14F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 70858417 — enter this when you fill out your peer evaluation via gradescope

Page 3



2 4F-2

Since Imp expression evaluation produces no side-effects, a let command should be equivalent to simply
substituting the expression for every reference to the bound variable in the command, provided that this
is done in a scope-preserving way. So, assuming we have properly defined our substitution relation on
commands, as described on the Piazza:

VC(let x = e in ¢, B) = VC([e/z]c, B)

3 4F-3

Let command ¢ be let = 2 in skip, postcondition B be that x = 2, and state o be {z : 1}.

Then VC(c¢, B) = VC(let © = 2 in skip, z = 2) = [2/x] VC(skip,z = 2) = [2/z] (x = 2) = (2 = 2) = true,
so by the provided semantics of assertions, we have that ¢ = VC(c¢, B) (for any sigma, including ours in
particular).

But by our operational semantics for let statements from a previous assignment, we know that let bindings
are local, so (let x = 2 in skip,{z : 1}) | o/ = { : 1} . But, again by the provided semantics of assertions,
we know o’ =z =2 iff (z,0') | = (2,0’) . Since the former is 1 and the latter is 2, we have that ¢’ [~ B.
So the provided rule is unsound.

4 4F-4

My approach here is to note that the command do ¢ while b is operationally equivalent to the sequenced
command c ; while b do ¢. Thus I obtain a Hoare rule for the latter by composing the provided Hoare rules
for sequencing and while loops (second version):

F{A}e{B} FBAb = C +{C}c{B} FBA-b = D
F {A} do ¢ while b {D}

Peer Review ID: 70858417 — enter this when you fill out your peer evaluation via gradescope



2 4F-2 VCGen for Let
- 0 pts Correct

Peer Review ID: 70858417 — enter this when you fill out your peer evaluation via gradescope

Page 5



2 4F-2

Since Imp expression evaluation produces no side-effects, a let command should be equivalent to simply
substituting the expression for every reference to the bound variable in the command, provided that this
is done in a scope-preserving way. So, assuming we have properly defined our substitution relation on
commands, as described on the Piazza:

VC(let x = e in ¢, B) = VC([e/z]c, B)

3 4F-3

Let command ¢ be let = 2 in skip, postcondition B be that x = 2, and state o be {z : 1}.

Then VC(c¢, B) = VC(let © = 2 in skip, z = 2) = [2/x] VC(skip,z = 2) = [2/z] (x = 2) = (2 = 2) = true,
so by the provided semantics of assertions, we have that ¢ = VC(c¢, B) (for any sigma, including ours in
particular).

But by our operational semantics for let statements from a previous assignment, we know that let bindings
are local, so (let x = 2 in skip,{z : 1}) | o/ = { : 1} . But, again by the provided semantics of assertions,
we know o’ =z =2 iff (z,0') | = (2,0’) . Since the former is 1 and the latter is 2, we have that ¢’ [~ B.
So the provided rule is unsound.

4 4F-4

My approach here is to note that the command do ¢ while b is operationally equivalent to the sequenced
command c ; while b do ¢. Thus I obtain a Hoare rule for the latter by composing the provided Hoare rules
for sequencing and while loops (second version):

F{A}e{B} FBAb = C +{C}c{B} FBA-b = D
F {A} do ¢ while b {D}

Peer Review ID: 70858417 — enter this when you fill out your peer evaluation via gradescope



34F-3 VCGen Mistakes
- 0 pts Correct

Peer Review ID: 70858417 — enter this when you fill out your peer evaluation via gradescope

Page 7



2 4F-2

Since Imp expression evaluation produces no side-effects, a let command should be equivalent to simply
substituting the expression for every reference to the bound variable in the command, provided that this
is done in a scope-preserving way. So, assuming we have properly defined our substitution relation on
commands, as described on the Piazza:

VC(let x = e in ¢, B) = VC([e/z]c, B)

3 4F-3

Let command ¢ be let = 2 in skip, postcondition B be that x = 2, and state o be {z : 1}.

Then VC(c¢, B) = VC(let © = 2 in skip, z = 2) = [2/x] VC(skip,z = 2) = [2/z] (x = 2) = (2 = 2) = true,
so by the provided semantics of assertions, we have that ¢ = VC(c¢, B) (for any sigma, including ours in
particular).

But by our operational semantics for let statements from a previous assignment, we know that let bindings
are local, so (let x = 2 in skip,{z : 1}) | o/ = { : 1} . But, again by the provided semantics of assertions,
we know o’ =z =2 iff (z,0') | = (2,0’) . Since the former is 1 and the latter is 2, we have that ¢’ [~ B.
So the provided rule is unsound.

4 4F-4

My approach here is to note that the command do ¢ while b is operationally equivalent to the sequenced
command c ; while b do ¢. Thus I obtain a Hoare rule for the latter by composing the provided Hoare rules
for sequencing and while loops (second version):

F{A}e{B} FBAb = C +{C}c{B} FBA-b = D
F {A} do ¢ while b {D}

Peer Review ID: 70858417 — enter this when you fill out your peer evaluation via gradescope



4 4F-4 Axiomatic Do-While
- 0 pts Correct

Peer Review ID: 70858417 — enter this when you fill out your peer evaluation via gradescope

Page 9



