Exercise 4F-2. VCGen for Let [6 points]. The problem here is that the current VC
rule for let treats it like a literal assignment x := e, and doesn’t account for scoping.

VC(C[:U = Ziocal s B)[xlocal = 6]]

Here, we rename the fresh local z in ¢ to a new variable (Zjo04;) to avoid capturing the original
scoping, and account for possible shadowing. The key idea is that the old x is restored after
the let.

Peer Review ID: 316639216 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 316639216 — enter this when you fill out your peer evaluation via gradescope

Exercise 4F-3. VCGen Mistakes [6 points]. Given {A}c{B} we desire that A —
VC(¢,B) = WP(c¢,B). We say that our VC rules are sound if = {VC(c, B)} ¢ {B}.
Demonstrate the unsoundness of the buggy let rule by giving the following six things:

1. a command c - let x = 5 in skip
2. a post-condition B - (z = 5)
3. a state o such that - o(z) = 10

4. 0 = VC(c, B) - [5/z]VC(skip, B), VC(skip, B) = B, [5/z](x = 5), which is true and
satisfied by every o. So, o = VC(c, B).

5. {¢,0) | o’ - (let z =5 in skip, o[x := 10]). The skip does nothing, and restores x to
10 after execution.

6. o' = B. - but ¢’ #5,s0 0’ = B as o'(z) =10

Problem arises from treating let binding like an assignment (:=).

Peer Review ID: 316639216 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 316639216 — enter this when you fill out your peer evaluation via gradescope

Exercise 4F-4. Axiomatic Do-While [6 points]. Write a sound and complete Hoare
rule for do ¢ while b. This statement has the standard semantics (e.g., ¢ is executed at least
once, before b is tested).

Do-WHILE
{Aye{B} {BAb}A{B}
{A} do c while b {B A —b}
The idea is that command c is first executed unconditionally, which establishes another
assertion B, from the initial pre-condition A. Then, the loop behaves similar to a while loop

as discussed in class, which established a loop invariant B to continue running, and finally
exits when the loop guard (b) is false (with B still holding).

Peer Review ID: 316639216 — enter this when you fill out your peer evaluation via gradescope

