14F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 70946335 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 4F-2. VCGen for Let [6 points|. In class we gave the following rules for the
(backward) verification condition generation of assignment and let:

VC(Cl;CQ,B) :VC(Cl,VC(CQ,B))
VC(z :=¢,B) = [e/x] B
VC(let x =ein¢,B) = [e/x] VC(c, B)

That rule for let has a bug. Give a correct rule for let.

e The main mistake is the fact that, although it binds x to a value as with the assignment,
this binding does not stay local to the let statement.

e One way to enforce the scope of the substitution is to prevent it from modifying
anything else outside the original let statement. i.e. it “leaks” out into the main
program’s scope and can erroneously satisfy some

e The basic idea is that some post-condition constraints may contain variables with the
same name as the variable x in the let statement. Therefore, we need to “shield” these
from the substitution.

e Find some label 2z’ that is unbound (fresh) in the entire program, and temporarily
replace all occurrences of z with 2’ in the post-condition: 3z’.(fresh 2') s.t. [2//z]|B.
This is always possible since there are infinite strings to choose from, yet programs
(and variable usages) are finite.

e Perform the original substitution [e/z], which should replace only those x which occur
strictly inside the scope of the let statement.

e There should be no x anywhere in the resulting VC due to the previous replacement.

e Finally, replace all previously-guarded variables ' with their original z. If there are
no occurrences of x in the previous program, this is trivially satisfied.

All together, the result is

VC(let x = e in ¢, B) =|[z/2']([e/x]VC(c, [2' /2] B)), 32’ .(fresh ')

As mentioned above, assume we can find a fresh variable 2’ (doesn’t have to be literally
called z’) that we can use temporarily as a substitution.

As an aside (unrelated to the above), I considered another approach: VC(c, B)\1{z = e}
where \;{z = e} removes one algebraically-equivalent constraint from B that is satisfied by
x = e. The reasoning was that any constraints involving = = e that were created inside the
let statement could simply be disregarded, since they will be bound upon entry into the let.
However, this rule assumes access to an algebraic solver to help make such decisions, and
may not find constraints that differ from the x = e pattern, such as x < e. In addition, it
does not account for the possibility of multiple constraints involving © = e generated inside
the let statement. As a result, this rule might not be complete.

2

Peer Review ID: 70946335 — enter this when you fill out your peer evaluation via gradescope

2 4F-2 VCGen for Let
- 0 pts Correct

Peer Review ID: 70946335 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 4F-3. VCGen Mistakes [6 points]. Given {A}c{B} we desire that A —
VC(¢, B) = WP(c,B). We say that our VC rules are sound if = {VC(c¢,B)} ¢ {B}.
Demonstrate the unsoundness of the buggy let rule by giving the following six things:

1. a command c: let x := 5 in skip
2. a post-condition B: {x=5}

3. a state o: {x:=0}

4. such that o = VC(c, B):

e VC(¢,B) =VC(let x := 5 in skip, {z =5})
e = [5/x]VC(skip, {z = 5})

e =[5/x]{x =5}
= {5 = 5}

e 0 ={5=5}
5. and (c,o0) | o’

e (let x := 5 in skip,0) || o' =0 = {z:=0}
6. but o' = B:

o o' £ {x=>5}since x:=0and 0 #5

3

Peer Review ID: 70946335 — enter this when you fill out your peer evaluation via gradescope

34F-3 VCGen Mistakes
- 0 pts Correct

Peer Review ID: 70946335 — enter this when you fill out your peer evaluation via gradescope

Page 7

Exercise 4F-4. Axiomatic Do-While [6 points]. Write a sound and complete Hoare
rule for do ¢ while b. This statement has the standard semantics (e.g., ¢ is executed at least
once, before b is tested).

do ¢ while b can be reduced to a sequence of two existing commands: c¢; while b do ¢
Therefore, we can adapt the existing rules for these two commands.
Suppose that, given pre-condition {A}, executing c results in {B}: {A}c{B}

We know that ¢ is guaranteed to be executed at least once (in the case where b = false),

so we know the end state should be at least { B}, plus whatever we can say about b at the
end: {B A —b}

It would also be nice to have the same properties hold no matter how many additional
times we go around the loop (even though zero seems like a good number of times to run

around a loop). Therefore, let’s also ensure that satisfying the loop guard b preserves the
post-condition {B}: {B A b}cB

Therefore, we end up with the following Hoare rule for do ¢ while b:

F{A}c{B} F{BAb}c{B}
F {A} do ¢ while b {B A —b}

4

Peer Review ID: 70946335 — enter this when you fill out your peer evaluation via gradescope

4 4F-4 Axiomatic Do-While
- 0 pts Correct

Peer Review ID: 70946335 — enter this when you fill out your peer evaluation via gradescope

Page 9

