14F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 70803281 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 4F-2. VCGen for Let [6 points]. In class we gave the following rules for the
(backward) verification condition generation of assignment and let:

VC(Cl;CQ,B) = VC(Cl,VC(Cg,B))
VC(z :=e, B) = le/z] B
VC(let z =€ in¢,B) = [e/x] VC(c, B)

That rule for let has a bug. Give a correct rule for let.

Answer: The new let rule is as follows:
VC(let x = e in ¢, B) = [x/e] VC(c, [e/x]B)

This rule replaces the bound variable x in let with e in B. This allows the substitution to
be scoped to the let expression only. After the VC has been generated, we must replace e
with x to reverse this replacement. This is because e does not have any meaning outside of
the let expression and therefore needs to be substituted back.

Peer Review ID: 70803281 — enter this when you fill out your peer evaluation via gradescope

2 4F-2 VCGen for Let
- 0 pts Correct

Peer Review ID: 70803281 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 4F-3. VCGen Mistakes [6 points]. Given {A}c{B} we desire that A —
VC(¢,B) = WP(c, B). We say that our VC rules are sound if = {VC(c, B)} ¢ {B}.
Demonstrate the unsoundness of the buggy let rule by giving the following six things:

1. a command ¢ and

2. a post-condition B and
3. a state o such that

4. 0 = VC(c, B) and

5. {(¢,0) || o' but

6. o' = B.

Answer:
l.c=letz=2inz:=x+2
2. B={z>14}

3. o= {p=23}

4. We can compute VC(c, B) = [2/z]VC(z := z+2, B) = [2/z][zr+2/z]B = [2+2/z]|B =
[4/z{x > 4} = {4 > 4} = {true}. We know that for any o = true always. Therefore,
we can conclude that o = VC(c, B).

5. We have that (c,0) || o’ where 0/ = 0 = {x = 3}. o is unaffected by ¢ because z in let
only affects x within the let command.

6. We can see that o’ [~ B as 3 2 4.

Peer Review ID: 70803281 — enter this when you fill out your peer evaluation via gradescope

34F-3 VCGen Mistakes
- 0 pts Correct

Peer Review ID: 70803281 — enter this when you fill out your peer evaluation via gradescope

Page 7

Exercise 4F-4. Axiomatic Do-While [6 points]. Write a sound and complete Hoare
rule for do ¢ while b. This statement has the standard semantics (e.g., ¢ is executed at least
once, before b is tested).

Answer: This new rule uses the while rule found on slide #23 of lecture 8 (Introduction to
Axiomatic Semantics):
{A} ¢ {C} {C} while b do ¢ {B}
{A} do ¢ while b {B}
This rule leverages the fact that a do-while loop is identical to a while-do loop, except it

executes ¢ once before checking the b condition. We can therefore compose a rule for it (like
the one above) by executing ¢ once and then using the same semantics as a while-do loop.

Peer Review ID: 70803281 — enter this when you fill out your peer evaluation via gradescope

4 4F-4 Axiomatic Do-While
- 0 pts Correct

Peer Review ID: 70803281 — enter this when you fill out your peer evaluation via gradescope

Page 9

