15F-1 Bookkeeping

- 0 pts Correct

Exercise 5F-2. VCGen Do-While [8 points]. We give the backward verification condition formula for the command $do_{Inv1,Inv2}$ c while b with respect to a post-condition P. In the below steps, c_{Inv1} corresponds to the command c in state where Inv1 is true before first executing c. Additionally, $x_1, ..., x_n$ are all of the variables modified in the command c.

$$VC(do_{Inv1,Inv2} \ c \text{ while } b, P)$$
 (1)

$$= VC(c_{Inv1}; while_{Inv2} b do c, P)$$
 (2)

$$= Inv1 \wedge VC(c; \text{ while}_{Inv2} \ b \ \text{do} \ c, P) \tag{3}$$

$$= Inv1 \wedge VC(c, VC(\mathsf{while}_{Inv2} \ b \ \mathsf{do} \ c, P)) \tag{4}$$

$$= Inv1 \wedge VC(c, Inv2 \wedge (\forall x_1, ..., x_n . Inv2 \implies (b \implies VC(c, Inv2) \wedge \neg b \implies P))) \quad (5)$$

Step (2) follows from the definition of the command do c while b. Specifically, we execute c once, and then the rest of the command is equivalent to while b do c. Thus, we can represent do c while b as the sequence c; while b do c. Step (3) follows from the fact that Inv1 must be true before executing c the first time. Step (4) follows from the VC rule for sequencing. Finally, step (5) follows from the VC rule for while b do c.

2 5F-2 VCGen Do-While

- 0 pts Correct

Exercise 5F-3. VCGen Mistakes [20 points]. First, we show that the targaryen rule is incomplete, providing the following:

- 1. Name of rule: targaryen
- 2. $A: x \leq 0$
- 3. B: x = 6
- 4. σ : [x := 0]
- 5. σ' : [x := 6]
- 6. *c*: while $x \le 5$ do x := x + 1
- 7. $\langle c, \sigma \rangle \Downarrow \sigma'$: We initially have $\sigma = [x := 0]$, and x and is incremented by 1 every iteration of the loop until it is no longer less than or equal to 5. This means that we must have $\sigma' = [x := 6]$ at the end of the loop, meaning that $\langle c, \sigma \rangle \Downarrow \sigma'$.
- 8. $\sigma \models A$: Because $\sigma = [x := 0]$, it is true that $\sigma \models x \le 0$.
- 9. $\sigma' \models B$: Because $\sigma' = [x := 6]$, it is true that $\sigma' \models x = 6$.
- 10. It is not possible to prove that $\vdash \{A\}$ c $\{B\}$: Suppose we could prove $\vdash \{A\}$ c $\{B\}$. Applying the rule of consequence and the targaryen rule (where I is the invariant in the rule), we have

$$\begin{array}{c|c} \hline \vdash \{I\} \ x := x+1 \ \{I\} \\ \hline \vdash x \leq 0 \implies I & \vdash \{I\} \ \text{while} \ x \leq 5 \ \text{do} \ x := x+1 \ \{I \land x > 5\} \\ \hline \vdash \{x \leq 0\} \ \text{while} \ x \leq 5 \ \text{do} \ x := x+1 \ \{x=6\} \\ \end{array}.$$

To prove that $I \wedge x > 5 \implies x = 6$, we must have $I = (x \le 6)$. Otherwise, we would have insufficient evidence to conclude that x = 6 while also being able to infer $x \le 0 \implies I$. Given that $I = (x \le 6)$, we cannot prove $\{I\}$ x := x + 1 $\{I\}$ (at the top of the derivation tree). This is because if x = 6 initially, then it must be that x > 6 after executing x := x + 1. However, this violates the post-condition $x \le 6$. Thus, we cannot prove that $\vdash \{A\}$ c $\{B\}$, meaning that the targaryen rule is incomplete.

Next, we show that the stark rule is incomplete, providing the following (items 1-9 are the same as in the above demonstration for the targaryen rule):

- 1. Name of rule: stark
- 2. A: x < 0
- 3. B: x = 6

- 4. σ : [x := 0]
- 5. σ' : [x := 6]
- 6. *c*: while $x \le 5$ do x := x + 1
- 7. $\langle c, \sigma \rangle \Downarrow \sigma'$: We initially have $\sigma = [x := 0]$, and x and is incremented by 1 every iteration of the loop until it is no longer less than or equal to 5. This means that we must have $\sigma' = [x := 6]$ at the end of the loop, meaning that $\langle c, \sigma \rangle \Downarrow \sigma'$.
- 8. $\sigma \models A$: Because $\sigma = [x := 0]$, it is true that $\sigma \models x \leq 0$.
- 9. $\sigma' \models B$: Because $\sigma' = [x := 6]$, it is true that $\sigma' \models x = 6$.
- 10. It is not possible to prove that $\vdash \{A\}$ c $\{B\}$: Suppose we could prove $\vdash \{A\}$ c $\{B\}$. Applying the rule of consequence and the stark rule (where I is the invariant in the rule), we have

We could again let $I=(x\leq 6)$. In fact, we could choose any integer y greater than or equal to 6 and let $I=(x\leq y)$, as these will all be valid invariants for the loop. None of these invariants, however, will be enough to make the conclusion that x=6 in the application of the rule of consequence. If the post-condition $\{I\}$ of the upper while command included the negation x>5 of the loop guard, we could let $I=(x\leq 6)$ and conclude from $x\leq 6 \land x>5$ that x=6. Because x>5 is missing from the post-condition of the while command, there is no way to conclude that x=6. In other words, there is no assignment of I that satisfies both $x\leq 0 \implies I$ and $I\implies x=6$; we need to use the fact that x>5 to conclude that x=6. Because of this, we cannot prove that $\vdash \{A\}$ c $\{B\}$, meaning that the stark rule is incomplete.

з 5F-3 VCGen Mistakes

- 0 pts Correct