14F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 70925375 — enter this when you fill out your peer evaluation via gradescope

Page 3



Exercise 4F-2. VCGen for Let The rule given for Let x = e in c:

VC(ey;ca, B) = VC(c1, VC(co, B))
VC(z :=e, B) =le/z] B
VC(let z =ein¢,B) =[e/z] VC(c,B)

First lets identify what is wrong or buggy with the rule given. Take the final
VC:
VC(let x=e in ¢, B) = [e/x] VC(c,B)

This works though only in some cases. Specifically the cases where x is used in
some further ¢,. The reason one might want to use a “let in” statement is to
scope the variable. We want to have a local x := e, but after ¢ we restore x :=
o(z). The VCGen given above does not restore the value of x.

Recall from our earlier proofs that the “Let in” rule can be viewed as a
command tuple of the form: (temp := x; x := e; ¢; x := temp). The temp step
is missing from the rule above, lets add it.

Let x =einc —
ki=mxixi=6 ¢ xi=K
VC(Let x =ein ¢) = VC(k := x; x := ¢; ¢; X := k)

As this is just a tuple of commands we know we can compute the VC as follows:
VC(k :=x;x:=¢;¢;x:=k, B) =

[/k] VC(x :==¢; ¢; x:=k, B) =

[z/K] [e/z] VC(c; x :=k, B) =

[x/K] [e/z] VC(c, VC(x :=k, B)) =

[z/K] [e/z] VC(c, [k/z] B) =

For our final rule we have:
[z/k] [e/z] VC(c, [k/z] B)

We introduce a temporary variable, k, which holds the original state. We return
x to k which was not done in the original rule.

Exercise 4F-3. VCGen Mistakes [6 points]. Now that we have an idea
of what was wrong in the rule given we can consider the actions below in the
original rule and point out where it errs. Recall that the rule IS correct if no
other commands follow (a broken clock is right twice a day). Lets find those
cases where the rule is wrong.

1. a command ¢ and
Let x = 85 in skip;
Here we expect the answer to life, the universe, and everything. Instead
we get 85. While 85 is the smallest number that can be expressed as a
sum of two squares, with all squares greater than 1, in two ways, it’s not
correct.

2. a post-condition B and
B=x=28)

Peer Review ID: 70925375 — enter this when you fill out your peer evaluation via gradescope



2 4F-2 VCGen for Let
- 0 pts Correct

Peer Review ID: 70925375 — enter this when you fill out your peer evaluation via gradescope

Page 5



Exercise 4F-2. VCGen for Let The rule given for Let x = e in c:

VC(ey;ca, B) = VC(c1, VC(co, B))
VC(z :=e, B) =le/z] B
VC(let z =ein¢,B) =[e/z] VC(c,B)

First lets identify what is wrong or buggy with the rule given. Take the final
VC:
VC(let x=e in ¢, B) = [e/x] VC(c,B)

This works though only in some cases. Specifically the cases where x is used in
some further ¢,. The reason one might want to use a “let in” statement is to
scope the variable. We want to have a local x := e, but after ¢ we restore x :=
o(z). The VCGen given above does not restore the value of x.

Recall from our earlier proofs that the “Let in” rule can be viewed as a
command tuple of the form: (temp := x; x := e; ¢; x := temp). The temp step
is missing from the rule above, lets add it.

Let x =einc —
ki=mxixi=6 ¢ xi=K
VC(Let x =ein ¢) = VC(k := x; x := ¢; ¢; X := k)

As this is just a tuple of commands we know we can compute the VC as follows:
VC(k :=x;x:=¢;¢;x:=k, B) =

[/k] VC(x :==¢; ¢; x:=k, B) =

[z/K] [e/z] VC(c; x :=k, B) =

[x/K] [e/z] VC(c, VC(x :=k, B)) =

[z/K] [e/z] VC(c, [k/z] B) =

For our final rule we have:
[z/k] [e/z] VC(c, [k/z] B)

We introduce a temporary variable, k, which holds the original state. We return
x to k which was not done in the original rule.

Exercise 4F-3. VCGen Mistakes [6 points]. Now that we have an idea
of what was wrong in the rule given we can consider the actions below in the
original rule and point out where it errs. Recall that the rule IS correct if no
other commands follow (a broken clock is right twice a day). Lets find those
cases where the rule is wrong.

1. a command ¢ and
Let x = 85 in skip;
Here we expect the answer to life, the universe, and everything. Instead
we get 85. While 85 is the smallest number that can be expressed as a
sum of two squares, with all squares greater than 1, in two ways, it’s not
correct.

2. a post-condition B and
B=x=28)

Peer Review ID: 70925375 — enter this when you fill out your peer evaluation via gradescope



We have a post condition consistent with the wrong way to implement
”let in”

3. a state o such that
o(z) =42
This is the prior x which is not restored after our buggy let occurs

4. 0 = VC(c, B) and
VC(c, B)
Because we use the buggy role and 42 is not restored VC(c, B) is 85 = 85.
note that c is Let x = 85 in skip; in our case

5. {(¢,0) | o’ but
o'(x) = 42 we would expect the result of the non-buggy rule but

6. o’ = B.

o' W= x =85 # o'(x) = 42 alas, we have two conflicting results and we
have shown that the rule given is wrong, we therefore use the new rule I
describe above.

Exercise 4F-4. Axiomatic Do-While The rule for Do-While can be mod-
eled as a combination of two rules we already know, sequencing and the basic
while. Do-While simply executes c, then executes while b do c. This is iden-
tical to cl;c2 where ¢c1 = c and ¢2 = while b do c. This results in the
following rule for Do-While:

{a} c {B} - {BAD} ¢ {B}
- {A} do c while b {BA b}

We produce a state B, then we loop on B until we (hopefully) terminate with
{B A —b}. We always produce B, so even if b is false initially, we still terminate
in {B A —\b}.

Peer Review ID: 70925375 — enter this when you fill out your peer evaluation via gradescope



34F-3 VCGen Mistakes
- 0 pts Correct

Peer Review ID: 70925375 — enter this when you fill out your peer evaluation via gradescope

Page 8



We have a post condition consistent with the wrong way to implement
”let in”

3. a state o such that
o(z) =42
This is the prior x which is not restored after our buggy let occurs

4. 0 = VC(c, B) and
VC(c, B)
Because we use the buggy role and 42 is not restored VC(c, B) is 85 = 85.
note that c is Let x = 85 in skip; in our case

5. {(¢,0) | o’ but
o'(x) = 42 we would expect the result of the non-buggy rule but

6. o’ = B.

o' W= x =85 # o'(x) = 42 alas, we have two conflicting results and we
have shown that the rule given is wrong, we therefore use the new rule I
describe above.

Exercise 4F-4. Axiomatic Do-While The rule for Do-While can be mod-
eled as a combination of two rules we already know, sequencing and the basic
while. Do-While simply executes c, then executes while b do c. This is iden-
tical to cl;c2 where ¢c1 = c and ¢2 = while b do c. This results in the
following rule for Do-While:

{a} c {B} - {BAD} ¢ {B}
- {A} do c while b {BA b}

We produce a state B, then we loop on B until we (hopefully) terminate with
{B A —b}. We always produce B, so even if b is false initially, we still terminate
in {B A —\b}.

Peer Review ID: 70925375 — enter this when you fill out your peer evaluation via gradescope



4 4F-4 Axiomatic Do-While
- 0 pts Correct

Peer Review ID: 70925375 — enter this when you fill out your peer evaluation via gradescope

Page 10



