4F-2. VCGen for Let

Because z is local, any mention of z in the outer postcondition B, once c is done, either makes no sense if =
is truly out of scope or refers to some global variable x that is not the same as the local one. Therefore, we
need to change the substutition position as follows,

VC(let z = e in ¢, B) = VC([e/x]c, B)

4F-3. VCGen Mistakes

Let ¢ be let z = 0 in skip, B be z = 0 and o[z] = 3. Let’s calculate the VC(c, B) which is VC(let z = 0 in

skip, z = 0).
VC(let z = 0 in skip,z = 0) = [0/z]V C(skip,z = 0)
=[0/z]z =0
=0=0
= true

And we should also find what is o”.

(let © =0 in skip, o) — (skip; z := 3, o[z := 0])
— (z:=3,0(z =0))
— (skip, o(z = 0)[z := 3])

Then we will have o’[z] = 3 after we evaluate the c. Therefore, we have o |= true but ¢’ £ x = 0. And we
can conclude that our VC rule for let is unsound since & {VC(c, B)} ¢ {B}.

4F-4. Axiomatic Do-While

Here is the Hoare rule for the "do-while” loop. The only difference from the regular while loop here is that
we need to have an initial state that first evaluates the ¢ once and then we can apply the loop invariant to
the system. Therefore, instead of AA-b = B we have {A} ¢ {C'} and C A—b = B and we have the invariant
as D.
F{A}c{C} FCAb=D +{D}c{C} FCA-bD=B
F {A} do ¢ while b {B}

Peer Review ID: 316801205 — enter this when you fill out your peer evaluation via gradescope



