14F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 70928583 — enter this when you fill out your peer evaluation via gradescope

Page 3



4F-2. VCGen for Let

To fix the issues with the provided let VC rule, we will need to make sure that changes to the variable
defined by evaluating the let command do not persist in substitutions.

To address this, we select a fresh variable 2/, and define VC(let = e in ¢, B) = [2//z] VC(2’ := ¢; ¢, B).
Essentially, we a-convert the body of the 1et command, such that the = within the command is distinct from
any x outside of the command. In this way, we ensure that bindings made within the let do not incorrectly
affect the outer state.

4F-3. VCGen Mistakes

The buggy let rule does not capture the scoping property of let. To demonstrate its incompleteness, we
will define the following:

e c: let x = 3 in skip
e B:zx=3
e o such that o(z) =2
By the buggy VC rule for let, we get that VC(¢, B) = [3/z] VC(skip, x = 3). By the VC rule for skip, we

get that VC(skip, z = 3) is = 3. Finally, [3/x] x = 3 is just 3 = 3, which is true. Thus, VC(let z = 3 in
skip, x = 3) is true.

However, we know that let commands introduce new bindings for their inner variables. That is to say,
assigning to the x defined by let does not modify any variable x already defined in o. So, if we start with
o(x) = 2, and {(¢,0) | ¢/, in our resulting state ¢’(x) = 2 as well. This violates our postcondition B, as
x # 3, and thus VC(¢, B) =~ B.

Therefore, the VC rule for let is unsound.

4F-4. Axiomatic Do-While

A do-while is just a while loop that does at least one iteration. In other words, do ¢ while b is the same
as ¢ ; while b do ¢. So, we can define a Hoare rule for the construct as a sequence between these two
subcommands:

F{A} ¢ {B} F {B} while bdo ¢ {C}
F{A} do cwhile b {C}

Peer Review ID: 70928583 — enter this when you ﬁ]& out your peer evaluation via gradescope



2 4F-2 VCGen for Let
- 0 pts Correct

Peer Review ID: 70928583 — enter this when you fill out your peer evaluation via gradescope

Page 5



4F-2. VCGen for Let

To fix the issues with the provided let VC rule, we will need to make sure that changes to the variable
defined by evaluating the let command do not persist in substitutions.

To address this, we select a fresh variable 2/, and define VC(let = e in ¢, B) = [2//z] VC(2’ := ¢; ¢, B).
Essentially, we a-convert the body of the 1et command, such that the = within the command is distinct from
any x outside of the command. In this way, we ensure that bindings made within the let do not incorrectly
affect the outer state.

4F-3. VCGen Mistakes

The buggy let rule does not capture the scoping property of let. To demonstrate its incompleteness, we
will define the following:

e c: let x = 3 in skip
e B:zx=3
e o such that o(z) =2
By the buggy VC rule for let, we get that VC(¢, B) = [3/z] VC(skip, x = 3). By the VC rule for skip, we

get that VC(skip, z = 3) is = 3. Finally, [3/x] x = 3 is just 3 = 3, which is true. Thus, VC(let z = 3 in
skip, x = 3) is true.

However, we know that let commands introduce new bindings for their inner variables. That is to say,
assigning to the x defined by let does not modify any variable x already defined in o. So, if we start with
o(x) = 2, and {(¢,0) | ¢/, in our resulting state ¢’(x) = 2 as well. This violates our postcondition B, as
x # 3, and thus VC(¢, B) =~ B.

Therefore, the VC rule for let is unsound.

4F-4. Axiomatic Do-While

A do-while is just a while loop that does at least one iteration. In other words, do ¢ while b is the same
as ¢ ; while b do ¢. So, we can define a Hoare rule for the construct as a sequence between these two
subcommands:

F{A} ¢ {B} F {B} while bdo ¢ {C}
F{A} do cwhile b {C}

Peer Review ID: 70928583 — enter this when you ﬁ]& out your peer evaluation via gradescope



34F-3 VCGen Mistakes
- 0 pts Correct

Peer Review ID: 70928583 — enter this when you fill out your peer evaluation via gradescope

Page 7



4F-2. VCGen for Let

To fix the issues with the provided let VC rule, we will need to make sure that changes to the variable
defined by evaluating the let command do not persist in substitutions.

To address this, we select a fresh variable 2/, and define VC(let = e in ¢, B) = [2//z] VC(2’ := ¢; ¢, B).
Essentially, we a-convert the body of the 1et command, such that the = within the command is distinct from
any x outside of the command. In this way, we ensure that bindings made within the let do not incorrectly
affect the outer state.

4F-3. VCGen Mistakes

The buggy let rule does not capture the scoping property of let. To demonstrate its incompleteness, we
will define the following:

e c: let x = 3 in skip
e B:zx=3
e o such that o(z) =2
By the buggy VC rule for let, we get that VC(¢, B) = [3/z] VC(skip, x = 3). By the VC rule for skip, we

get that VC(skip, z = 3) is = 3. Finally, [3/x] x = 3 is just 3 = 3, which is true. Thus, VC(let z = 3 in
skip, x = 3) is true.

However, we know that let commands introduce new bindings for their inner variables. That is to say,
assigning to the x defined by let does not modify any variable x already defined in o. So, if we start with
o(x) = 2, and {(¢,0) | ¢/, in our resulting state ¢’(x) = 2 as well. This violates our postcondition B, as
x # 3, and thus VC(¢, B) =~ B.

Therefore, the VC rule for let is unsound.

4F-4. Axiomatic Do-While

A do-while is just a while loop that does at least one iteration. In other words, do ¢ while b is the same
as ¢ ; while b do ¢. So, we can define a Hoare rule for the construct as a sequence between these two
subcommands:

F{A} ¢ {B} F {B} while bdo ¢ {C}
F{A} do cwhile b {C}

Peer Review ID: 70928583 — enter this when you ﬁ]& out your peer evaluation via gradescope



4 4F-4 Axiomatic Do-While
- 0 pts Correct

Peer Review ID: 70928583 — enter this when you fill out your peer evaluation via gradescope

Page 9



