15F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 72757436 — enter this when you fill out your peer evaluation via gradescope

Page 3

EECS 590 HW 5 Due on April 2nd

5F-2. The backwards verification condition formula for doy,, ¢ while b is given by
VC(dopmy ¢ while b, P) = VC(c, Inv) A (Va1 ... 2y . Inv = (b= VC(c¢, Inv) AN —b= P)),

where 7 ...z, are all those variables modified in c.

We derived this rule by noting that doj,, ¢ while b is semantically equivalent to ¢; while,, b do ¢,
thus

VC(dopy ¢ while b, P) = VC(c; whilep,, b do ¢, P) = VC(¢, VC(whilep,, b do ¢, P))

C(c, Inv AVxy ...z . Inv = (b= VC(c, Inv) A —b= P))

C(c, Inv) AVC(c,Vx1 ... 2y . Inv = (b= VC(c, Inv) A —b= P))
= VC(c, Inv) A (Vzy...20 . Inv = (b= VC(c, Inv) A —b = P)),

=V
=V

where the last equality is justified since executing ¢ should not change the truth value of a
statement which is univerally quanitifed over all values of all variables modified by c. O

5F-3. For fun, let us first prove that lannister is relatively complete. Since the original while rule
was relatively complete, it suffices to show that the original rule is derivable from lannister.
Indeed, the following derivation tree demonstrates this, using only consequence, lannister, and
the fact that X = (b= (X Ab) A —=b = (X A —b)) is a tautology:

F{XAb}c{X} FX= (b= (XAbA-b=(XAD))
F{XAb}c{b= (X Ab)A-b= (X A-b)}
FX= b= (XAbA-b=(XA-b) F{b=(XAb)A-b= (X A-b)} whilebdoc{X A-b}
F{X} whilebdoc{X A —b}

By process of elimination, the two incomplete rules are then stark and targaryen. We give
concrete examples of their incompleteness below:

. (name of the rule) stark
(A) true
(B} =1
(0) [z:=0]
(") [o:=1]
(c) while z A1 do z:=1
({c,0) | ¢’) Since o(z) = 0, the condition = # 1 holds, so the body of the while
loop is entered, then 1 is assigned to x, the condition no longer holds, and the loop
exits in state o’ = [z := 1].
8. (0 = A) Trivially, we have o = true.
9. (¢/ = B) Since ¢/(z) =1, indeed 0/ Ex = 1.
10. (it is impossible to prove - { A}c{B}) Heuristically, stark can nly prove post-conditions
that are also true before the loop is run, so since B is false beforehand, it is impos-
sible to prove {A}c{B}.

O v o e

Peer Review ID: 72757436 — enter this when you fill out your peer evaluation via gradescope

2

2 5F-2 VCGen Do-While
- 0 pts Correct

Peer Review ID: 72757436 — enter this when you fill out your peer evaluation via gradescope

Page 5

EECS 590 HW 5 Due on April 2nd

5F-2. The backwards verification condition formula for doy,, ¢ while b is given by
VC(dopmy ¢ while b, P) = VC(c, Inv) A (Va1 ... 2y . Inv = (b= VC(c¢, Inv) AN —b= P)),

where 7 ...z, are all those variables modified in c.

We derived this rule by noting that doj,, ¢ while b is semantically equivalent to ¢; while,, b do ¢,
thus

VC(dopy ¢ while b, P) = VC(c; whilep,, b do ¢, P) = VC(¢, VC(whilep,, b do ¢, P))

C(c, Inv AVxy ...z . Inv = (b= VC(c, Inv) A —b= P))

C(c, Inv) AVC(c,Vx1 ... 2y . Inv = (b= VC(c, Inv) A —b= P))
= VC(c, Inv) A (Vzy...20 . Inv = (b= VC(c, Inv) A —b = P)),

=V
=V

where the last equality is justified since executing ¢ should not change the truth value of a
statement which is univerally quanitifed over all values of all variables modified by c. O

5F-3. For fun, let us first prove that lannister is relatively complete. Since the original while rule
was relatively complete, it suffices to show that the original rule is derivable from lannister.
Indeed, the following derivation tree demonstrates this, using only consequence, lannister, and
the fact that X = (b= (X Ab) A —=b = (X A —b)) is a tautology:

F{XAb}c{X} FX= (b= (XAbA-b=(XAD))
F{XAb}c{b= (X Ab)A-b= (X A-b)}
FX= b= (XAbA-b=(XA-b) F{b=(XAb)A-b= (X A-b)} whilebdoc{X A-b}
F{X} whilebdoc{X A —b}

By process of elimination, the two incomplete rules are then stark and targaryen. We give
concrete examples of their incompleteness below:

. (name of the rule) stark
(A) true
(B} =1
(0) [z:=0]
(") [o:=1]
(c) while z A1 do z:=1
({c,0) | ¢’) Since o(z) = 0, the condition = # 1 holds, so the body of the while
loop is entered, then 1 is assigned to x, the condition no longer holds, and the loop
exits in state o’ = [z := 1].
8. (0 = A) Trivially, we have o = true.
9. (¢/ = B) Since ¢/(z) =1, indeed 0/ Ex = 1.
10. (it is impossible to prove - { A}c{B}) Heuristically, stark can nly prove post-conditions
that are also true before the loop is run, so since B is false beforehand, it is impos-
sible to prove {A}c{B}.

O v o e

Peer Review ID: 72757436 — enter this when you fill out your peer evaluation via gradescope

2

EECS 590 HW 5 Due on April 2nd

(name of the rule) targaryen

(A) x>0

(B)x=0

(0) [=1

(') [z := 0]

(c) whiltz >0dox:=2—1

({c,0) |} ¢') Since initially o(x) = 1, the condition z > 0 holds, so the body of the

while loop is entered, then z is decremented to 0, the condition no longer holds, and

the loop exits in state o’ = [z := 0]

8. (6 E A) Since o(z) =1 and 1 >0, indeed o =z > 0.
9. (¢/ E B) Since ¢'(z) =0, indeed ¢/ =2 = 0.

10. (it is impossible to prove - {A}c{B}) Heuristically, targaryen requires that X holds
whether the loop is run or not, so any X which is only preserved by ¢ when b is true
is not provable. Specifically, for x > 0 to hold after z := x — 1 is executed, we must
have that x > 0 is true, so this is not provable. O

NS @

Peer Review ID: 72757436 — enter this when you fill out your peer evaluation via gradescope

3

35F-3 VCGen Mistakes
- 0 pts Correct

Peer Review ID: 72757436 — enter this when you fill out your peer evaluation via gradescope

Page 8

