14F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 70933850 — enter this when you fill out your peer evaluation via gradescope

Page 3



Exercise 4F-2. VCGen for Let [6 points]. The bug in the let rule is that it does not
reassign the initial value of x back to = after the command is finished. In order to ensure
the original value is assigned back to x, we can provide the rule for let as a sequence of
commands where we:

1. Store the initial value of z is to a new variable a that hasn’t been used yet and is not
used in e and c.

2. Assign e to x.
3. Execute c.

4. Reassign a, which stores the original value of z, to x.

Below is a correct rule for let, where a is a variable that is not in scope before the let
command is executed and is not used in e and ¢:

VC(let s =eine,B) =VC(a=z; z:=¢; c¢; v :=a, B)
= VC(a := z, VC(z := e, VC(c, VC(z = a, B))))
= VC(a =z, VC(z := e, VC(c, [a/z] B)))
= VC(a =z, [¢/z] VC(c, [a/z] B))
= [z/a] le/x] VC(c, [a/z] B)

Peer Review ID: 70933850 — enter this when you fill out your peer evaluation via gradescope



2 4F-2 VCGen for Let
- 0 pts Correct

Peer Review ID: 70933850 — enter this when you fill out your peer evaluation via gradescope

Page 5



Exercise 4F-3. VCGen Mistakes [6 points].
1. Command: ¢ =let z =y + 1 in skip
2. Post-condition: B = {z > 0}
3. State: 0 = [z :=0,y :=0]
4. We see that o = VC(c, B):
VC(let z =y + 1 in skip, {z > 0})
= [y + 1/z] VC(skip,{z > 0})
=y +1/z] {z > 0}
={y+1>0},
and because o(y) =0, o(y) +1=1> 0.
5. We apply the operational semantics rule for let to obtain ¢’. We have ¢/ = o = [z :=

0,y := 0] because the original value of o(z) = 0 is restored after the let command is
finished, and no variables were modified inside the body of the let command.

{00 40 (L,o) 1
(y+1,0) 41
(,0) 40 (x:=y+1,0)ofz:=1] (skip,o[z:=1]) | oz :=1]
(let x =y + 1in skip,o) | o

6. o' £ B = {z > 0} because ¢'(z) =0 # 0.

Peer Review ID: 70933850 — enter this when you fill out your peer evaluation via gradescope



34F-3 VCGen Mistakes
- 0 pts Correct

Peer Review ID: 70933850 — enter this when you fill out your peer evaluation via gradescope

Page 7



Exercise 4F-4. Axiomatic Do-While [6 points]. We present the following Hoare rule
for do ¢ while b:
F{A} ¢ {B} F {B} while cdob {B A b}
F {A} do ¢ while b {B A b}

In this rule, we execute ¢ with pre-condition {A} and post-condition { B}. After executing
¢ once, the rest of the do ¢ while b command reduces to a normal while b do ¢ command.
Thus, the post-condition {B} after executing c serves as the loop invariant for the rest of
the while loop. Using the Hoare rule for while, we know that the post-condition of the rest of
the loop should be { B A —b}, the invariant B with the additional condition that the boolean
expression b is false. Overall, we denote this sequence of operations to have precondition
{A} with the post-condition after executing the rest of the loop {B A —b}.

Peer Review ID: 70933850 — enter this when you fill out your peer evaluation via gradescope



4 4F-4 Axiomatic Do-While
- 0 pts Correct

Peer Review ID: 70933850 — enter this when you fill out your peer evaluation via gradescope

Page 9



