points]. Consider the following three alternate
while Hoare rules (named lannister, stark, and targaryen):
F{X}c{b = X AN-b= Y} - F{X A b} c{X}
F{b = X A b — Y} whilebdoc{y} "™ XV whilebdoc {X}

stark
F{X} e {X}
F{X} whilebdoc{X A —b}

All three rules are sound but incomplete. Choose two incomplete rules. For each chosen
rule provide the following:

targaryen

1. the name of the rule and

2. A and

3. B and

4. o and

5. ¢’ and

6. c such that

7. {¢,0) | o' and

8. 0 = A and

9. ¢’ = B but

10. it is not possible to prove - {A} ¢ {B}.

Flavor text: Incompleteness in an axiomatic semantics or type system is typically not as
dire as unsoundness. An incomplete system cannot prove all possible properties or handle
all possible programs. Many research results that claim to work for the C language, for
example, are actually incomplete because they do not address setjmp/longjmp or bitfields.
(Many of them are also unsound because they do not correctly model unsafe casts, pointer
arithmetic, or integer overflow.)

1st Provision:

1. Consider the rule targaryen
2. let A={z <0}

3. let B={z>1}

4. let 0 = [z = 0]

Peer Review ID: 320142619 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 3

Peer Review ID: 320142619 — enter this when you fill out your peer evaluation via gradescope



5. let o/ = [z =1]
6. letc=whilez<ldoz:=x2+1

" (x < 1,[x=0]) | true Di={x:=2z+4+1c[z=0){[z=1]

(x<1,jz=1)) | false

while
D2 false

8 [r=0]F{z <0}
9. z=1F{z >1}

10. We cannot prove this with targaryen as for A # B. We’d need to resort to something
like X =z < 1, i.e. we've defined A to be a stronger, valid precondition than the
targaryen rule can handle.

2nd Provision:

1. Consider the rule stark
et A={z =2}
.let B={z =2}
et o= [z =2]

2
3
4
5. let o' = [z =2]
6. let ¢ = while x < 2 do skip
7

(x <2,[x=2]) | false
(c,[z=2]) § [z =2]

whi lefa Ise

8. [x=2]F{z =2}
9. [x=2|F{z=2}

10. The stark rule fails to prove this, as it requires the loop-guard to be true on entrance,
according to its premise’s precondition. In this provided example, the loop guard x < 2
is indeed false, thus the precondition {X A b} fails to hold.

Peer Review ID: 320142619 — enter this when you fill out your peer evaluation via gradescope



