Exercise 4F-2. VCGen for Let

The bug in the verification condition for let is because we are not allocating a new location in the let expression.

Fixed rules
To address the shadowing of variables we will replace all new bindings in let expressions with fresh variables.
VC(ey; ¢z, B) = VC(c¢1, VC(ep, B))

VC(x :=e,B) [e/x]B
VC(let x=¢ in ¢, B) [e/a]VC([a/x]c, B) where « is a fresh variable

Exercise 4F-3. VCGen Mistakes

We will demonstrate the bug in VCGen for let with the following demonstration of unsoundness.
Let ¢ be the following command:

(let x = 2 in skip); y := x * 2
Let B be a post-condition y = 4 and let the state 0 = {x = 0,y ~ 0}.

Now we will calculate the verification condition of ¢ with regards to B.

VC((let x = 2 in skip); y := x * 2, y = 4)

=VC((let x = 2 in skip), VC(y := x * 2, y = 4)) (Definition of VC on sequencing)
=VC(let x = 2 in skip, 4 = x * 2) (Definition of VC on assigment)
=VC(skip, &4 = 4) (Definition of VC on Let)

=4 = 4 (Definition of VC on skip)

= true

Since VC(c, B) is true, o = V C(c, B) is vacuous.

Now to evaluate ¢ using IMP’s operational semantic we get

((let x = 2 in skip); y := x * 2,{x > 0,y = 0})
l{x+— 0,y 0}

The full derivation is elided as it follows the normal large step rules.

Given ¢’ = {x — 0,y — 0} it follows that ¢’ ¥ y = 4. Therefore, the verification condition is unsound.

Exercise 4F-4. Axiomatic Do-While

F{A} c{C} —{C}while b do c{B}
{A} do ¢ while b {B}

The rule is sound and complete since our existing rules for commands and while are also sound and complete. We
also have the rule of consequence which can extend/relax pre/post-conditions as appropriate to prove true statements
in our system.

Peer Review ID: 316242447 — enter this when you fill out your peer evaluation via gradescope



