15F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 72928381 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 5F-2. VCGen Do-While As I really never learned how to think
about a do-while loop, I'll convert directly from “do ¢ while b” to “c; while b
do ¢”.

So do;n, ¢ while b becomes:

c; whilejn, b do ¢

Let’s drop this directly into a VC and follow a similar method as we used for
the “vanilla” while rule:

VC(c; whilein, b do ¢,B)

To read this we might say in english: The post condition B holds given the two
commands given.
We can drop the while VCGen from the slides in for while;p, b do c:

VC(c; INV A(Y x1...29. INV = (b — (VC(c, INV) A —=b — B)))

We have a nested VC, so we can simplify this by splitting on the “and” (A)
dividing our first and second commands:

VC(c;INV) A (Vo1..22.INV = (b — (VC(c, INV) A =b — B))

We realized that do-while is just ¢; while in disguise, so we made like Scooby-Doo
and unmasked it!

Exercise 5F-3. VCGen Mistakes I choose Targaryen and Stark because
these rules both fail to modify the post condition.

Exercise 5F-3: Targaryen
1. Targaryen

2. A = true
We don’t really care about A.

3. B=(x=42)
Some value that should occur when we exit the loop.

4. o(z)=0
IMP style initialization.

5. o'(z) =42
The expected final value.

6. ¢ = while x < 1 do x := 42
Some command to intentionally make this fail.

(x <1,0) true (x:=42,0) 0’ (while x <1 do x:=42,0") | 0"
(while <1 do z:=42,0) || o”

Peer Review ID: 72928381 — enter this when you fill out your peer evaluation via gradescope

2 5F-2 VCGen Do-While
- 0 pts Correct

Peer Review ID: 72928381 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 5F-2. VCGen Do-While As I really never learned how to think
about a do-while loop, I'll convert directly from “do ¢ while b” to “c; while b
do ¢”.

So do;n, ¢ while b becomes:

c; whilejn, b do ¢

Let’s drop this directly into a VC and follow a similar method as we used for
the “vanilla” while rule:

VC(c; whilein, b do ¢,B)

To read this we might say in english: The post condition B holds given the two
commands given.
We can drop the while VCGen from the slides in for while;p, b do c:

VC(c; INV A(Y x1...29. INV = (b — (VC(c, INV) A —=b — B)))

We have a nested VC, so we can simplify this by splitting on the “and” (A)
dividing our first and second commands:

VC(c;INV) A (Vo1..22.INV = (b — (VC(c, INV) A =b — B))

We realized that do-while is just ¢; while in disguise, so we made like Scooby-Doo
and unmasked it!

Exercise 5F-3. VCGen Mistakes I choose Targaryen and Stark because
these rules both fail to modify the post condition.

Exercise 5F-3: Targaryen
1. Targaryen

2. A = true
We don’t really care about A.

3. B=(x=42)
Some value that should occur when we exit the loop.

4. o(z)=0
IMP style initialization.

5. o'(z) =42
The expected final value.

6. ¢ = while x < 1 do x := 42
Some command to intentionally make this fail.

(x <1,0) true (x:=42,0) 0’ (while x <1 do x:=42,0") | 0"
(while <1 do z:=42,0) || o”

Peer Review ID: 72928381 — enter this when you fill out your peer evaluation via gradescope

If the guard is false do nothing:

(x <1,0) | false
(while x <1 do x:=42,0) | o

0" is our o’.
8. A is just true,so o = A

9. ¢’ | B Check this by noticing that the loop does one iteration and ends
on x := 42. Therefore o/(z) = 42

10. F {A} ¢ {B} is not possible because the rule is assuming pre and post
conditions are the same (X = X). We can just check A = B and find true
= 42. This is clearly not correct. The rule only works in the case the loop
body is never encountered (if b is false coming in).

The rule should consider a correct post condition, and should have the loop
guard considered coming in.

Exercise 5F-3: Stark Stark, as usual, is missing some key information. A
correct rule probably would have seen the Red Wedding coming. Let’s see where
the strategy could be improved:

1. Stark

2. A = true
We don’t really care about A, it will simply show the modification made
in the loop isn’t correctly tracked by the post condition.

3. B = (x = 42)
Some value that should occur when we exit the loop.

4. o(x)=0
IMP style initialization.

5. 0'(z) =42
The expected final value.

6. ¢ = while z < 1 do x := 42
Some command to intentionally make this fail.

(x <1,0) | true (x:=42,0) 0" (while x <1 do x:=42,0") | 0"
(while x <1 do x:=42,0) || o”

If the guard is false do nothing:

(x < 1,0) | false
(while £ <1 do z:=42,0) |} o

note that I add an extra step here to be explicit, but ¢’ is our o’.

Peer Review ID: 72928381 — enter this when you fill out your peer evaluation via gradescope

8. A is just true, so o = A

9. ¢’ |E B Check this by noticing that the loop does one iteration and ends
on x := 42. Therefore o’ (z) = 42

10. F {A} ¢ {B} is not possible because the rule is assuming pre and post
conditions are the same (X = X). We can just check A = B and find true
= 42. This is clearly not correct. The rule only works in the case the loop
body is never encountered (if b is false coming in).

Lannister seems reasonable but maybe a little needlessly complex.

Peer Review ID: 72928381 — enter this when you fill out your peer evaluation via gradescope

3 5F-3 VCGen Mistakes
- 0 pts Correct

Peer Review ID: 72928381 — enter this when you fill out your peer evaluation via gradescope

Page 9

