14F-1 Bookkeeping

- 0 pts Correct

2 Exercise 4F-2. VCGen for Let [6 points].

The problem of the current rule is that it does not restore the old value. Therefore, we introduce a fresh variable s. s will keep track of the original value and assign it back to x at the end.

The rule let x = e in c therefore can be re-written as:

$$s := x; x := e; c; x := s$$

Now we transform the problem to a new one:

$$VC(\text{let } x=\text{e in } c, B) \rightarrow VC(\text{s}:=x; x:=\text{e}; c; x:=\text{s}, B)$$

We perform the simplifications

$$VC(s:=x; x:=e; c; x:=s, B) \\ = VC(s:=x; VC(x:=e; c; x:=s, B)) \\ = [x/s]VC(x:=e; c; x:=s, B) \\ = [x/s]VC(x:=e; VC(c; x:=s, B)) \\ = [x/s][e/x]VC(c; x:=s, B) \\ = [x/s][e/x]VC(c; VC(x:=s, B)) \\ = [x/s][e/x]VC(c; [s/x]B)$$

In conclusion we have a new rule with fresh variable s:

$$VC(\text{let } x=\text{e in } c, B) = [x/s][e/x]VC(c; [s/x]B)$$

3 Exercise 4F-3. VCGen Mistakes [6 points].

- 1. c: let x=1 in skip
- 2. B: x=1
- 3. $\sigma(x) = 0$
- 4. $\sigma \models VC(c, B)$; Here, VC(c,B) is satisfied since the rule does not restore the old value. We simply have 1=1.
- 5. $\langle c, \sigma \rangle \Downarrow \sigma'$; Here $\sigma'(x) = 0$, which is the original value.
- 6. $\sigma' \not\models B$ because $\sigma'(x) = 0$ and $\sigma' \not\models x = 1$

2 4F-2 VCGen for Let

- 0 pts Correct

2 Exercise 4F-2. VCGen for Let [6 points].

The problem of the current rule is that it does not restore the old value. Therefore, we introduce a fresh variable s. s will keep track of the original value and assign it back to x at the end.

The rule let x = e in c therefore can be re-written as:

$$s := x; x := e; c; x := s$$

Now we transform the problem to a new one:

$$VC(\text{let } x=\text{e in } c, B) \rightarrow VC(\text{s}:=x; x:=\text{e}; c; x:=\text{s}, B)$$

We perform the simplifications

$$VC(s:=x; x:=e; c; x:=s, B) \\ = VC(s:=x; VC(x:=e; c; x:=s, B)) \\ = [x/s]VC(x:=e; c; x:=s, B) \\ = [x/s]VC(x:=e; VC(c; x:=s, B)) \\ = [x/s][e/x]VC(c; x:=s, B) \\ = [x/s][e/x]VC(c; VC(x:=s, B)) \\ = [x/s][e/x]VC(c; [s/x]B)$$

In conclusion we have a new rule with fresh variable s:

$$VC(\text{let } x=\text{e in } c, B) = [x/s][e/x]VC(c; [s/x]B)$$

3 Exercise 4F-3. VCGen Mistakes [6 points].

- 1. c: let x=1 in skip
- 2. B: x=1
- 3. $\sigma(x) = 0$
- 4. $\sigma \models VC(c, B)$; Here, VC(c,B) is satisfied since the rule does not restore the old value. We simply have 1=1.
- 5. $\langle c, \sigma \rangle \Downarrow \sigma'$; Here $\sigma'(x) = 0$, which is the original value.
- 6. $\sigma' \not\models B$ because $\sigma'(x) = 0$ and $\sigma' \not\models x = 1$

3 4F-3 VCGen Mistakes - 0 pts Correct		

4 Exercise 4F-4. Axiomatic Do-While [6 points]

Rewrite do-while as follows:

do c while b \rightarrow c; while b do c

We can write Hoare Rule

$$\frac{\vdash \{A\}c\{B\} \quad \vdash \{B\} \text{while b do c}\{C\}}{\vdash \{A\} \text{do c while b}\{C\}}$$

This can be further simplified to

$$\frac{\vdash \{A\}c\{B\} \quad \vdash \{B \land b\}c\{B\}}{\vdash \{A\}\text{do c while b}\{B \land \neg b\}}$$

4 4F-4 Axiomatic Do-While - 0 pts Correct