14F-1 Bookkeeping

- 0 pts Correct

Exercise 4F-2

The original let rule doesn't consider the scope where x is assigned to Aexp e. We can deduct a correct let rule by creating a new variable temp, assigning temp to the original value of x first, and reassigning x back to its original value temp after executing c. This means evaluating VC(let x = e in c, B) is equivalent to evaluating VC(temp) = x; x = e; x = temp, x = tem

$$VC(temp: = x; x: = e; c; x: = temp, B) = [x/temp] VC(x: = e; c; x: = temp, B)$$

= $[x/temp] [e/x] VC(c; x: = temp, B)$
= $[x/temp] [e/x] VC(c, VC(x: = temp, B))$
= $[x/temp] [e/x] VC(c, [temp/x] B)$

Thus, VC(let x = e in c, B) = [x/temp][e/x]VC(c, [temp/x] B)

Exercise 4F-3

To show that the buggy *let* rule is unsound, we set:

1.
$$c = let x = 3 in y = y - x$$

2.
$$B == x = y$$

$$3. \sigma(x) = 1 \text{ and } \sigma(y) = 6$$

4. We know that $\sigma \models VC(c, B)$ because

$$VC(let \ x = 3 \ in \ y := y - x, \ x = y) = [3/x] \ VC(y := y - x, \ x = y)$$

= $[3/x] \ [y - x/y] \ x = y$
= $[3/x] \ x = y - x$
= $(3 = y - 3)$

since $\sigma(y) = 6$, we have 3 = 3. Thus, VC(c, B) is true in σ .

5. According to < c, $\sigma > \psi \sigma'$, we have $\sigma'(x) = 1$ and $\sigma'(y) = 3$

6. $\sigma' \not\models B$ because in σ' we have $\sigma'(x) = 1$, $\sigma'(y) = 3$, but $1 \neq 3$.

Hence, we demonstrate that the buggy *let* rule can prove a false thing, and thus it is unsound.

2 4F-2 VCGen for Let

- 0 pts Correct

Exercise 4F-2

The original let rule doesn't consider the scope where x is assigned to Aexp e. We can deduct a correct let rule by creating a new variable temp, assigning temp to the original value of x first, and reassigning x back to its original value temp after executing c. This means evaluating VC(let x = e in c, B) is equivalent to evaluating VC(temp) = x; x = e; x = temp, x = tem

$$VC(temp: = x; x: = e; c; x: = temp, B) = [x/temp] VC(x: = e; c; x: = temp, B)$$

= $[x/temp] [e/x] VC(c; x: = temp, B)$
= $[x/temp] [e/x] VC(c, VC(x: = temp, B))$
= $[x/temp] [e/x] VC(c, [temp/x] B)$

Thus, VC(let x = e in c, B) = [x/temp][e/x]VC(c, [temp/x] B)

Exercise 4F-3

To show that the buggy *let* rule is unsound, we set:

1.
$$c = let x = 3 in y = y - x$$

2.
$$B == x = y$$

$$3. \sigma(x) = 1 \text{ and } \sigma(y) = 6$$

4. We know that $\sigma \models VC(c, B)$ because

$$VC(let \ x = 3 \ in \ y := y - x, \ x = y) = [3/x] \ VC(y := y - x, \ x = y)$$

= $[3/x] \ [y - x/y] \ x = y$
= $[3/x] \ x = y - x$
= $(3 = y - 3)$

since $\sigma(y) = 6$, we have 3 = 3. Thus, VC(c, B) is true in σ .

5. According to < c, $\sigma > \psi \sigma'$, we have $\sigma'(x) = 1$ and $\sigma'(y) = 3$

6. $\sigma' \not\models B$ because in σ' we have $\sigma'(x) = 1$, $\sigma'(y) = 3$, but $1 \neq 3$.

Hence, we demonstrate that the buggy *let* rule can prove a false thing, and thus it is unsound.

з 4F-3 VCGen Mistakes - **0 pts** Correct

Exercise 4F-4

We know c is executed once before b is evaluated. Thus, we can derive Hoare rule for $do\ while$ according to the while rule:

$$\vdash \{A\} \ c \ \{B\} \ \vdash \{B\} \ while \ b \ do \ c \ \{C\}$$
$$\vdash \{A\} \ do \ c \ while \ b \ \{C\}$$

Then, we can further derive it to:

$$\vdash \{A\} \ c \ \{B\} \ \vdash \{B\} \ while \ b \ do \ c \ \{B \ \land \neg \ b\}$$

$$\vdash \{A\} \ do \ c \ while \ b \ \{B \ \land \neg \ b\}$$

Finally, we will have:

$$\vdash \{A\} \ c \ \{B\} \ \vdash \{B \land b\} \ c \ \{B\}$$
$$\vdash \{A\} \ do \ c \ while \ b \ \{B \land \neg b\}$$

4 4F-4 Axiomatic Do-While - 0 pts Correct