Exercise 4F-2. VCGen for Let [6 points|. In class we gave the following rules for the
(backward) verification condition generation of assignment and let:

VC(e1; ¢, B) = VC(ey, VC(eq, B))
VC(z :=e, B) = [e/z] B
VC(let z =ein¢,B) =[e/z] VC(c, B)

That rule for let has a bug. Give a correct rule for let.

The current rule for let does not correctly handle scoping. That is, [e/z] will persist
even after c has finished its execution.

The correct rule for let is as follows:

VC(let z = ein ¢, B) = VC(Tprior = ;2 1= €;¢; T 1= Tpyior, B)

Where @pyior is a fresh variable. If x is originally undefined at the command zpyior 1= ,
then Zpior is left undefined and x := 2pyior restores x to being undefined.

Peer Review ID: 316719980 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 316719980 — enter this when you fill out your peer evaluation via gradescope

Exercise 4F-3. VCGen Mistakes [6 points]. Given {A}c{B} we desire that A —
VC(¢,B) = WP(c,B). We say that our VC rules are sound if = {VC(c, B)} ¢ {B}.
Demonstrate the unsoundness of the buggy let rule by giving the following six things:

1. a command ¢ and

2. a post-condition B and
3. a state o such that

4. 0 E=VC(e, B) and

5. {¢,0) | o’ but

6. o' |~ B.

Consider the following...
Let ¢ be (let z = 4 in skip)
Let B be the post-condition (z = 4)
Let o be the state with [z := 0]
We check whether o = VC(c, B) holds...

VC(c, B)
=VC(let x =4 in skip,z = 4)
= [4/z]VC(skip, xz = 4)

= [4/z](z = 4)
Thus o = VC(c, B) indeed holds as [z := 0] = [z/4](z = 4).
We now show (c,o) |} o', where ¢/ = [z := 0], by using our large-step operational

semantics rule for let as defined in Exercise 1F-4...

(x :=1¢,0) | oz :=n] (¢, oz :=n]) § o o = recover(z, o’, o) |
(letx = einc, o) | o <
(x =4, o) | ofr == 4] (skip, o[z := 4]) | ¢’ o = recover(z, 0", o) i
- et

(let z = 41in skip, o) | o
By definition of "recover”, ¢’ = [z := 0]
Thus, (let z = 4 in skip, o) | [z:=0]

o' [~ B does not hold, as [z := 0] £z =4
Thus, the given VC rule for let is unsound.

Peer Review ID: 316719980 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 316719980 — enter this when you fill out your peer evaluation via gradescope

Exercise 4F-4. Axiomatic Do-While [6 points]. Write a sound and complete Hoare
rule for do ¢ while b. This statement has the standard semantics (e.g., ¢ is executed at least
once, before b is tested).

We can define the hoare rule for do ¢ while b as follows, using prior definitions we have
given:

{A} ¢ {C} {C} while bdo c {BA-b}
{A} do c while b {B A b}

This Hoare rule is both sound and complete as both {A} ¢ {C} and {C} while b do ¢ {B}
have been shown to be sound and complete Hoare rules.

Peer Review ID: 316719980 — enter this when you fill out your peer evaluation via gradescope

