Exercise 5F-2. VCGen Do-While [8 points]. Choose exactly one of the two options below. (If you
are not certain, pick the first. The answers end up being equivalent, but the first may be easier to grasp for
some students and the second easier to grasp for others.)

e Give the (backward) verification condition formula for the command doy,, ¢ while b with respect to
a post-condition P. The invariant Inv is true before each evaluation of the predicate b. Your answer
may not be defined in terms of VC(while...).

e Give the (backward) verification condition formula for the command do,y1, vz ¢ while b with respect
to a post-condition P. The invariant Invl is true before c is first executed. The invariant Inv2 is true
before each evaluation of the loop predicate b. Your answer may not be defined in terms of VC(while...).

Answer (second choice)
VC(dornw1,mvz ¢ while b) = (Invl — VC(c, Inv2)) A ((Inv2 Ab) — VC(c, Inv2)) A ((Inv2 A —b) — P)

In plain language, my logic is as follows, starting with the post-condition:

First, when Inv2 holds and b is false, then the post-condition must follow.

Whenever Inv2 holds and b is true, executing ¢ must reestablish nv2.

Finally, Inv! is true before c is first executed, so given that invariant, the VC(c, Inv2) must follow.

While we do not know the behavior of ¢, we know that Inv2 must be true before each evaluation of b,
so Invl being true or Inv2 and b being true must lead to a verification condition that must hold for the
command c and the loop invariant Inv2.

Peer Review ID: 320257251 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 320257251 — enter this when you fill out your peer evaluation via gradescope

Exercise 5F-3. VCGen Mistakes [20 points]. Consider the following three alternate while Hoare rules
(named lannister, stark, and targaryen):
F{X}e{b = X AN b= Y} o F{X A b}c{X}
F{b = X A —b — Y} whilebdoc{y] "% X7 while bdoc (X}

stark

F{X} e {X}
F{X} whilebdo c{X A —b}

targaryen

All three rules are sound but incomplete. Choose two incomplete rules. For each chosen rule provide the
following:

1. the name of the rule and
2. A and
B and

~ow

o and

o’ and

. ¢ such that

. (¢,0) | ¢’ and
. o E Aand

© ® N o w;

o' = B but

10. it is not possible to prove - {4} ¢ {B}.

Answer (stark)
1. Name: stark

A:z=0

B:z=1

Ll

. Initial State: o(z) =0
5. Final State: o/(z) =1
6. Command c: while (z < 1) do (z:=xz+1)

7. Execution: We execute ¢ once, starting with £ = 0 and executing the command z := = + 1, leaving
z = 1. Therefore (c,o) || o’

8. 0 = A: In the initial state, z = 0, so o |= (z = 0)
9. ¢/ = B: In the final state, z =1, so ¢’ = (z = 1)
10. We aim to show that it is not possible to prove using the stark rule that:
F{z =0} (while (x < 1) do (z:=2 +1)){x =1}

The alternate rule requires finding a loop invariant X such that {X} is true before and after each
iteration of the loop body. That is, the stark rule requires the loop’s pre-condition and post-condition

Peer Review ID: 320257251 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 320257251 — enter this when you fill out your peer evaluation via gradescope

to be exactly the same invariant X. It leaves room for incompleteness because the alternate rule does
not require that the loop guard in not true in the conclusion of the rule. That is:

F {X} while bdo ¢ {X}

To examine this, we can apply logic in a forward direction, choosing a value for the invariant that
matches the initial condition A and confirm that after running the command c that the condition B
is also satisfied, or we can apply logic in a backwards direction and choose a value for X that satisfies
the post-condition B first and work backwards. In the forward direction, if we choose the invariant X
as z = 0 to cover the initial state o, then the command x := x + 1 makes the invariant not true. We
can choose the invariant X as z = 1 to cover the final state ¢/, but then we fail to cover the initial
state 0. Therefore no invariant X exists to satisfy the stark rule for this scenario, even though the
actual execution shows a clearly valid transition from o to o’. This shows that the alternate stark rule
is incomplete.

Answer (targaryen)

1
2.

10.

Name: targaryen

A:z=0
.B:(z=1)
. Initial State: o(z) =0

. Final State: o/(z) =1
. Command c: while (z <1)do (z:=z+1)

. Execution: We execute ¢ once, starting with z = 0 and executing the command x := z + 1, leaving

z = 1. Therefore {(c,0) | o’

. 0 = A: In the initial state, z = 0, so o |= (z = 0)

. ¢/ = B: In the final state, z = 1, s0 ¢/ | (z = 1)

While we use the same scenario as stark, targaryen is incomplete because it is required that the loop
body command preserves the invariant for all states satisfying the invariant X unconditionally, that is:

F{X}c{X}

We can set the invariant to something that will lead to the desired post-condition (z = 1), but then
the invariant will not be preserved by x := z + 1 when we start from = = 0, as required in its premise
F{X} ¢ {X}. Therefore, it is not possible to prove - {A} ¢ {B}.

Peer Review ID: 320257251 — enter this when you fill out your peer evaluation via gradescope

