14F-1 Bookkeeping

- 0 pts Correct

Exercise 4F-2

From previous homework, we know that the command let x = e in c is equivalent to the sequence of commands x' := x; x := e; c; x := x' where x' is a fresh variable. So, we can compute the verification condition of let in terms of the verification conditions of these other commands:

$$\begin{split} VC(\texttt{let}\ x = e\ \texttt{in}\ c, B) &= VC(x' \coloneqq x; x \coloneqq e; c; x \coloneqq x', B) \\ &= VC(x' \coloneqq x, VC(x \coloneqq e, VC(c, VC(x \coloneqq x', B)))) \\ &= [x/x'][e/x]VC(c, [x'/x]B). \end{split}$$

Exercise 4F-3

Let c be the command let x = 2 in skip, let B be the condition x = 2, let σ be the state $(x \mapsto 1)$. Then, based on the buggy rule for let, we have

$$VC(c, B) = VC(\text{let } x = 2 \text{ in skip, } "x = 2")$$

= $[2/x]VC(\text{skip, } "x = 2")$
= $[2/x] "x = 2"$
= "2 = 2".

Clearly $\sigma \models VC(c, B)$, because "2 = 2" is true regardless of the value of any variable. However, based on our operational semantics rules for let, we have $\langle c, \sigma \rangle \Downarrow \sigma$. That is, let x = 2 in skip doesn't change σ because skip doesn't change σ .

Finally we have $\sigma \not\models$ "x = 2" because, as defined, $\sigma(x) = 1$.

Exercise 4F-4

We claim that do c while b is equivalent to executing c once and then running c in a normal while loop (i.e. do c while $b \sim c$; while b do c). To see this, it suffices to show that they both execute c the same number of times. But this is true because both have the behavior that, after one execution of c they check b and continue looping if and only if b was true. Using this, we can easily write a Hoare rule for do-while in terms of the Hoare rules we already know for sequencing and while:

$$\frac{\{A\} \ c \ ; \text{while} \ b \ \text{do} \ c \ \{B\}}{\{A\} \ \text{do} \ c \ \text{while} \ b \ \{B\}}.$$

2 4F-2 VCGen for Let

- 0 pts Correct

Exercise 4F-2

From previous homework, we know that the command let x = e in c is equivalent to the sequence of commands x' := x; x := e; c; x := x' where x' is a fresh variable. So, we can compute the verification condition of let in terms of the verification conditions of these other commands:

$$\begin{split} VC(\texttt{let}\ x = e\ \texttt{in}\ c, B) &= VC(x' \coloneqq x; x \coloneqq e; c; x \coloneqq x', B) \\ &= VC(x' \coloneqq x, VC(x \coloneqq e, VC(c, VC(x \coloneqq x', B)))) \\ &= [x/x'][e/x]VC(c, [x'/x]B). \end{split}$$

Exercise 4F-3

Let c be the command let x = 2 in skip, let B be the condition x = 2, let σ be the state $(x \mapsto 1)$. Then, based on the buggy rule for let, we have

$$VC(c, B) = VC(\text{let } x = 2 \text{ in skip, } "x = 2")$$

= $[2/x]VC(\text{skip, } "x = 2")$
= $[2/x] "x = 2"$
= "2 = 2".

Clearly $\sigma \models VC(c, B)$, because "2 = 2" is true regardless of the value of any variable. However, based on our operational semantics rules for let, we have $\langle c, \sigma \rangle \Downarrow \sigma$. That is, let x = 2 in skip doesn't change σ because skip doesn't change σ .

Finally we have $\sigma \not\models$ "x = 2" because, as defined, $\sigma(x) = 1$.

Exercise 4F-4

We claim that do c while b is equivalent to executing c once and then running c in a normal while loop (i.e. do c while $b \sim c$; while b do c). To see this, it suffices to show that they both execute c the same number of times. But this is true because both have the behavior that, after one execution of c they check b and continue looping if and only if b was true. Using this, we can easily write a Hoare rule for do-while in terms of the Hoare rules we already know for sequencing and while:

$$\frac{\{A\} \ c \ ; \text{while} \ b \ \text{do} \ c \ \{B\}}{\{A\} \ \text{do} \ c \ \text{while} \ b \ \{B\}}.$$

3 4F-3 VCGen Mistakes - 0 pts Correct		

Exercise 4F-2

From previous homework, we know that the command let x = e in c is equivalent to the sequence of commands x' := x; x := e; c; x := x' where x' is a fresh variable. So, we can compute the verification condition of let in terms of the verification conditions of these other commands:

$$\begin{split} VC(\texttt{let}\ x = e\ \texttt{in}\ c, B) &= VC(x' \coloneqq x; x \coloneqq e; c; x \coloneqq x', B) \\ &= VC(x' \coloneqq x, VC(x \coloneqq e, VC(c, VC(x \coloneqq x', B)))) \\ &= [x/x'][e/x]VC(c, [x'/x]B). \end{split}$$

Exercise 4F-3

Let c be the command let x = 2 in skip, let B be the condition x = 2, let σ be the state $(x \mapsto 1)$. Then, based on the buggy rule for let, we have

$$VC(c, B) = VC(\text{let } x = 2 \text{ in skip, } "x = 2")$$

= $[2/x]VC(\text{skip, } "x = 2")$
= $[2/x] "x = 2"$
= "2 = 2".

Clearly $\sigma \models VC(c, B)$, because "2 = 2" is true regardless of the value of any variable. However, based on our operational semantics rules for let, we have $\langle c, \sigma \rangle \Downarrow \sigma$. That is, let x = 2 in skip doesn't change σ because skip doesn't change σ .

Finally we have $\sigma \not\models$ "x = 2" because, as defined, $\sigma(x) = 1$.

Exercise 4F-4

We claim that do c while b is equivalent to executing c once and then running c in a normal while loop (i.e. do c while $b \sim c$; while b do c). To see this, it suffices to show that they both execute c the same number of times. But this is true because both have the behavior that, after one execution of c they check b and continue looping if and only if b was true. Using this, we can easily write a Hoare rule for do-while in terms of the Hoare rules we already know for sequencing and while:

$$\frac{\{A\} \ c \ ; \text{while} \ b \ \text{do} \ c \ \{B\}}{\{A\} \ \text{do} \ c \ \text{while} \ b \ \{B\}}.$$

4 4F-4 Axiomatic Do-While - 0 pts Correct