15F-1 Bookkeeping

- 0 pts Correct

Exercise 5F-2

We know c is executed once before b is evaluated. Thus, we know that $do\ c\ while\ b$ is equivalent to c; $while\ b\ do\ c$. Chosen the second version in the question $do_{inv1,inv2}\ c\ while\ b$, we know that inv2 is the loop invariant of the while loop. Then, we

```
have: \begin{split} &VC(do_{inv1,inv2}\ c\ while\ b)\\ &=\ inv1\ \land\ VC(c;\ while\ _{inv2}\ b\ do\ c,\ P)\\ &=\ inv1\ \land\ VC(c,\ VC(while\ _{inv2}\ b\ do\ c,\ P))\\ &=\ inv1\ \land\ VC(c,\ inv2\ \land\ (\forall\ x_1,\ \dots\ ,x_n.\ inv2\Rightarrow (b\Rightarrow VC(c,\ inv2)\ \land\ \neg b\Rightarrow P))) \end{split}
```

2 5F-2 VCGen Do-While - 0 pts Correct

Exercise 5F-3

- 1. Stark
- 2. A == true
- 3. B == x >= 10
- 4. $\sigma(x) = 0$
- 5. $\sigma'(x) = 11$
- 6. c == while x < 10 do x := 11
- 7.

$$\langle x \langle 10, \sigma[x:=11] \rangle \Downarrow false$$

< x < 10, $\sigma > \psi$ true < x := 11, $\sigma > \psi$ $\sigma[x := 11]$ < while <math>x < 10 do x := 11, $\sigma[x := 11] > \psi$ σ'

$$< while x < 10 do x := 11, \sigma > \psi \sigma'$$

 $\sigma[x:=11]$ is equivalent to σ' Thus, we prove that $\langle c, \sigma \rangle \Downarrow \sigma'$

- 8. $\sigma \models A$ as $\sigma \models true$
- 9. $\sigma' \models B$ is equivalent to $\sigma' \models x >= 10$. It is true because $\sigma'(x) = 11$
- 10. Assume we are able to prove $+ \{A\} c \{B\}$ using the Stark rule. Then we have:

D::
$$+\{true\}$$
 while $x < 10$ do $x = 11$ { $x > = 10$ }

By inversion, the last rule used by D can only be the Stark rule or the rule of consequence.

- 1) let the last rule used by D be the Stark rule. We can't proceed as the Stark rule requires the precondition and the postcondition be the same, whereas true is not the same as x >= 10.
- 2) let the last rule used by D be the rule of consequence. Then we have:

$$\vdash true \Rightarrow C \quad \vdash \{C\} \text{ while } x < 10 \text{ do } x := 11 \{C\} \quad \vdash C \Rightarrow x >= 10$$

$$\vdash \{true\} \ while \ x < 10 \ do \ x := 11 \ \{x >= 10\}$$

However, we are stuck on $\vdash true \Rightarrow \mathcal{C} \Rightarrow x >= 10$ as no such \mathcal{C} exists. Hence, we reach contradictions in both cases. We can't prove $\vdash \{A\} \ c \ \{B\}$ that is true so the Stark rule is incomplete.

1. Targaryen

$$2. A == x <= 10$$

3. B ==
$$x = 10$$

4.
$$\sigma(x) = 9$$

5.
$$\sigma'(x) = 10$$

6.
$$c == while x < 10 do x := x + 1$$

7.

$$< x < 10$$
, $\sigma[x = 10] >$ \$\psi\$ false

 $< x < 10, \sigma > \forall true < x := x + 1, \sigma > \forall \sigma[x := 10] < while x < 10 do x := x + 1, \sigma[x := 10] > \forall \sigma'$

$$< while x < 10 do x := x + 1, \sigma > \psi \sigma'$$

 $\sigma[x:=10]$ is equivalent to σ' Thus, we prove that $< c, \sigma > \psi \sigma'$

8. $\sigma \models A$ is equivalent to $\sigma \models x \le 10$, which is true because $\sigma(x) = 9$

9. $\sigma' \models B$ is equivalent to $\sigma' \models x = 10$. It is true because $\sigma'(x) = 10$

10. Assume we are able to prove $\vdash \{A\} \ c \ \{B\}$ using the Targaryen rule. Then we have:

D::
$$\vdash \{x \le 10\} \text{ while } x \le 10 \text{ do } x := x + 1 \{x = 10\}$$

By inversion, the last rule used by D can only be the Targaryen rule or the rule of consequence.

- 3) let the last rule used by D be the Targaryen rule. We can't proceed as the Targaryen rule requires the postcondition includes the precondition, whereas x = 10 is not the same as x <= 10.
- 4) let the last rule used by D be the rule of consequence. Then we have:

$$\vdash x <= 10 \Rightarrow C \quad \vdash \{C\} \ while \ x < 10 \ do \ x := x + 1 \ \{C \land x >= 10\} \quad \vdash C \land x >= 10 \ \Rightarrow x = 10$$

$$+\{x \le 10\}$$
 while $x < 10$ do $x = x + 1\{x = 10\}$

we can easily conclude from above that C should be x<=10. However, when we further apply the Targaryen rule on $\vdash \{C\}$ while x < 10 do x := x + 1 { $C \land x >= 10$ }, we have $\vdash \{C\}$ x := x + 1 {C}, which can't be true under all possible correct C.

Hence, we reach contradictions in both cases. Since the Targaryen rule can't prove all $\vdash \{A\} \ c \ \{B\}$ that are true, it is incomplete.

3 5F-3 VCGen Mistakes - 0 pts Correct