Exercise 4F-2. VCGen for Let

The given verification condition generation (VCGen) rule for let is:

VC(let x = e in ¢, B) = [e/z]VC(c, B)
This rule is incorrect because it applies the substitution [e/z] too early,

potentially leading to incorrect variable scoping.

Corrected Rule

The correct rule should be:
VC(let x =ein ¢,B) = VC(c,|e/z]B)

e The original rule incorrectly substitutes e for = in the entire verification
condition of ¢, which may lead to unintended variable capture.

e The correct approach first computes VC(c, B), ensuring that the verifica-
tion condition for ¢ is properly derived.

e Only after computing VC(c, B), we apply the substitution [e/z] to the
resulting postcondition B.

e This ensures that the substitution is correctly scoped and only affects the
part of the verification condition where z is in scope.

Thus, the corrected rule preserves the correct handling of variable scope in
backward verification condition generation.

Peer Review ID: 316770563 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 316770563 — enter this when you fill out your peer evaluation via gradescope

Exercise 4F-3. VCGen Mistakes

We need to demonstrate the unsoundness of the buggy verification condition
(VC) generation rule for let expressions, formulated as:

VC(let z = e in ¢ end, B) = VC(c, B)[e/x]
where [e/x] represents substituting all occurrences of x in the verification
condition with the expression e.
1. Command c
y :=0;
let y = 5 in

skip
end

This command:
e Sets y :=0.
e Introduces a local binding y = 5 within the let block.
e Executes skip, which does nothing.

e Exits the let block, removing the local y = 5 binding.

2. Post-condition B
B:y=5
We expect y to be 5 after execution.
3. Initial State o
o={}

An empty state where y is initially undefined.

4. Verification Condition o0 = VC(c, B)
Using the buggy rule:

VC(y := 0;let y =5 in skip end, y = 5)
Expanding step-by-step:

Peer Review ID: 316770563 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 316770563 — enter this when you fill out your peer evaluation via gradescope

VC(y :=0,VC(let y =5 in skip end,y = 5))
VC(let y = 5 in skip end,y = 5) = VC(skip,y = 5)[5/y] (Applying buggy rule)
= (y=05)[5/y] (Since VC of skip is just the post-condition)
=5=05 (Substituting y with 5, which is always true)
= true

Now applying this to the outer assignment:

VC(y := 0, true) = true
Since the verification condition holds unconditionally, we conclude:

o E=VC(e, B)

5. Execution of {c,o)
o y:=0=0={y— 0}
e let y =15 in skip end

— Creates a local binding y = 5.
— Executes skip, which does nothing.
— Exits the block, discarding the local y = 5.

e Final state: o/ = {y — 0}.

6. Post-condition Failure o’ [~ B
Since B : y = 5 and the final state has y = 0, we conclude:

o B

The verification condition was satisfied initially, but execution led to a final state
that did not satisfy the post-condition. This demonstrates that the buggy let
rule is unsound because it incorrectly substitutes variables without respecting
scope. A correct rule must properly handle variable shadowing to ensure sound
verification.

Peer Review ID: 316770563 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 316770563 — enter this when you fill out your peer evaluation via gradescope

Peer Review ID: 316770563

Exercise 4F-4. Axiomatic Do-While

To derive a sound and complete Hoare logic rule for the do ¢ while b loop, we
need to capture its semantics:

e The body c is executed at least once before b is tested.
e The loop continues executing as long as b holds.

e When the loop terminates, b must be false.

Hoare Rule
{P}c{l} {Inb}c{l} (IA-b)=Q
{P} do c while b {Q}

Explanation of the Rule

1. First execution: The loop executes at least once, so the precondition P
must ensure that executing c at least once establishes the loop invariant

I:
{P} e {1}

2. Loop invariant preservation: The invariant I must hold before and
after each execution of ¢, as long as b is true:

{IAb} ¢ {I}

3. Termination condition: When the loop terminates, b must be false.
The final post-condition () must be implied by the invariant and the nega-
tion of b:

(IN-D)=Q

Soundness and Completeness

e Soundness: If P holds before execution, and the invariant [is maintained
correctly, then @ will hold when the loop terminates.

e Completeness: This rule allows us to prove correctness for any valid do
c while b loop by selecting an appropriate loop invariant I.

Example
Consider the program:
do

x :=x+1
while x < 10

enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 316770563 — enter this when you fill out your peer evaluation via gradescope

with:
e Precondition: P:z =0
e Postcondition: Q : z =10
e Loop invariant: [: 2z <10
Applying the Rule
1. First execution establishes the invariant:
{r=0}z:=2+1 {z <10}
After execution, z = 1, which satisfies x < 10.
2. Loop invariant preservation:
{r <10Az2 <10} z:=z+1 {z <10}
If © < 10, then incrementing « ensures x < 10 still holds.
3. Termination ensures z = 10:
(x <10A—~(z <10)) =z =10

Since —=(z < 10) implies = > 10, and we already have z < 10, it follows
that = = 10.

Thus, we prove:

{z =0} do z := z + 1 while z < 10 {z = 10}

The Hoare rule for the do ¢ while b construct ensures that the loop executes
at least once, maintains the loop invariant, and satisfies the postcondition upon
termination. This rule is both sound and complete.

Peer Review ID: 316770563 — enter this when you fill out your peer evaluation via gradescope

