EXERCISE 5F-2: VCGEN FOR LET

We choose the first option:
doInv c while b with postcondition p and invariant 1nv true before each evaluation of b.

We need to define the backward verification condition vC (doInv ¢ while b, P) without

referring to vC (while...).

The goal is to ensure:

1. The first execution of c establishes the invariant.
2. The invariant is preserved across loop iterations when b holds.

3. The postcondition p holds when the loop exits (-b).

Hence the formula is:

VC(doInv c while b, P) =
VC(c, Inv)
A (Inv A b = VC(c, Inv))
A (Inv A =b = P)

Therefore:

e VC(c, Inv):the first run of c must establish the invariant Inv
e Inv A b = VC(c, Inv):iftheloop continues, executing c must reestablish 1nv

e Inv A -b = P:when the loop exits, p must follow from Inv and -b

This captures the backward VC for doInv ¢ while b, ensuring total correctness without

relying on vC (while...).

Peer Review ID: 320087237 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 3

Peer Review ID: 320087237 — enter this when you fill out your peer evaluation via gradescope



EXERCISE 5F-3: VCGEN MISTAKES

We choose the following two incomplete rules to analyze:

Rule 1: stark

Rule Definition:
{X A b}c{X}
{X} while b do c {X}

Counterexample:

1. Rule name: stark

. A (Precondition): true

. B (Postcondition): x > 10

. o (initial state): x = 5

¢:while x £ 10 do x := x + 1

. Execution: x increases from 5to 11,s0{(c, o) U o’

2

3

4

5. o' (final state): x = 11
6

7

8. 6 E A: true holds

9

.6'EB:x =11 = x > 10V

10. But cannot derive {A} c {B} using stark:
Try X = true. Then:
{X AN b}c{X}becomes {x < 10}x := x + 1{true} — valid

But rule only lets us derive {true} while b do c¢ {true}. This does not imply x >
10, which is our target postcondition. No stronger X is preserved by x := x + 1. So the

rule cannot derive the true postcondition. Incomplete.

Peer Review ID: 320087237 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 3

Peer Review ID: 320087237 — enter this when you fill out your peer evaluation via gradescope



Rule 2: targaryen

Rule Definition:
X} c (X
{X}while bdo c {X N b}

Counterexample:

1. Rule name: targaryen

2. A (Precondition): true

3. B (Postcondition): x > 10

4. o (initial state): x = 5

5. o' (final state): x = 11

6. c:while x £ 10 do x := x + 1

7. Execution: loop runsuntilx = 11,s0(c, o) ¥ o’

8. 6 E A: true holds

9. ¢'EB:x =11 = x > 10V

10. But cannot derive {A} ¢ {B} using targaryen:

Try X = true. Then:

{X}x:= x + 1{X} becomes {true}x := x + 1{true} — valid

Sowe get: {true} while b do c¢ {true A =(x £ 10)} = {x > 10}.

This works here, but only because the postcondition happens to match X A —b.

Now modify the goalto B = x = 11. Still:

e {true} x := x + 1 {true} holds
e But{true} while x £ 10 do x := x + 1 {x = 11} cannot be proven
No X suchthat {X} x := x + 1 {X}holdsandX A -b = x = 11.Soruleis

incomplete: true postcondition, not provable.

Peer Review ID: 320087237 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 3

Peer Review ID: 320087237 — enter this when you fill out your peer evaluation via gradescope



Conclusion: both stark and targaryen fail to derive {A} ¢ {B} in cases where the

execution does produce B, confirming incompleteness by example.

Peer Review ID: 320087237 — enter this when you fill out your peer evaluation via gradescope



