15F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 72925560 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 5F-2. VCGen Do-While [8 points].

We give the backward verification con-

dition formula for the command do,,; me2 ¢ while b with respect to a post-condition P. In
the below steps, ¢p,,; corresponds to the command ¢ in state where Invi is true before first

executing c. Additionally, x4, ..., z, are all of the variables modified in the command c.

VC(dosmur,mee ¢ While b, P)
= VC(¢pmps ; whilep,e b do ¢, P)
= Invl ANVC(c ; whilepy,s b do ¢, P)
= Invl AN VC(e, VC(whilep,,2 b do ¢, P))
= Invl ANVC(c, Inv2 A (Y21, ..., T, . Inv2 = (b = VC(c, Inv2) A—-b = P)))

(1
(2
(3
(4
(5

~— — — ~— ~—

Step (2) follows from the definition of the command do ¢ while b. Specifically, we execute
conce, and then the rest of the command is equivalent to while b do ¢. Thus, we can represent
do ¢ while b as the sequence ¢ ; while b do c. Step (3) follows from the fact that Invl must
be true before executing ¢ the first time. Step (4) follows from the VC rule for sequencing.
Finally, step (5) follows from the VC rule for while b do c.

Peer Review ID: 72925560

enter this when you fill out your peer evaluation via gradescope

2 5F-2 VCGen Do-While
- 0 pts Correct

Peer Review ID: 72925560 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 5F-3. VCGen Mistakes [20 points]. First, we show that the targaryen rule
is incomplete, providing the following:

1. Name of rule: targaryen

2. A: 2 <0
3. B:z=6
4. o: [z :=0]
5. 0': [x:= 6]

6. c: whiltx <5dozx:=z+1

7. {¢,0) | o’: We initially have ¢ = [z := 0], and z and is incremented by 1 every
iteration of the loop until it is no longer less than or equal to 5. This means that we
must have ¢’ = [z := 6] at the end of the loop, meaning that (c,o) | o’.

8. 0 = A: Because 0 = [z := 0], it is true that o =z < 0.
9. ¢’ = B: Because ¢/ = [x := 6], it is true that ¢’ =2 = 6.

10. It is not possible to prove that - {A} ¢ {B}: Suppose we could prove - {A} ¢ {B}.
Applying the rule of consequence and the targaryen rule (where [is the invariant in
the rule), we have

F{I} z:=x+1{I}
Fe<0 = I F{I}whilex<5dox:=xz+1{IAz>5} FIAxz>5 = =6
F{z <0} whilex<5doz:=z+1{z =6}

To prove that I A = >5 = z = 6, we must have I = (z < 6). Otherwise, we
would have insufficient evidence to conclude that x = 6 while also being able to infer
r <0 = I. Given that I = (z < 6), we cannot prove {/} z:= z+1 {I} (at the top
of the derivation tree). This is because if x = 6 initially, then it must be that = > 6
after executing x := x + 1. However, this violates the post-condition z < 6. Thus, we
cannot prove that - {A} ¢ {B}, meaning that the targaryen rule is incomplete.

Next, we show that the stark rule is incomplete, providing the following (items 1-9 are
the same as in the above demonstration for the targaryen rule):

1. Name of rule: stark
2. A: 2 <0
3. B:z=6

Peer Review ID: 72925560 — enter this when you fill out your peer evaluation via gradescope

6. c: whiltx <5dozx:=z+1

7. (¢,0) | o’: We initially have ¢ = [z := 0], and = and is incremented by 1 every
iteration of the loop until it is no longer less than or equal to 5. This means that we
must have ¢’ = [z := 6] at the end of the loop, meaning that (c,o) | o’.

8. 0 = A: Because 0 = [z := 0], it is true that o =z < 0.
9. ¢’ = B: Because ¢’ = [x := 6], it is true that ¢’ =2 = 6.

10. It is not possible to prove that - {A} ¢ {B}: Suppose we could prove - {A} ¢ {B}.
Applying the rule of consequence and the stark rule (where [is the invariant in the
rule), we have

F{IAnz<5b}z:=2+1{I}
Fe<0 = I F{I}whilezxz<5doz:=x+1{I} FI = 2=6
F{x <0} whilex <5doz:=z+1{z =06}

We could again let I = (z < 6). In fact, we could choose any integer y greater than or
equal to 6 and let I = (z < y), as these will all be valid invariants for the loop. None
of these invariants, however, will be enough to make the conclusion that z = 6 in the
application of the rule of consequence. If the post-condition {/} of the upper while
command included the negation = > 5 of the loop guard, we could let I = (z < 6)
and conclude from x < 6 A x > 5 that x+ = 6. Because x > 5 is missing from the
post-condition of the while command, there is no way to conclude that = 6. In other
words, there is no assignment of I that satisfies both <0 = [and I = z = 6;
we need to use the fact that £ > 5 to conclude that x = 6. Because of this, we cannot
prove that - {A} ¢ {B}, meaning that the stark rule is incomplete.

Peer Review ID: 72925560 — enter this when you fill out your peer evaluation via gradescope

3 5F-3 VCGen Mistakes
- 0 pts Correct

Peer Review ID: 72925560 — enter this when you fill out your peer evaluation via gradescope

Page 8

