Exercise 5F-2.

 $VC(\operatorname{do}_{Inv1,Inv2} c \text{ while } b, P) = Inv1 \wedge (\forall x_1 \dots x_n.Inv1 \implies ((b \implies VC(c,Inv2)) \wedge (\neg b \implies P))) \wedge (\forall x_1 \dots x_n.Inv2 \implies ((b \implies VC(c,Inv2)) \wedge (\neg b \implies P)))$ Where $x_1 \dots x_n$ are all variables modified in c.

Exercise 5F-3.

Rule 1

- 1. stark
- 2. A := (x = 0)
- 3. B := (x = 1)
- 4. $\sigma := \{x = 0\}$
- 5. $\sigma' := \{x = 1\}$
- 6. c := while x < 1 do x := x + 1
- 7. $\langle \text{ while } x < 1 \text{ do } x := x + 1, \{x = 0\} \rangle \downarrow \{x = 1\}$
- 8. $\{x = 0\} \models (x = 0)$
- 9. $\{x = 1\} \models (x = 1)$
- 10. Since stark has the same conditions on each side of the conclusion about while, and since it's not true that x=1 before c, we cannot prove that x=1 after c.

Rule 2

- 1. targaryen
- 2. A := (x = 0)
- 3. B := (x = 1)
- 4. $\sigma := \{x = 0\}$
- 5. $\sigma' := \{x = 1\}$
- 6. c := while x < 1 do x := x + 1

Question assigned to the following page: <u>3</u>		

- 7. \langle while x < 1 do x := x + 1, $\{x = 0\}$ $\rangle \downarrow \{x = 1\}$
- 8. $\{x = 0\} \models (x = 0)$
- 9. $\{x = 1\} \models (x = 1)$
- 10. To prove $\{x=0\}$ while x<1 do x:=x+1 $\{x=1\}$ using targaryen, we would need to find some predicate X such that $\{X\}$ x:=x+1 $\{X\}$ and $(X \land \neg x=0) \Longrightarrow x=1$. From the Hoare rule for assignment, we get [x+1/x]X=X, meaning X does not refer to x, so $(X \land \neg x=0)$ cannot prove x=1.