15F-1 Bookkeeping

- 0 pts Correct

Exercise 5F-2.

$$VC(c, Inv \land \forall x_1...x_n.Inv \implies (e \implies VC(c, Inv) \land \neg e \implies B))$$

Exercise 5F-3.

First rule:

- 1. targaryen
- 2. x > 10
- 3. $x > 10 \land x <= 11$
- 4. x := 14
- 5. x := 11
- 6. while x > 11 do x := x 1
- 7. Calling the while loop will cause x to become 13, 12, 11, then exit.
- 8. 14 > 10
- 9. $11 > 10 \land 11 <= 11$
- 10. targaryan cannot prove that $\vdash \{x > 10\}$ while x > 11 do x := x 1 $\{x > 10 \land x <= 11\}$, since it will then have to prove $\vdash \{x > 10\}$ x := x 1 $\{x > 10\}$, which fails since 11 1 = 10 and thus fails the postcondition even with a valid precodition.

Second rule:

- 1. lannister
- 2. $x < 10 \implies \text{true } \land x > = 10 \implies x = 10$
- 3. x = 10
- 4. x := 5
- 5. x := 10
- 6. while x < 10 do x := x + 1
- 7. Calling the while loop will cause x to become 6, 7, 8, 9, 10, then exit.

2 5F-2 VCGen Do-While

- 0 pts Correct

Exercise 5F-2.

$$VC(c, Inv \land \forall x_1...x_n.Inv \implies (e \implies VC(c, Inv) \land \neg e \implies B))$$

Exercise 5F-3.

First rule:

- 1. targaryen
- 2. x > 10
- 3. $x > 10 \land x <= 11$
- 4. x := 14
- 5. x := 11
- 6. while x > 11 do x := x 1
- 7. Calling the while loop will cause x to become 13, 12, 11, then exit.
- 8. 14 > 10
- 9. $11 > 10 \land 11 <= 11$
- 10. targaryan cannot prove that $\vdash \{x > 10\}$ while x > 11 do x := x 1 $\{x > 10 \land x <= 11\}$, since it will then have to prove $\vdash \{x > 10\}$ x := x 1 $\{x > 10\}$, which fails since 11 1 = 10 and thus fails the postcondition even with a valid precodition.

Second rule:

- 1. lannister
- 2. $x < 10 \implies \text{true } \land x > = 10 \implies x = 10$
- 3. x = 10
- 4. x := 5
- 5. x := 10
- 6. while x < 10 do x := x + 1
- 7. Calling the while loop will cause x to become 6, 7, 8, 9, 10, then exit.

- 8. $5 < 10 \implies \mathsf{true} \ \land \ 5 >= 10 \implies 5 = 10$
- 9. 10 = 10
- 10. lannister cannot prove that $\vdash \{x < 10 \implies \text{true } \land \ x >= 10 \implies x = 10\}$ while x < 10 do $x := x + 1 \ \{x = 10\}$, since it will then have to prove $\vdash \{true\} \ x := x + 1 \ \{x < 10 \implies \text{true } \land \ x >= 10 \implies x = 10\}$, which fails since true as a precondition can't imply anything.

з 5F-3 VCGen Mistakes

- 0 pts Correct