15F-1 Bookkeeping

- 0 pts Correct

2 5F-2

Since we have that do_{INV} c while b is equivalent to c; while INV b do c we can simply compose the VCGen for the sequencing command with that for while-do:

```
\operatorname{VC}(\operatorname{do}_{\mathsf{INV}}\ c\ \operatorname{while}\ b, P) = \operatorname{VC}(c, INV \land (\forall x_1...x_n.INV \implies (b \implies \operatorname{VC}(c, INV) \land \neg b \implies P)))
```

(Where the x_i represent all variables modified in c)

3 5F-3

For the stark Hoare rule, let $c = \text{while } a \neq 1 \text{ do } a := a+1, \ A = true, \ B = (a=1), \ \sigma = \{a:0\},$ and $\sigma' = \{a:1\}$. By our operational semantics we then have that $\langle c,\sigma\rangle \Downarrow \sigma'$, and by our semantics of assertions we have that $\sigma \models A$ and $\sigma' \models B$. But since out pre-condition A is logically distinct from our post-condition B, and the stark rule applies only to identical pre- and post-conditions, we cannot apply it to yield $\vdash \{A\}$ c $\{B\}$.

For the targaryen Hoare rule, let c = while $a \neq 1$ do $\{$ if a = 1 then a := a + 2 else a := a + 1 $\}$, $A = (a < 2), B = A \lor \neg b = (a < 2) \lor (a = 1) = (a = 1), \sigma = \{a : 0\}$, and $\sigma' = \{a : 1\}$. Similarly to above, the conditions 7, 8, and 9 indicated in the question all hold. It remains then to show that it is not possible to prove that $\vdash \{a < 2\}$ while $a \neq 1$ do $\{$ if a = 1 then a := a + 2 else $a := a + 1\}$ $\{a = 1\}$, which by the targaryen rule reduces to showing that $\vdash \{a < 2\}$ if a = 1 then a := a + 2 else a := a + 1 $\{a < 2\}$.

By inversion the rule applied to conclude the above must be the if rule. By said rule, we'd need to show that (I) $\{a < 2 \land a = 1\}$ a := a + 2 $\{a < 2\}$ and (II) $\{a < 2 \land a \neq 1\}$ a := a + 1 $\{a < 2\}$. We can see that (II) holds by simplifying the precondition to a < 1 and then using consequence: $a < 1 \implies a + 1 < 2$ and $\vdash \{a + 1 < 2\}$ a := a + 1 $\{a < 2\}$, where the last clause holds by the rule for assignment. (I) however has no possible derivation, and in fact does not hold; the targaryen rule has left us with insufficient information to conclude the the else branch must necessarily be taken.

2 5F-2 VCGen Do-While - 0 pts Correct

2 5F-2

Since we have that do_{INV} c while b is equivalent to c; while INV b do c we can simply compose the VCGen for the sequencing command with that for while-do:

```
\operatorname{VC}(\operatorname{do}_{\mathsf{INV}}\ c\ \operatorname{while}\ b, P) = \operatorname{VC}(c, INV \land (\forall x_1...x_n.INV \implies (b \implies \operatorname{VC}(c, INV) \land \neg b \implies P)))
```

(Where the x_i represent all variables modified in c)

3 5F-3

For the stark Hoare rule, let $c = \text{while } a \neq 1 \text{ do } a := a+1, \ A = true, \ B = (a=1), \ \sigma = \{a:0\},$ and $\sigma' = \{a:1\}$. By our operational semantics we then have that $\langle c,\sigma\rangle \Downarrow \sigma'$, and by our semantics of assertions we have that $\sigma \models A$ and $\sigma' \models B$. But since out pre-condition A is logically distinct from our post-condition B, and the stark rule applies only to identical pre- and post-conditions, we cannot apply it to yield $\vdash \{A\}$ c $\{B\}$.

For the targaryen Hoare rule, let c = while $a \neq 1$ do $\{$ if a = 1 then a := a + 2 else a := a + 1 $\}$, $A = (a < 2), B = A \lor \neg b = (a < 2) \lor (a = 1) = (a = 1), \sigma = \{a : 0\}$, and $\sigma' = \{a : 1\}$. Similarly to above, the conditions 7, 8, and 9 indicated in the question all hold. It remains then to show that it is not possible to prove that $\vdash \{a < 2\}$ while $a \neq 1$ do $\{$ if a = 1 then a := a + 2 else $a := a + 1\}$ $\{a = 1\}$, which by the targaryen rule reduces to showing that $\vdash \{a < 2\}$ if a = 1 then a := a + 2 else a := a + 1 $\{a < 2\}$.

By inversion the rule applied to conclude the above must be the if rule. By said rule, we'd need to show that (I) $\{a < 2 \land a = 1\}$ a := a + 2 $\{a < 2\}$ and (II) $\{a < 2 \land a \neq 1\}$ a := a + 1 $\{a < 2\}$. We can see that (II) holds by simplifying the precondition to a < 1 and then using consequence: $a < 1 \implies a + 1 < 2$ and $\vdash \{a + 1 < 2\}$ a := a + 1 $\{a < 2\}$, where the last clause holds by the rule for assignment. (I) however has no possible derivation, and in fact does not hold; the targaryen rule has left us with insufficient information to conclude the the else branch must necessarily be taken.

3 5F-3 VCGen Mistakes - 0 pts Correct		