15F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 72125999 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 5F-2. VCGen Do-While [8 points]. Choose exactly one of the two options
below. (If you are not certain, pick the first. The answers end up being equivalent, but the
first may be easier to grasp for some students and the second easier to grasp for others.)

e Give the (backward) verification condition formula for the command doy,, ¢ while b
with respect to a post-condition P. The invariant Inv is true before each evaluation
of the predicate b. Your answer may not be defined in terms of VC(while...).

e Give the (backward) verification condition formula for the command do,y1 me2 ¢ while b
with respect to a post-condition P. The invariant Inv1 is true before c is first executed.
The invariant Inv2 is true before each evaluation of the loop predicate b. Your answer
may not be defined in terms of VC(while...).

I choose the first option
First rewrite the doz,, ¢ while b as

assert (Inv,); c; while p,,, b do c

Here we introduce new invariant of while loop Inwvs, the reason is the first execution of ¢
might influence Inv;. In addition, we have to make sure Inv, = Inv;. Therefore

VC(dop,, ¢ while b, B) =
VC(assert (Inv; A Invg = Inv;); c; while p,,, b do ¢, B) =
Inv; A Invg = Inv; A VC(c; while 1, bdo ¢), B) =

Inv; A Invg = Inv; A VC(e, VC(while p,, bdoc, B))) =

Let z1, x5 - - - x,, be the modified variables when executing ¢

Inv; A Invg = Inv; AVC(e, Invg A (Vxy, 29 - - - 2 Inve = (b = VC(c, Invg) A —b = B)))

Peer Review ID: 72125999 — enter this when you fill out your peer evaluation via gradescope

2 5F-2 VCGen Do-While
- 0 pts Correct

Peer Review ID: 72125999 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 5F-3. VCGen Mistakes [20 points]. Consider the following three alternate
while Hoare rules (named lannister, stark, and targaryen):
F{X}c{b = X AN b =Y} - F{X A b} c{X}
F{b — X A —b — Y} whilebdoc{v} "™ XY while bdoc {X}

stark

X} e {X}
F{X} whilebdoc{X A —b}

targaryen

All three rules are sound but incomplete. Choose two incomplete rules. For each chosen
rule provide the following:

1. the name of the rule and

2. Aand

3. B and

4. 0 and

5. ¢’ and

6. ¢ such that

7. {¢,0) || ¢’ and

8. 0 = Aand

9. o' &= B but

10. it is not possible to prove - {A} ¢ {B}.

Flavor text: Incompleteness in an axiomatic semantics or type system is typically not as
dire as unsoundness. An incomplete system cannot prove all possible properties or handle
all possible programs. Many research results that claim to work for the C language, for
example, are actually incomplete because they do not address setjmp/longjmp or bitfields.
(Many of them are also unsound because they do not correctly model unsafe casts, pointer
arithmetic, or integer overflow.)

Peer Review ID: 72125999 — enter this when you fill out your peer evaluation via gradescope

stark rule is incomplete
Use the count to six example

1. the name of the rule and

2. A = true
3. B=x2=6
4. o(z) =1

5. ¢'(x) = 6 and

6. c= whilez<6dozx:=2+1

7. (c,0) || ', it’s clear that it’s true
8. 0 = A and

9. ¢ =B

10. it’s inpossible to prove - {A} ¢ { B} using stark rule.
We will prove that with contraction. Assume there is a derivation rule D such that
D :: F {true} while z < 6 do z := z + 1{z = 6}

By inversion, we know that the last rule we use must be stark rule or the rule of consequence

1. The last rule is stark rule. We know stark rule have the pre-condition and post-condition
to be the same, but in this case {true} is not same as {x = 6}, which causes contra-
diction

2. The last rule is the rule of consequence. Therefore D should be in the following form

Ftrue=C D': F{C}whilez<6doz:=2+1{C} +FC= {z=6}
F {true} while x < 6 do z := z + 1{z = 6}

However, there is no such C' that - {true} = C' = {z = 6}, which also raises contra-
diction

Therefore, such derivation rule D doesn’t exist, and thus stark rule is incomplete

Peer Review ID: 72125999 — enter this when you fill out your peer evaluation via gradescope

targaryen rule is incomplete
Use the count to six example

1. the name of the rule and

2. A=x <7
3. B=x2=6
4. o(z) =1

5. ¢'(x) = 6 and

6. c= whilez<6dozx:=2+1

7. (c,0) || ', it’s clear that it’s true
8. oA

9. ¢ =B

10. it’s inpossible to prove - {A} ¢ { B} using targaryen rule.
We will prove that with contraction. Assume there is a derivation rule D such that
D: F{x<T7}whilex<6doz:=x+1{z =6}

By inversion, we know that the last rule we use must be targaryen rule or the rule of conse-
quence

1. The last rule is targaryen rule. We know targaryen rule have the post-condition to be
pre-condition A—(z < 6), which causes contradiction

2. The last rule is the rule of consequence. Therefore D should be in the following form

D3 :: F{C}lzx:=z+1{C}
Di:: F{z<7}=C D2: F{C}whilez<6doz:=2+1{CA-(x<6)} Di: FCA—-(zx<6)={z=06}
F{z < 7} while z < 6 do z := = + 1{z = 6}

Based on D; and D, we know that C should be z < 6.
However, in this case D3 :: + {C}z := 2+1{C} can’t exist, which causes contradiction.

Therefore, such derivation rule D doesn’t exist, and thus targaryen rule is incomplete

Peer Review ID: 72125999 — enter this when you fill out your peer evaluation via gradescope

3 5F-3 VCGen Mistakes
- 0 pts Correct

Peer Review ID: 72125999 — enter this when you fill out your peer evaluation via gradescope

Page 9

