14F-1 Bookkeeping

- 0 pts Correct

All subsequent answers should appear after the first page of your submission and may be shared publicly during peer review.

Exercise 4F-2. VCGen for Let [6 points]. In class we gave the following rules for the (backward) verification condition generation of assignment and let:

$$VC(c_1; c_2, B)$$
 = $VC(c_1, VC(c_2, B))$
 $VC(x := e, B)$ = $[e/x] B$
 $VC(\text{let } x = e \text{ in } c, B)$ = $[e/x] VC(c, B)$

That rule for let has a bug. Give a correct rule for let.

$$VC(let x = e in c, B) = VC([e/x]c, B)$$

Exercise 4F-3. VCGen Mistakes [6 points]. Given $\{A\}c\{B\}$ we desire that $A \Longrightarrow VC(c,B) \Longrightarrow WP(c,B)$. We say that our VC rules are *sound* if $\models \{VC(c,B)\}\ c\ \{B\}$. Demonstrate the unsoundness of the buggy let rule by giving the following six things:

- 1. a command c and
- 2. a post-condition B and
- 3. a state σ such that
- 4. $\sigma \models VC(c, B)$ and
- 5. $\langle c, \sigma \rangle \Downarrow \sigma'$ but
- 6. $\sigma' \not\models B$.

2 4F-2 VCGen for Let

- 0 pts Correct

Let command c be let x=2 in skip, post condition B be $\{x=2\}$, and let $\sigma(x)=4$. According to the buggy let rule,

$$\begin{split} \sigma &\models VC(c,B) \\ &= VC(\mathsf{let}\ x = 2\ \mathsf{in}\ \mathsf{skip}, x = 4) \\ &= [2/x]\ VC(\mathsf{skip}, x = 4) \\ &= VC(\mathsf{skip}, x = 2) \\ &= (x = 2) \end{split}$$

According to our operational semantics rules in homework 1, when $\sigma(x) = 4$:

$$\frac{\langle 2, \sigma \downarrow 2 \rangle \quad \langle \mathsf{skip}, \sigma[x := 2] \rangle \downarrow \sigma[x := 2]}{\langle \mathsf{let} \ x = 2 \ \mathsf{in} \ \mathsf{skip}, \sigma \rangle \downarrow \sigma[x := 4]}$$

Thus x = 4 in σ' while B is x = 2. Therefore, $\sigma' \not\models B$.

Exercise 4F-4. Axiomatic Do-While [6 points]. Write a sound and complete Hoare rule for do c while b. This statement has the standard semantics (e.g., c is executed at least once, before b is tested).

$$\frac{\vdash \{A\} \ c \ \{B\} \quad \vdash \{B \land b\} \ c \ \{A\}}{\vdash \{A\} \ \mathsf{do} \ c \ \mathsf{while} \ b \ \{B \land \neg b\}}$$

Submission. Turn in the formal component of the assignment as a single PDF document via the **gradescope** website. Your name and Michigan email address must appear on the first page of your PDF submission but may not appear anywhere else.

з 4F-3 VCGen Mistakes - **0 pts** Correct

Let command c be let x=2 in skip, post condition B be $\{x=2\}$, and let $\sigma(x)=4$. According to the buggy let rule,

$$\begin{split} \sigma &\models VC(c,B) \\ &= VC(\mathsf{let}\ x = 2\ \mathsf{in}\ \mathsf{skip}, x = 4) \\ &= [2/x]\ VC(\mathsf{skip}, x = 4) \\ &= VC(\mathsf{skip}, x = 2) \\ &= (x = 2) \end{split}$$

According to our operational semantics rules in homework 1, when $\sigma(x) = 4$:

$$\frac{\langle 2, \sigma \downarrow 2 \rangle \quad \langle \mathsf{skip}, \sigma[x := 2] \rangle \downarrow \sigma[x := 2]}{\langle \mathsf{let} \ x = 2 \ \mathsf{in} \ \mathsf{skip}, \sigma \rangle \downarrow \sigma[x := 4]}$$

Thus x = 4 in σ' while B is x = 2. Therefore, $\sigma' \not\models B$.

Exercise 4F-4. Axiomatic Do-While [6 points]. Write a sound and complete Hoare rule for do c while b. This statement has the standard semantics (e.g., c is executed at least once, before b is tested).

$$\frac{\vdash \{A\} \ c \ \{B\} \quad \vdash \{B \land b\} \ c \ \{A\}}{\vdash \{A\} \ \mathsf{do} \ c \ \mathsf{while} \ b \ \{B \land \neg b\}}$$

Submission. Turn in the formal component of the assignment as a single PDF document via the **gradescope** website. Your name and Michigan email address must appear on the first page of your PDF submission but may not appear anywhere else.

4 4F-4 Axiomatic Do-While - 0 pts Correct