14F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 70885864 — enter this when you fill out your peer evaluation via gradescope

Page 3



Exercise 4F-2

I modeled my VC rule for let after the implementation of let as a few
sequential assignments with a temporary variable. I couldn’t figure out how
to make it work without the fresh variable ¢, but here’s the rule:

VC(let z = e in ¢, B) = [z/t][e/x]VC(c, [t/x]B) (t is fresh)

Peer Review ID: 70885864 — enter this when you fill out your peer evaluation via gradescope



2 4F-2 VCGen for Let
- 0 pts Correct

Peer Review ID: 70885864 — enter this when you fill out your peer evaluation via gradescope

Page 5



Exercise 4F-3

We know that the VC rule for 1let defined in the problem statement of 4F-2
is unsound. To demonstrate this, consider:

c:=let r =0 in skip
B:=(x=0)
e = {mz=1}

Based on our known VC rules, we know:

VC(c¢, B) = VC(1let z = 0 in skip,z = 0)
= [0/z]VC(skip,z = 0)
= [0/z](z = 0)
=(0=0)

= true

So, trivially, o = VC(c, B). However, (c,0) | o, since the command ¢ will
have no effect after setting x to 0, skipping, and setting x back to its original
value. And o [~ B. So the rule is unsound.

Peer Review ID: 70885864 — enter this when you fill out your peer evaluation via gradescope



34F-3 VCGen Mistakes
- 0 pts Correct

Peer Review ID: 70885864 — enter this when you fill out your peer evaluation via gradescope

Page 7



Exercise 4F-4

Frankly, do ¢ while b is the same as ¢;while b do c¢. This inspired my Hoare
rule for do ¢ while b:
F{A} c{B} F{BAb}c{B}
- {A} do c while b {B A —b}

Peer Review ID: 70885864 — enter this when you fill out your peer evaluation via gradescope



4 4F-4 Axiomatic Do-While
- 0 pts Correct

Peer Review ID: 70885864 — enter this when you fill out your peer evaluation via gradescope

Page 9



